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This document contains three sections: 1) Technical Proofs: the detailed proofs for the propositions in the main
paper; 2) Additional Discussion: a preliminary discussion on discriminative and generative formulations; 3) Additional
Experiments: empirical evidence to support the theoretical analysis in the main paper.

1 Technical Proofs

The full proofs for all propositions can be found in this section. The propositions themselves and necessary equations
are reproduced here for convenience. All equations are re-numbered in this document, which may have different
numbering from the main paper. Unless explicitly stated, all equation references are self-contained in this document.
In our notation, all unquantified indices such as i, j, k range from 1 to |X |, unless stated explicitly.

1.1 Probability of Events

PROPOSITION 1 (PROBABILITY OF EVENTS): Suppose a random walk is visiting a sequence of points {Vt : t =
0, 1, . . .} on the graph defined by the following adjacency matrix:

Wij =

{
exp

(
−‖xi − xj‖2/2σ2

)
i 6= j

0 i = j.
(1)

Define Zi ,
∑
jWij . The following conclusions can be made.

(a) The limit of p (Vt, Vt+1) as t→∞ exists uniquely.

(b) Given that (Vt, Vt+1)
d−→ (X,X ′),

∀ij, p (X = xi, X
′ = xj) ∝Wij , (2)

∀i, p (X = xi) = p (X, X ′= xi) ∝ Zi, (3)

PROOF:

(a) First, p (Vt, Vt+1) = p (Vt+1|Vt) p (Vt). On the one hand, since a random walk is a time-homogeneous Markov
chain, p (Vt+1|Vt) is constant as t varies. On the other hand, the limit of p (Vt) as t→∞ is the (first-order) stationary
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distribution of the random walk, which exists uniquely for an arbitrary initial state V0, subject to the irreducibility
and aperodicity of the graph (Motwani & Raghavan, 2010). Thus, limt→∞ p (Vt, Vt+1) = p (Vt+1|Vt) limt→∞ p (Vt),
which also exists uniquely regardless of the initial state V0.

Now we discuss the irreducibility and aperodicity of the graph. In particular, our graph (Eq. 1) satisfies such conditions.
As a minor caveat, it is a popular practice to construct a kNN graph instead, where two points xi and xj are connected
only if xi is among the k nearest neighbors of xj or xj is among the k nearest neighbors of xi. The two conditions are
generally satisfied in a kNN graph as well; in the rare case where the conditions are not met, a simple and common
tweak is to add some dummy edges of small weights (Haveliwala, 2003).

(b) Since (Vt, Vt+1)
d−→ (X,X ′), we have

p (X = xi, X
′ = xj)

1
= lim
t→∞

p (Vt = xi, Vt+1 = xj)

2
= lim
t→∞

p (Vt+1 = xj |Vt = xi) p (Vt = xi)

3
=
Wij

Zi
lim
t→∞

p (Vt = xi)

4
=
Wij

Zi

Zi∑
uvWuv

5
=

Wij∑
uvWuv

6∝Wij (4)

In step 3, p (Vt+1 = xj |Vt = xi) = Wij/Zi is given by the transition probability. In step 4, limt→∞ p (Vt = xi) =
Zi/

∑
uvWuv is the (first-order) stationary distribution of the random walk, which is established elsewhere (Motwani

& Raghavan, 2010).

Next, we find p (X = xi) by marginalizing the joint distribution p (X,X ′).

p (X = xi) =
∑
j

p (X = xi, X
′ = xj) =

∑
j

Wij∑
uvWuv

=
Zi∑
uvWuv

∝ Zi (5)

Finally, p (X, X ′= xi) can be found similarly.

1.2 Statistical Indistinguishability

DEFINITION 1 (INDISTINGUISHABILITY): Two distributions D1 and D2 are ε-statistically indistinguishable if and
only if 1

2 ‖D1 −D2‖1 ≤ ε.

PROPOSITION 2 (LABEL COUPLING): Suppose the label distribution of xi, p (Y |X = xi), and the label distribution
of some point close to xi, p (Y |X, X ′= xi), are related:

p (Y |X = xi) = (1− α)p (Y |X, X ′= xi) + αD, (6)

for some α ∈ (0, 1) and some distribution D. Then, the two distributions p (Y |X = xi) and p (Y |X, X ′= xi) are
α-statistically indistinguishable (Definition 1).

PROOF:
1

2
‖p (Y |X = xi)− p (Y |X, X ′= xi)‖1 =

1

2
‖(1− α)p (Y |X, X ′= xi) + αD − p (Y |X, X ′= xi)‖1

=
1

2
α ‖D − p (Y |X, X ′= xi)‖1

≤ α (7)

The inequality follows since the L1 difference of any distribution is at most 2. Thus, the proof is concluded.
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1.3 Solution of Probability Constraints

PROPOSITION 3 (SOLUTION): ∀y ∈ Y , suppose πy satisfies the constraints in Eq. 8 and 9:

(Constraint on labeled data) πyi = K · θyi, ∀i : xi ∈ L, (8)

where K =
∑

k:xk∈L

πyk,

and θyi =
p (y|xi)Zi∑

k:xk∈L p (y|xk)Zk
,

(Constraint on unlabeled data) πyi =
∑
j

(1− α)Wji

Zj
πyj , ∀i : xi /∈ L. (9)

Then, we can establish two conclusions below. (a) πy is the stationary distribution of a Markov chain C with states X
and transition matrix P , where

Pji =


∑
k:xk∈LWjk + α

∑
k:xk /∈LWjk

Zj
· θyi i : xi ∈ L

(1− α)Wji

Zj
i : xi /∈ L,

(10)

(b) The stationary distribution of C exists uniquely.

PROOF: (a) The objective is to derive the corresponding transition matrix P . Intuitively, the unlabeled constraint
(Eq. 9) already tells us the transition from each state xj to xi /∈ L. Thus, our main task is to find out how to transit
from each xj to xi ∈ L, i.e., to express K (Eq. 8) as a function of πyj .

K
1
=

∑
k:xk∈L

πyk

2
= 1−

∑
k:xk /∈L

πyk

3
= 1−

∑
k:xk /∈L

(1− α)
∑
j

Wjk

Zj
πyj


4
= 1− (1− α)

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj

5
= 1−

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj + α

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj

6
=
∑
j

∑
k

Wjk

Zj
πyj −

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj + α

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj

7
=
∑
j

∑
k:xk∈L

Wjk

Zj
πyj + α

∑
j

∑
k:xk /∈L

Wjk

Zj
πyj

8
=
∑
j

∑
k:xk∈LWjk + α

∑
k:xk /∈LWjk

Zj
πyj (11)

Step 2 follows since πy is a distribution and its entries sum up to 1. Step 3 applies the constraint on unlabeled data
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(Eq. 9). In step 6,
∑
j

∑
k
Wjk

Zj
πyj =

∑
j

(
πyj

∑
k
Wjk

Zj

)
=
∑
j πyj = 1. Thus, ∀i : xi ∈ L, we have

πyi = K · θyi =
∑
j

∑
k:xk∈LWjk + α

∑
k:xk /∈LWjk

Zj
πyj · θyi (12)

It is easy to verify that πyP = πy and
∑
i Pji = 1, concluding the first part of the proof.

(b) An irreducible and aperiodic Markov chain has a unique stationary distribution. P is irreducible and aperiodic
except in one case below. When θyi = 0 for some i : xi ∈ L, P is not irreducible since Pji = 0. When this happens,
it means p (y|xi) = 0, which also implies πyi = 0. Thus, we can do a minor tweak by excluding xi from the state
space X , and derive a new transition matrix P ′ over X\{xi}, which is always irreducible. The solution would then be
π′y corresponding to P ′, coupled with πyi = 0. Alternatively, we can assume p (y|xi) ≥ ε,∀xi ∈ X , where ε is a very
small positive constant.

1.4 Error Analysis

PROPOSITION 4 (ERROR): Given the two constraints in Eq. 8 and 9, for any constant ε ∈ (0, 1),

E
[
‖π̂y − πy‖1

]
≤ O

(
(1− λ1)

|U|
)

+O

(
exp

(
−2ε2λ2 min

xi∈L,p(y|xi)>0
|Lxi
|
))

, (13)

where λ1 = min
xi∈X ,p(xi)>0

p (xi), and λ2 = min
xi∈L,p(y|xi)>0

p (y|xi)2 are constants in (0, 1].

PROOF: Our solution estimator π̂y can differ from the true πy due to insufficient samples, which produce two types of
error as follows. (a) Data sampling error. We only observe a potentially partial X̂ for X , through samples in L and U .
Hence, the affinity matrix W would not be correctly constructed, resulting in a different transition matrix P . (Here we
suppose that the graph construction function itself is perfect.) (b) Label sampling error. We estimate θy as θ̂y based
on L, which is potentially erroneous, also resulting in a different P .

Corresponding to the two types of error, we consider two scenarios X̂ ⊂ X and X̂ = X . On the one hand, when
X̂ ⊂ X , we do not need to consider the second type of error caused by θ̂y , since regardless of the error in θ̂y , the error
in π̂y can be as large as 2 (the maximal L1 difference between two distributions). On the other hand, when X̂ = X ,
the first type of error does not exist, and we only need to investigate the error caused by θ̂y . Formally,

E
[
‖π̂y − πy‖1

]
= E

[
‖π̂y − πy‖1

∣∣∣X̂ ⊂ X ]p(X̂ ⊂ X)+ E
[
‖π̂y − πy‖1

∣∣∣X̂ = X
]
p
(
X̂ = X

)
≤ 2p

(
X̂ ⊂ X

)
+ E

[
‖π̂y − πy‖1

∣∣∣X̂ = X
]

(14)

Now, we only need to bound p
(
X̂ ⊂ X

)
and E

[
‖π̂y − πy‖1

∣∣∣X̂ = X
]

for the two scenarios, respectively. Let Lxi

(or Uxi
) denote the set that contains all the samples with xi in L (or U). Similarly, let Ly denote the set that contains

all the samples with y in L. Note that since the samples are i.i.d, there can be different samples with xi or y.

The first scenario X̂ ⊂ X happens only when there exists some xi ∈ X , such that p (xi) > 0 but it is not sampled in
L or U . Hence,
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p
(
X̂ ⊂ X

)
1
= p

 ⋃
xi∈X ,p(xi)>0

|Lxi
|+ |Uxi

| = 0


2
≤

∑
xi∈X ,p(xi)>0

p (|Lxi
|+ |Uxi

| = 0)

3
=

∑
xi∈X ,p(xi)>0

(1− p (xi))
|L|+|U|

4
= O

((
1− min

xi∈X ,p(xi)>0
p (xi)

)|L|+|U|)
. (15)

Step 2 is an application of Bonferroni inequalities. Step 3 follows since the samples in L and U are i.i.d. In step 4,
min

xi∈X ,p(xi)>0
p (xi) is a constant in (0, 1], which we denote as λ1. Furthermore, if we consider |U| � |L|, we can

rewrite Eq. 15 as follows:

p
(
X̂ ⊂ X

)
≤ O

(
(1− λ1)

|U|
)
. (16)

In the second scenario X̂ = X , we investigate the second type of error due to θ̂y . Note that θyi itself is defined in
terms of p (y|xi) (Eq. 8). Thus, we need to quantify the error in p (y|xi), further translate it to the error in θ̂y , and
finally derive the error in π̂y .

We first bound the error |p̂ (y|xi)− p (y|xi)|. Note that we only need to consider xi such that p (y|xi) > 0, since
when p (y|xi) = 0, we have |p̂ (y|xi)− p (y|xi)| = 0 almost surely. Recall that p̂ (y|xi) is estimated as the sample
mean |Ly ∩Lxi |/|Lxi |. By Hoeffding’s inequality, the error in the sample mean can be bounded. Specifically, for any
constant ε ∈ (0, 1),

p (|p̂ (y|xi)− p (y|xi)| > p (y|xi) ε) ≤ 2 exp
(
−2p (y|xi)2 ε2|Lxi

|
)
. (17)

To obtain a bound on the error in θ̂y , we need |p̂ (y|xi)− p (y|xi)| to be bounded for all xi ∈ L in conjunction, whose
probability can be computed as follows.

p

 ⋂
xi∈L,p(y|xi)>0

|p̂ (y|xi)− p (y|xi)| ≤ p (y|xi) ε


1
= 1− p

 ⋃
xi∈L,p(y|xi)>0

|p̂ (y|xi)− p (y|xi)| > p (y|xi) ε


2
≥ 1−

∑
xi∈L,p(y|xi)>0

p (|p̂ (y|xi)− p (y|xi)| > p (y|xi) ε)

3
≥ 1− 2

∑
xi∈L,p(y|xi)>0

exp
(
−2p (y|xi)2 ε2|Lxi

|
)

4
= 1− ρ (18)

Step 1 follows from De Morgan’s laws. Step 2 is an application of Bonferroni inequalities. Step 3 follows from Eq. 17.
In step 4 we denote ρ , 2

∑
xi∈L,p(y|xi)>0

exp
(
−2p (y|xi)2 ε2|Lxi |

)
.
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Next, we can translate the error |p̂ (y|xi)− p (y|xi)| to
∣∣∣θ̂yi − θ̂yi∣∣∣. Eq. 18 means that there is a probability of at least

1− ρ such that ∀xi ∈ L, p (y|xi) > 0,

1− ε ≤ p̂ (y|xi)
p (y|xi)

≤ 1 + ε. (19)

Hence, with probability at least 1− ρ, ∀xi ∈ L, p (y|xi) > 0,

1− ε
1 + ε

≤ θ̂yi
θyi
≤ 1 + ε

1− ε
⇒

∣∣∣θ̂yi − θyi∣∣∣ ≤ 2ε

1− ε
θyi (20)

Finally, we can translate the error
∣∣∣θ̂yi − θ̂yi∣∣∣ to ‖π̂y − πy‖1. Based on the perturbation theory of Markov chains

(Cho & Meyer, 2001; Seneta, 1993), we can bound ‖π̂y − πy‖1 in terms of the∞-norm of the error matrix P̂ − P .
Specifically, when X̂ = X , with probability at least 1− ρ,

‖π̂y − πy‖1
1
≤ C

∣∣∣P̂ − P ∣∣∣
∞

2
= C max

j

∑
i

∣∣∣P̂ji − Pji∣∣∣
3
= C max

j

∑
i:xi∈L

∑
k α

1{k:xk /∈L}Wjk

Zj

∣∣∣θ̂yi − θyi∣∣∣
4
≤ C max

j

∑
i:xi∈L

∣∣∣θ̂yi − θyi∣∣∣
5
≤ C max

j

∑
i:xi∈L

2ε

1− ε
θyi

6
=

2Cε

1− ε
. (21)

Step 1 follows from the perturbation theory of Markov chains, where C is called a condition number and is a constant
for a given P . In step 3, we only sum over i where xi ∈ L, since P̂ji = Pji when xi /∈ L. Step 4 follows since
Zj =

∑
kWjk ≥

∑
k α

1{k:xk /∈L}Wjk for 0 < α < 1. Step 5 applies Eq. 20.

As ‖π̂y − πy‖1 is also bounded by 2 (the maximal L1 difference between two distributions), when X̂ = X , we can
determine with probability at least 1− ρ,

‖π̂y − πy‖1 ≤ min

{
2,

2Cε

1− ε

}
. (22)

Let δ , min
{

2, 2Cε1−ε

}
, which is a constant. It is easy to see that

E
[
‖π̂y − πy‖1

∣∣∣X̂ = X
]
≤ δ(1− ρ) + 2ρ

= δ + (2− δ)ρ
= O(ρ)

= O

(
exp

(
−2ε2 min

xi∈L,p(y|xi)>0
p (y|xi)2 min

xi∈L
|Lxi
|
))

. (23)

Here min
xi∈L,p(y|xi)>0

p (y|xi)2 is a constant in (0, 1], which we denote as λ2.

By plugging Eq. 16 and 23 into Eq. 14, we conclude the proof.
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1.5 Robustness Analysis

PROPOSITION 5 (ROBUSTNESS): Suppose a matrix W̃ is perturbed from W , such that for some s > 1, Wij/s ≤
W̃ij ≤Wij · s, ∀ij. Let π̃y be the the solution vector based on W̃ . It holds that ‖π̃y − πy‖1 ≤ O(s2 − 1).

PROOF: Let P̃ be an estimator of the transition matrix from W̃ . As Wij/s ≤ W̃ij ≤Wij · s, we have

Pji/s
2 ≤ P̃ji ≤ Pji · s2 ⇒

∣∣∣P̃ji − Pji∣∣∣ ≤ (s2 − 1)Pji (24)

From the sensitivity theory of Markov chains (Cho & Meyer, 2001; Seneta, 1993), for a condition number C which is
a constant for a given P ,

‖π̃y − πy‖1 ≤ C
∣∣∣P̃ − P ∣∣∣

∞
(25)

= C max
j

∑
i

∣∣∣P̃ji − Pji∣∣∣
≤ C max

j

∑
i

(s2 − 1)Pji

= C(s2 − 1). (26)

Hence, the proof is concluded.

2 Additional Discussion

In the main paper, we focus on the generative formulation of smoothness in the label coupling model, as follows.
∀y ∈ Y,∀xi ∈ X ,

p (X = xi|Y = y) = (1− α)p (X, X ′= xi|Y = y) . (27)

This result further enables us to derive a set of probability constraints in terms of p (X|Y ). For a given y ∈ Y ,

p (X = xi|Y = y) = (1− α)
∑
j

Wji/Zj · p (X = xj |Y = y) . (28)

Their derivations are laid out in the main paper. However, our smoothness framework can accommodate both gen-
erative and discriminative formulations. In particular, we are able to derive a discriminative counterpart, in terms of
p (Y |X). Starting from the indistinguishability-based label coupling model, ∀y ∈ Y,∀xi ∈ X ,

p (Y |X = xi) = (1− α)p (Y |X, X ′= xi) + αD,

= (1− α)p (Y |X, X ′= xi) , (∵ D(y) = 0,∀y ∈ Y) (29)
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which is already in the discriminative form, we can derive the corresponding set of probability constraints in terms of
p (Y |X). For a given y ∈ Y ,

p (Y = y|X = xi)
1
= (1− α)p (Y = y|X, X ′= xi)

2
= (1− α)

∑
j

p (Y = y,X = xj |X, X ′= xi)

3
= (1− α)

∑
j

p (Y = y|X = xj , X
′ = xi) p (X = xj |X ′ = xi)

4
= (1− α)

∑
j

p (Y = y|X = xj) p (X = xj |X ′ = xi)

5
= (1− α)

∑
j

p (Y = y|X = xj)Wji/Zi (30)

Step 1 is given by the indistinguishability model. Step 2 expands into the joint distribution. Step 3 is an application
of the Bayes’ rule. In step 4, the label Y of X , given X = xj , is conditionally independent of X ′. In step 5, we
have p (X = xj |X ′ = xi) = p (X = xj , X

′ = xi) /p (X ′ = xi) = Wji/Zi. Thus, p (Y = y|X = xi) is rewritten,
relating the label distribution of xi to that of its close points.

The generative and discriminative constraints in Eq. 28 and 30 appear symmetric. They differ in their normalizations
—the generative constraints (Eq. 28) normalize each summand by Zj , while the discriminative constraints (Eq. 30)
normalize each summand byZi. Interestingly, such different normalizations correspond to two different but symmetric
forms of random walk, namely the forward and backward random walks (Agarwal et al., 2010; Fang & Chang, 2011;
Fang et al., 2013). Loosely speaking, on the one hand, the generative constraints correspond to the forward walk,
which starts from a labeled point and we are interested in the probability of reaching each xi. On the other hand,
the discriminative constraints correspond to the backward walk, which starts from xi and we are interested in the
probability of reaching a labeled point. These two forms of random walk not only travel in “opposite” directions, but
also convey symmetric and complementary semantics: probabilistic recall and precision (Agarwal et al., 2010; Fang
& Chang, 2011) respectively, or importance and specificity (Fang et al., 2013) respectively. We refer readers to the
given literature for more details.

The discriminative constraints are also similar to the harmonic functions in the GRF method (Zhu et al., 2003) as
shown below (which only lacks the 1− α factor), potentially giving a new interpretation to GRF.

Fi =
∑
jWij/Zi · Fj , (31)

While the given labels naturally give a set of constraints on the labeled data points, the discriminative constraints can
be applied on the unlabeled data. By solving these constraints on labeled and unlabeled data, we can ultimately find
p (Y |X). We leave the development of a concrete solution based on the discriminative constraints to future work.

3 Additional Experiments

We conduct additional experiments to validate the theoretical analysis in the main paper.

3.1 Effect of unlabeled data

While we have seen the effect of increasing labeled points in the main paper, we investigate unlabeled points here to
validate the error analysis in Proposition 4. For each dataset, we sample |L|+ |U| data points, where we fix |L| = 10
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while |U| is varied from ∆ to 5∆. ∆ is different for different datasets in order to visualize the performance trend
clearer. Among these points, we draw 10 points as labeled data L, and treat the remaining points as unlabeled data U .

We present the mean performance over 10 such samples in Fig. 1. The empirical results are consistent with our
analysis. As expected, the performance improves when we use more unlabeled data even though the labeled data
remain the same. The result also shows that the rate of improvement slows down as we introduce more unlabeled data,
eventually hitting a ceiling. This means growing unlabeled data alone cannot reduce the error indefinitely, since it is
also limited by labeled data as explained by the second error term in Proposition 4. In more intuitive words, unlabeled
data can only help so much.
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Figure 1: Effect of unlabeled data.

3.2 Effect of graph perturbation

Lastly, we study the robustness of our solution against graph perturbation. As Proposition 5 has established, the change
in the solution πy can be bounded by O(s2−1), where s ≥ 1 is the degree of perturbation. Given s, we independently
generate a random W̃ij ∈ [Wij/s,Wij · s], ∀ij, and use W̃ as the perturbed affinity matrix.

We illustrate the effect of perturbation on USPS with |L| = 10. In Fig. 2, when the graph is perturbed to various
degrees (s ∈ {1.01, 1.02, . . . , 1.1}), the change in πy (averaged over the testing runs with standard deviation bars)
for both y = 1 and y = 2 is linear in s. This result is better than (yet still consistent with) the theoretical bound
O(s2 − 1). The reason is that we consider the worst case scenario in deriving the bound, but in our experiments here
the perturbations are generated randomly within the degree s. Furthermore, we observe that the change in the actual
predictive power in terms of macro F-measure is highly correlated with the change in πy . The same trend is observed
on all datasets with different |L|’s. Thus, our solution is robust—small degrees of perturbation cause small changes in
πy and the predictive power.
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