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Abstract
As the central notion in semi-supervised learn-
ing, smoothness is often realized on a graph rep-
resentation of the data. In this paper, we study
two complementary dimensions of smoothness:
its pointwise nature and probabilistic modeling.
While no existing graph-based work exploits
them in conjunction, we encompass both in a
novel framework of Probabilistic Graph-based
Pointwise Smoothness (PGP), building upon two
foundational models of data closeness and label
coupling. This new form of smoothness axiom-
atizes a set of probability constraints, which ul-
timately enables class prediction. Theoretically,
we provide an error and robustness analysis of
PGP. Empirically, we conduct extensive experi-
ments to show the advantages of PGP.

1. Introduction
As labeled data is often scarce, semi-supervised learning
(SSL) can be beneficial by exploiting unlabeled data. Con-
sider a random tuple (X,Y ), where a data point X ∈ X =
{x1, . . . , x|X |} has a label Y ∈ Y . We observe labeled data
L comprising i.i.d. samples of (X,Y ), and unlabeled data
U comprising i.i.d. samples of X . Typically |U| � |L|.
Potentially, we may only observe a partial X via L and U .
The task is to predict the label for every xi ∈ U .

Towards effective SSL, graph-based smoothness has at-
tracted much research interest. In particular, the smooth-
ness statement is central to SSL (Zhu, 2005; Chapelle et al.,
2006): if two points xi, xj are close, their respective la-
bels yi, yj are likely to be the same. The literature further
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suggests that it is more effective to consider smoothness on
the low-dimensional manifold, where the high-dimensional
data roughly live. As widely recognized, graphs are often
used as a proxy for the manifold (Blum & Chawla, 2001;
Zhu et al., 2003; Zhou et al., 2003; Belkin et al., 2006;
Johnson & Zhang, 2008; Subramanya & Bilmes, 2011).
Specifically, each point xi is a node on a graph, and two
points xi, xj may be connected by an edge weighted Wij .
The weight matrixW aims to capture the pairwise geodesic
distance on the manifold. In other words, the graph reveals
the structures on the manifold.

Unfortunately, although graph-based methods universally
hinge on smoothness, their realizations fall short. As the
thesis of this paper, we advocate that smoothness shall be
pointwise in nature and probabilistic in modeling.

Nature: Pointwise smoothness. Smoothness shall inher-
ently occur “everywhere,” to relate the behavior of each
point to that of its close points. We call this the point-
wise nature of smoothness. As recently identified (Rigol-
let, 2007), precisely expressing the pointwise nature boils
down to two aspects:

• How do we decide if a data point is close to another?
The smoothness statement lacks a concrete definition of
closeness. Thus, we need a data closeness model to de-
fine this. (P1)

• How is the behavior of two close points related? The
smoothness statement requires that “their labels are
likely to be the same”, which is rather vague. Thus, we
need a label coupling model to explicitly relate their la-
bel behavior. (P2)

Surprisingly, to date, no existing graph-based method re-
alizes pointwise smoothness. While it has been studied
in non-graph based settings (Rigollet, 2007; Lafferty &
Wasserman, 2007; Singh et al., 2008), previous graph-
based methods treat smoothness in an aggregate, rather



Graph-based Semi-supervised Learning: Realizing Pointwise Smoothness Probabilistically

than pointwise, manner. Specifically, they optimize an
energy function in a random field (Zhu et al., 2003; Zhu
& Ghahramani, 2002; Getz et al., 2005) or a cost func-
tion (Zhou et al., 2003; Belkin et al., 2006; Subramanya &
Bilmes, 2011) over the graph. An energy or cost function
aggregates all pairwise differences between neighboring
points across the entire graph. By minimizing the aggre-
gated difference, some “average” smoothness is achieved.
However, such aggregation is not designed for and thus
does not necessarily enforce smoothness at every point—it
is unclear how an aggregate function can precisely express
the pointwise nature of smoothness, in terms of the two
aspects (P1 & P2). After all, there exist different cost func-
tions varying greatly in actual forms (e.g., squared error,
soft margin loss, or probability divergence), with limited
justification to favor one over another.

Modeling: Probabilistic smoothness. Pointwise smooth-
ness shall be modeled probabilistically in both aspects (P1
& P2), to ultimately infer p (Y |X). First, how close is suffi-
ciently close is difficult to be reliably captured by determin-
istic binary decisions (P1). Second, the smoothness state-
ment that “their labels are likely to be the same” is mean-
ingless (Rigollet, 2007) unless it is exploited in probabilis-
tic terms (P2). Within a probabilistic framework, eventu-
ally each point can be classified based on p (Y |X), given
i.i.d. samples. Furthermore, probabilistic modeling con-
veys some concrete benefits, such as integrating class priors
p (Y ) in a more principled way, naturally supporting multi-
class tasks, and facilitating client applications that require
probabilities as input.

We note that existing probabilistic modeling in graph-based
settings (Subramanya & Bilmes, 2011; Das & Smith, 2012;
He et al., 2007; Azran, 2007) only supports aggregate, but
not pointwise, smoothness.

Our proposal. We propose the framework of Probabilistic
Graph-based Pointwise Smoothness (PGP), hinging on two
foundations that address the pointwise nature of smooth-
ness probabilistically on a graph.

To begin with, we need a data closeness model to determine
if a point is close to another (P1). Since the graph captures
the pairwise geodesic distance on the manifold, a random
walk on the graph—which moves from X to X ′ in each
step—naturally “connects”X andX ′ as close points on the
manifold. Hence, for a pair of random points (X,X ′) such
that X is close to X ′, we can describe their distribution
p (X,X ′) using the second-order stationary distribution of
the random walk. In contrast, the distribution of a single
point p (X) has been traditionally represented by the first-
order stationary distribution.

Next, we also need a label coupling model to relate the la-
bel behavior of a point xi to that of its close points (P2). We

leverage the notion of statistical indistinguishability (Gol-
dreich, 2010). In particular, whether X is xi, or X is some
point close to xi, the label Y of X shall be produced in an
indistinguishable manner. In other words, we cannot tell
apart the distributions of Y in these two cases.

Together, these two foundations constitute our smoothness
framework, which further entails a solution to SSL. While
the given labels naturally constrain the labeled data, our
smoothness framework axiomatizes a set of probability
constraints on the unlabeled data. Solving these constraints
eventually infers p (Y |X) for class prediction. Note that
the constraints can be either discriminative over p (Y |X),
or generative over p (X|Y ). Although the ultimate goal is
p (Y |X), generative models that learn p (X|Y ) and p (Y )
are often favorable in SSL (Chapelle et al., 2006). Thus,
although our framework can accommodate both forms, we
adopt the generative form here and leave the discriminative
counterpart to future work1.

Finally, we present a theoretical analysis of our solution.
First, to see that PGP can utilize both labeled and unlabeled
data, we derive a generalization error in L and U . Second,
to show that PGP is not sensitive to noisy input graphs, we
assess the robustness of our solution.

Our contributions. We summarize the contributions in
this paper as follows.

• We propose PGP, the first work to realize pointwise
smoothness on a graph probabilistically.

• We conduct an error and robustness analysis of PGP.

• We demonstrate the advantages of PGP through exten-
sive experiments.

2. Smoothness Framework
To express the pointwise nature of smoothness, we must
address its two aspects. Under a probabilistic graph-based
framework, we propose a data closeness model to capture
how a point is close to another (Sect. 2.1), as well as a label
coupling model to conceptualize how the label behavior of
a point is related to that of its close points (Sect. 2.2).

2.1. Data Closeness Model (P1)

We first propose a probabilistic model for capturing data
closeness on the graph.

Graph. For a set of points X = {x1, . . . , x|X |}, we con-
struct a graph G to capture the pairwise geodesic distance
on the underlying manifold. Each point xi ∈ X is a ver-
tex of G, and each pair of points (xi, xj) form an edge
of G with a weight Wij . Wij is also known as the affin-

1See a preliminary discussion in the supplementary material.
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ity between xi and xj , an approximate description of the
geodesic distance between the two points. W is often de-
fined as follows:

Wij =

{
exp

(
−‖xi − xj‖2/2σ2

)
i 6= j

0 i = j,
(1)

where ‖·‖ is a symmetric distance function, and σ is a scal-
ing parameter. In our notation, unquantified indices such as
i, j belong to {1, . . . , |X |}, unless stated otherwise.

Random walk-based closeness. As argued in Sect. 1, it is
difficult to reliably capture how close is sufficiently close
in a deterministic manner. In order to develop probabilistic
closeness, we need to represent the event that two points,
say xi and xj , are close.

We capture the closeness event based on a random walk
on the graph. Consider a random walk on G visiting a se-
quence of points {Vt : t = 0, 1, . . .}. While traditionally a
visit at xi (Vt = xi) models a single point xi, a traversal
walking from a point xi to another xj (Vt = xi, Vt+1 =
xj) naturally “connects” xi and xj to imply that xi is close
to xj on the underlying manifold.

Note that our use of random walk serves a novel purpose.
It specifically models the first pointwise aspect (P1) of re-
lating the points X through the closeness event, which, to-
gether with the second aspect (P2) of relating the labels Y
in Sect. 2.2, is necessary for pointwise smoothness. On the
contrary, existing use of random walk in SSL (Szummer
& Jaakkola, 2001; Azran, 2007; Wu et al., 2012) models
the “propagation” of label Y among X altogether, without
treating the two aspects explicitly.

Formally, let (X = xi, X
′ = xj) denote the event that xi

is close to xj , which follows the distribution of observing
a random walk traversal from xi to xj in the long run as
t → ∞. Hence, (X,X ′) is a pair of limiting random vari-
ables in the sense that a traversal (Vt, Vt+1) converges in
distribution to (X,X ′) jointly:

(Vt, Vt+1)
d−→ (X,X ′). (2)

In other words, (X,X ′) describes the closeness between
two points with the joint second-order limit, while X de-
scribes a single point with the marginal first-order limit.
Their convergence will be shown later.

Probability space of closeness. We describe the probabil-
ity space of the random walk-based closeness model.

Sample space. An outcome that xi is close to xj is a pair of
points (xi, xj), which corresponds to a random walk traver-
sal from xi to xj . Hence, the sample space is Ω = X 2.
An outcome can be denoted by a pair of random variables
(X,X ′) ∈ Ω, as defined in Eq. 2.

Events. As discussed, each outcome (xi, xj) is an event
that xi is close to xj , i.e., {(X,X ′) ∈ Ω : X = xi, X

′ =
xj} or denoted (X = xi, X

′ = xj). In order to relate the
behavior of two close points, we are also interested in the
events that X is xi or X is close to xi.

First, {(X,X ′) ∈ Ω : X = xi}, or denoted X = xi, is
the event of observing X as a point xi. It corresponds to a
traversal from xi to some point.

Second, {(X,X ′) ∈ Ω : X ′ = xi}, or denoted (X, X ′ =
xi), is the event of observing X as some point close to xi
(i.e., X is implicitly constrained by X ′ = xi). It corre-
sponds to a traversal from some point to xi.

Without loss of generality, here we treat X as the random
variable of interest, and our ultimate goal is to estimate
p (Y |X). However, we could also treat X ′ as the variable
of interest, and find p (Y ′|X ′) in a symmetric manner given
that W is symmetric.

Probability measure. Finally, we evaluate the probability
of the events. The random walk can be formally repre-
sented by a transition matrix Q such that

Qij = Wij/Zi, where Zi ,
∑
jWij . (3)

As (Vt, Vt+1) converges in distribution to (X,X ′), the
closeness event (X = xi, X

′ = xj) obeys the second-
order stationary distribution of the random walk:

p (X=xi, X
′=xj) = limt→∞ p (Vt=xi, Vt+1 =xj) . (4)

As established in Proposition 1, a unique second-order sta-
tionary distribution exists. As a further consequence, the
probability of the events can also be computed2.

PROPOSITION 1 (PROBABILITY OF EVENTS):
(a) The limit of p (Vt, Vt+1) as t→∞ exists uniquely.
(b) Given that (Vt, Vt+1)

d−→ (X,X ′),

∀ij, p (X = xi, X
′ = xj) ∝Wij , (5)

∀i, p (X = xi) = p (X, X ′= xi) ∝ Zi. (6)

Intuitively, Eq. 5 means that the stronger affinity Wij be-
tween xi and xj , the more likely they are close. Second,
Eq. 6 implies that observing xi is as likely as observing
a point close to xi, which is not surprising given that two
close points lie near each other on the manifold.

2.2. Label Coupling Model (P2)

Next, we propose a label coupling model to relate the la-
bel behavior of two close points. In our realization, the
label Y of X distributes similarly whether X is xi itself,

2All proofs are included in the supplementary material.
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or X is some point close to xi. That is, p (Y |X = xi) and
p (Y |X, X ′= xi) shall be alike.

Indistinguishability. We leverage the concept of statis-
tical indistinguishability (Goldreich, 2010): two distribu-
tions are statistically indistinguishable if they cannot be
told apart to some extent.

DEFINITION 1 (INDISTINGUISHABILITY): Two distribu-
tions D1 and D2 are ε-statistically indistinguishable if and
only if 1

2 ‖D1 −D2‖1 ≤ ε.

In our context, p (Y |X = xi) and p (Y |X, X ′= xi) shall
be statistically indistinguishable. In other words, the label
Y of X is produced in an indistinguishable manner regard-
less of X being xi or a point close to xi.

Label Coupling. To achieve indistinguishability, xi’s label
shall distribute similarly to that of a point close to xi. At
the same time, some “distrust” of the close points shall be
allowed, as small variances in their labels are still expected.
These factors can be accounted for by a simple mixture:

p (Y |X = xi) = (1− α)p (Y |X, X ′= xi) + αD, (7)

where α ∈ (0, 1) is a parameter, and D is the distribution
to fall back on when the close points are not trusted. In the
distrust case, we assign xi to an “unknown” class φ /∈ Y ,
i.e., D(y) = 0,∀y ∈ Y and D(φ) = 1. Our label cou-
pling model represented by this mixture formally satisfies
statistical indistinguishability.

PROPOSITION 2 (LABEL COUPLING): Given Eq. 7, the
label distribution of xi, p (Y |X = xi), is α-statistically in-
distinguishable from the label distribution of some point
close to xi, p (Y |X, X ′= xi).

Note that Eq. 7 couples the label distributions in a discrim-
inative form of p (Y |X). To model the generative proba-
bility p (X|Y ) as Sect. 1 motivated, we also derive its gen-
erative counterpart. ∀y ∈ Y,∀xi ∈ X ,

p (X = xi|Y = y)

= p (Y = y|X = xi) p (X = xi) /p (Y = y)

= (1−α)p (Y=y|X, X ′= xi) p (X, X ′= xi) /p (Y=y)

= (1− α)p (X, X ′= xi|Y = y) . (8)

In particular, D is eliminated since D(y) = 0,∀y ∈ Y , i.e.,
points of class y ∈ Y cannot be generated from D. The
intuition is that indistinguishability slowly “fades” along a
“chain” of close points due to the 1− α factor.

Implication. Eq. 8 implies that the first-order condi-
tional distribution p (X = xi|Y = y) can be related to the
sum of the second-order (joint) conditional distributions
p (X = xj , X

′ = xi|Y = y) over xj ∈ X . The association
of the first-order or point distribution, to the second-order

or edge distribution, is expected, as the pointwise nature of
smoothness is to relate the behavior of a point xi to that of
its close points xj , which we shall see next.

3. Probability Constraint-based Learning
Under the smoothness framework in Sect. 2, we develop
a set of generative probability constraints in terms of
p (X|Y ), and show that a unique solution satisfying the
constraints exists. Next, we use an iterative algorithm to
find the solution and predict classes accordingly.

3.1. Generative Probability Constraints

For each y ∈ Y , we aim to learn the generative distribution

πy , (πy1, . . . , πy|X |), (9)

where πyi , p (X = xi|Y = y). To find πy , we develop
and solve a set of constraints on πy . On the one hand, for
xi ∈ L the constraints can be modeled using the known
labels. On the other hand, while there is no known label for
xi /∈ L, the constraints can be modeled using points close
to xi, based on our smoothness framework.

Labeled points. We rewrite p (X = xi|Y = y) for xi ∈
L, relating it to p (Y = y|X = xi) which can be estimated
from the known labels in Sect. 3.3. For a given y ∈ Y ,

p (X = xi|Y = y)

= p (Y = y|X = xi) p (X = xi) /p (Y = y)

∝ p (Y = y|X = xi)Zi (10)

The proportionality follows from p (X = xi) ∝ Zi (Propo-
sition 1). We can transform this result into a constraint on
πy below, whereK is the sum of πyi for labeled points, and
θyi is the proportion each πyi gets from the sum K accord-
ing to Eq. 10. Note that we write p (y|xi) as a shorthand
for p (Y = y|X = xi) if there is no ambiguity.

Constraint on Labeled Data:

πyi = K · θyi, ∀i : xi ∈ L. (11)
where K =

∑
i:xi∈L πyi,

θyi = p (y|xi)Zi/
∑
k:xk∈L p (y|xk)Zk.

Unlabeled points. We also rewrite p (X = xi|Y = y) for
unlabeled points xi /∈ L, relating it to that of its close
points. Specifically, for a given y ∈ Y ,

p (X = xi|Y = y)
1
= (1− α)p (X, X ′= xi|Y = y)

2
= (1− α)

∑
j p (X = xj , X

′ = xi|Y = y)

3
= (1− α)

∑
j p (X ′=xi|X=xj , Y=y) p (X=xj |Y=y)

4
= (1− α)

∑
j p (X ′ = xi|X = xj) p (X = xj |Y = y)

5
= (1− α)

∑
jWji/Zj · p (X = xj |Y = y) (12)
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Step 1 is the generative form of smoothness (Eq 8). In step
2, we relate xi to each xj through their second-order (joint)
distribution, where each xj has a different probability of
being close to xi. In step 3, based on our closeness model,
given X = xj , X ′ = xi only depends on W and is condi-
tionally independent of Y . In Step 5, p (X ′ = xi|X = xj)
is simply the transition probability Qji = Wji/Zj . This
result imposes another constraint on πy .

Constraint on Unlabeled Data:

πyi = (1− α)
∑
jWji/Zj · πyj , ∀i : xi /∈ L. (13)

3.2. Solving the Constraints

The goal is to solve πy that satisfies the constraints on la-
beled and unlabeled data. In particular, we can show that
πy is the stationary distribution of some Markov chain with
X as its state space. Intuitively, the unlabeled constraint
(Eq. 13) already tells us how state xj transitions to each
xi /∈ L. Thus, we only need to deduce the transition to
each state xi ∈ L. Proposition 3 establishes the exact tran-
sition between the states.

PROPOSITION 3 (SOLUTION): ∀y ∈ Y , if πy satisfies the
constraints in Eq. 11 and 13, then:
(a) πy is the stationary distribution of a Markov chain C
with states X and transition matrix P , where

Pji=


∑

k:xk∈LWjk+α
∑

k:xk /∈LWjk

Zj
· θyi i :xi ∈ L

(1−α)Wji

Zj
i :xi /∈ L,

(14)

(b) The stationary distribution of C exists uniquely.

In fact, Eq. 14 means that πy = πyP . If we rewrite it as
element-wise operations, we see that a constraint is placed
on every individual point.

Class prediction. Given πy (which will be solved in
Sect. 3.3), we predict the label yi for xi as follows:

yi = arg maxy∈Y p (Y = y|X = xi)

= arg maxy∈Y p (X = xi|Y = y) p (Y = y) . (15)

Here p (X = xi|Y = y) is simply πyi, and p (Y = y) is the
class prior which can be estimated from L.

3.3. Solution Computation and Estimation

Next, we discuss how πy can be computed.

Iterative algorithm. Proposition 3 entails that πy can be
found iteratively, if the transition matrix P is known:

π(t+1)
y = π(t)

y P, t = 0, 1, 2, . . . , (16)

where π(t)
y converges uniquely as t → ∞ for an arbitrary

initial distribution π(0)
y .

Solution estimation. We can only find a solution estimator
π̂y since P is unknown—P is a function of W and θy , both
of which can only be estimated, resulting in two types of er-
ror. First, data sampling error: W is defined onX , but only
a partial X̂ is observed throughL and U . Thus, we can only
construct an estimator Ŵ using the incomplete X̂ . Second,
label sampling error: θy is defined by p (y|xi) ,∀xi ∈ L,
but p (y|xi) is unknown. We can only estimate it from the
given labels, p̂ (y|xi) = |Ly ∩ Lxi |/|Lxi | where Ly is the
set of all samples with y in L, and Lxi

is the set of all sam-
ples with xi in L. Subsequently, we obtain an estimator θ̂y
based on p̂ (y|xi).

Efficiency. While efficiency is not our focus, PGP can be
solved efficiently using standard iterative techniques, and
its complexity is comparable to most existing SSL meth-
ods. In terms of time, if we use a widely accepted kNN
graph, the cost isO(k|X |s), where s is the number of itera-
tions till convergence (typically k ~ 10, s ~ 100). Although
constructing an exact kNN graph can be quadratic, an ap-
proximate graph is often adequate (Chen et al., 2009). In
terms of space, we can store the kNN graph sparsely, thus
needing only O(k|X |) space.

3.4. Discussion: Comparison to Existing Methods

Our constraints on unlabeled points (Eq. 13) may appear
similar to existing works, in particular GRF (Zhu et al.,
2003) of the following formulation:

Fi =
∑
jWij/Zi · Fj , (17)

where Fi ∈ [0, 1] is the label function at xi.

Although they resemble in the surface form, their exact
forms are still disparate. We stress that such resemblance—
expressing xi’s label as some function of its neighbors xj—
is quite expected, since it is a common insight of graph-
based SSL to relate a point and its neighbors on the graph
(Zhou et al., 2003; Subramanya & Bilmes, 2011). Nonethe-
less, our exact function still differs in that PGP normalizes
each xj differently by Zj and has a damping factor 1 − α,
whereas GRF normalizes each xj by the same Zi and has
no damping factor. Beneath the surface resemblance, there
also exist some fundamental differences.

First, most existing cost function (Zhou et al., 2003; Belkin
et al., 2006) or random walk (Szummer & Jaakkola, 2001;
Azran, 2007; Wu et al., 2012) approaches, including GRF,
do not correspond to an explicit formulation of pointwise
smoothness. For instance, GRF boils down to the energy
function of a Gaussian field, which is the aggregated sum
of pairwise losses. Such aggregation is not designed for
or derived from requiring smoothness at every individual
point. Thus, smoothness does not necessarily occur “ev-
erywhere.” Even though GRF eventually leads to a local
weighted average of neighbors (Eq. 17), it is a consequence
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Figure 1. Toy problem: (a) Two-spiral dataset; (b1–3) Visualization of predictions and smoothness; (c) Decision function over a structure.

of minimizing an aggregate loss function, rather than origi-
nating from the pointwise nature in terms of the two aspects
P1 & P2. In contrast, PGP is not derived from an aggregate
function, but directly builds on the data closeness model
(for P1) and label coupling model (for P2).

Second, while many approaches (Zhu et al., 2003; Wu
et al., 2012) have probabilistic interpretations, they do not
explicitly model p (Y |X) or p (X|Y ). Taking GRF as an
example, {Fi} represents the most probable configuration
of a Gaussian field. Equivalently, Fi is the random walk
probability that a particle starting from xi first hits a labeled
point. Both interpretations do not explicitly correspond to
p (Y |X) or p (X|Y ). In contrast, in PGP, πy directly cor-
responds to p (X|Y = y).

Finally, we use a two-spiral dataset (Singh, 1998) to il-
lustrate that PGP indeed results in better smoothness. As
shown in Fig. 1(a), the dataset consists of two spiral struc-
tures as the two classes (i.e., Y = {1, 2}). We compare
the smoothness of PGP with the well-known GRF and the
state-of-the-art MP (Subramanya & Bilmes, 2011), which
are both graph-based methods albeit with different energy
or cost functions.

Smoothness essentially implies that the decision function
of a classifier changes slowly on a coherent structure (Zhou
et al., 2003). A previously proposed decision function is
h(xi) , (H1i − H2i)/(H1i + H2i), where Hyi is xi’s
“score” for class y, as assigned by a method. Then, the
decision rule is sign(h(xi)), which is equivalent to the de-
cision rule of every method compared here.

In Fig. 1(b1–3), we visualize the predictions made by the
three methods, respectively. All methods use the same four
points marked by ××× as labeled, whereas the rest are un-
labeled. Their respective optimal parameters are adopted.
The color of a point xi represents the predicted class yi,
and the size of a point xi represents the magnitude of the
decision function at xi, |h(xi)|. Thus, a smoother decision
function shall result in a sequence of points in more uni-
form sizes over each structure. Clearly, among the three
methods, PGP generates points of the most uniform sizes,

and is smooth nearly everywhere. Alternatively, we plot
the decision function over the sequence of points in one
of the structures in Fig. 1(c), which shows that PGP has a
smoother decision function.

With better smoothness, PGP achieves a perfect result
against the ideal classification in Fig. 1(a) (where the size
of each point has no significance). In contrast, GRF and
MP misclassify 4 and 2 points, respectively.

4. Theoretical Analysis

Error in π̂y . It is crucial that we can bound the error in the
solution estimator π̂y , which is estimated from the samples
L and U .

We show that the expected error, E
[
‖π̂y − πy‖1

]
, can be

bounded by two terms, corresponding to the two types of
error discussed in Sect. 3.3. Formally, as our solution is
the stationary distribution of a Markov chain, the proof can
be established based on the perturbation theory of Markov
chains (Cho & Meyer, 2001; Seneta, 1993).

PROPOSITION 4 (ERROR): Given the two constraints
(Eq. 11 and 13), for any constant ε ∈ (0, 1),

E
[
‖π̂y − πy‖1

]
≤ O

(
(1− λ1)

|U|
)

+O

(
exp

(
−2ε2λ2 min

xi∈L,p(y|xi)>0
|Lxi |

))
, (18)

where λ1 = minxi∈X ,p(xi)>0 p (xi), and λ2 =

minxi∈L,p(y|xi)>0 p (y|xi)2 are constants in (0, 1].

This result presents two major implications. First, both la-
beled and unlabeled data can help, as the bound improves
when L or U grows. Second, the bound is fundamentally
limited by L. Given a fixed set of L, even as |U| → ∞,
we can achieve no better than the second error term. In
other words, unlabeled data can only help so much. While
our analysis is tailored to PGP, the result is consistent with
previous analysis (Rigollet, 2007).

Robustness of πy . Until now, we have assumed that the
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graph construction function (Eq. 1) is perfect. If the graph
were constructed differently (i.e., perturbed), can we assess
the robustness of our solution? In other words, do small
perturbations only cause a small change in the solution?

In our perturbation model, every pairwise affinity Wij can
be perturbed by some scale factor s > 1. The goal is to
show that the solution derived from the perturbed affinity
matrix W̃ does not change much if s is small.

PROPOSITION 5 (ROBUSTNESS): Suppose a matrix W̃ is
perturbed from W , such that for some s > 1, Wij/s ≤
W̃ij ≤Wij · s, ∀ij. Let π̃y be the the solution vector based
on W̃ . It holds that ‖π̃y − πy‖1 ≤ O(s2 − 1).

Here s is the degree of perturbation on W . The result im-
plies that our solution is robust, for changes in the solution
can be bounded by the degree of perturbation.

5. Experimental Evaluation
We empirically compare PGP with various SSL algorithms,
and validate the claims in this paper.

Datasets. We use six public datasets shown in Fig. 2.
Three of them, Digit1, Text and USPS, come from a bench-
mark (Chapelle et al., 2006). As the benchmark datasets
are mostly balanced, we also use three datasets from
UCI repository (Frank & Asuncion, 2010), namely, Yeast,
ISOLET and Cancer3. Only a subset of Yeast (classes cyt,
me1, me2, me3) and of ISOLET (classes a, b, c, d) are used.
The benchmark datasets are taken without further process-
ing. For the UCI datasets, feature scaling is performed so
that all features have zero mean and unit variance.

Name Task Points Features Classes Balanced
Digit1 synthetic digits 1500 241 2 yes
Text newsgroups 1500 11960 2 yes
ISOLET spoken letters 1200 617 4 yes
Cancer breast cancer 569 30 2 no
USPS written digits 1500 241 2 no
Yeast protein sites 721 8 4 no

Figure 2. Summary of the datasets.

Graph. We construct a kNN graph (Chapelle et al., 2006),
where k is a parameter to be selected. To instantiate Eq. 1,
we use Euclidean distance for all datasets except Text, and
Cosine distance for Text. σ is set to the average distance of
all neighboring pairs on the graph.

Labeling. For a given |L|, we sample 200 runs, where in
each run |L| points are randomly chosen as labeled, and the
rest are treated as unlabeled. The sampling ensures at least

3It is known as “Breast Cancer Wisconsin (Diagnostic)” in the
UCI repository.

one labeled point for each class. 5% of the runs are reserved
for model selection, and the remaining are for testing.

Evaluation. We evaluate the mean performance over the
testing runs on each dataset. As classification accuracy is
not a truthful measure of the predictive power on imbal-
anced datasets, we adopt macro F-measure (Forman, 2003)
as the performance metric.

5.1. Comparison to Baseline Algorithms

We compare PGP to five state-of-the-art SSL algorithms,
which have been shown (Zhu et al., 2003; Belkin et al.,
2006; Subramanya & Bilmes, 2011) to significantly out-
perform earlier ones such as TSVM (Joachims, 1999) and
SGT (Joachims, 2003).

• Gaussian Random Fields (GRF) (Zhu et al., 2003): a pi-
oneering method based on Gaussian fields, equivalent to
optimizing the squared loss.

• LapSVM (LSVM) (Belkin et al., 2006): an effective
graph-based extension of SVM.

• Graph-based Generative SSL (GGS) (He et al., 2007): a
probabilistic generative approach.

• Measure Propagation (MP) (Subramanya & Bilmes,
2011): a divergence-based optimization formulation
over probability distributions.

• Partially Absorbing Random Walk (PARW) (Wu et al.,
2012): a random walk method on graphs.

An existing implementation (Melacci & Belkin, 2011) is
used for LSVM, whereas our own implementations are
used for the others. Each algorithm integrates class priors
as suggested in their respective work, if any.

Model selection is performed on the reserved runs. For
each algorithm, we search k ∈ {5, 10, 15, 20, 25} to con-
struct the kNN graph. GRF and GGS has no other parame-
ters. For LSVM, we search γA ∈ {1e–6, 1e–4, .01, 1, 100},
r ∈ {0, 1e–4, .01, 1, 100, 1e4, 1e6}. For MP, we search α
∈ {.5, 1, 5, 20, 100}, u ∈ {1e–8, 1e–6, 1e–4, .01, .1, 1, 10},
v ∈ {1e–8, 1e–6, 1e–4, .01, .1}. For PARW, we search
α ∈ {1e–8, 1e–6, 1e–4, .01, 1, 100}. For PGP, we search
α ∈ {.01, .02, .05, .1, .2, .5}.

The mean macro F-measures on the testing runs are re-
ported in Fig. 3, leading to the following findings.

First, PGP performs the best or not significantly different
from the best in 15 out of the 18 cases (i.e., columns),
whereas GRF, LSVM, GGS, MP and PARW perform as
such in only 3, 6, 4, 7, 5 cases, respectively.

Second, while PGP has relatively stable performance
across all the cases, the baselines can be volatile. In partic-
ular, when PGP is not the best, there is no consistent best
method, which varies between LSVM, GGS and MP.
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|L| = 10 |L| = 20 |L| = 150
Digit1 Text ISOLET Cancer USPS Yeast Digit1 Text ISOLET Cancer USPS Yeast Digit1 Text ISOLET Cancer USPS Yeast

GRF .894 .451 .627 .871 .638 .510 .932 .467 .686 .913 .682 .569 .979 .744 .849 .958 .902 .718
LSVM .833 .428 .719 .886 .698 .562 .935 .472 .780 .914 .780 .614 .979 .771 .901 .956 .908 .729
GGS .855 .567 .677 .867 .666 .540 .886 .648 .771 .918 .758 .578 .965 .771 .905 .948 .906 .727
MP .901 .558 .692 .898 .713 .574 .940 .611 .735 .924 .794 .617 .979 .746 .854 .957 .913 .718

PARW .881 .587 .721 .893 .706 .575 .923 .640 .782 .920 .791 .613 .975 .729 .897 .955 .916 .715
PGP .910 .592 .734 .910 .704 .593 .939 .634 .786 .927 .796 .633 .978 .732 .902 .958 .931 .721

Figure 3. Performance comparison. In each column, the best result and those not significantly different (p > .05 in t-test) are bolded.

Third, PGP is especially advantageous with limited labeled
data (e.g., |L| = 10), which is the very motivation of
SSL. In contrast, when abundant data are labeled (e.g.,
|L| = 150), all algorithms perform better, and thus not sur-
prisingly, the margin between them becomes smaller.

5.2. Integrating Class Priors

A concrete benefit of probabilistic modeling is to enable
better integration of class priors, which is also probabilis-
tic in nature. We demonstrate that principled integration of
class priors is more effective than heuristics, and integrat-
ing more accurate priors helps.

Integration of priors. We compare two different methods
of integrating class priors:

• BAYES: integrating in PGP in a Bayesian way (Eq. 15).

• CMN: integrating in GRF using the popular heuristic
Class Mass Normalization (Zhu et al., 2003).

Note that BAYES and CMN respectively apply to a differ-
ent algorithm as they are originally intended for. The priors
are approximated in the same way for both methods, using
the labeled points with add-one smoothing.

We study the corrective power of each method: integrat-
ing priors can be seen as “corrections” to the base model
that does not incorporate priors. Directly assessing the im-
provement over the base model is unfair, since the base per-
formances of PGP and GRF differ. Instead, we compute the
F-score from the precision and recall of the corrections:

precision = #true corrections/#corrections made (19)
recall = #true corrections/#corrections needed (20)

The results are presented in Fig. 4(a) on the imbalanced
datasets, which are more interesting given their non-
uniform class priors. In all but one case, BAYES possesses
much better corrective power than CMN.

More accurate priors. If class priors are integrated ap-
propriately, using more accurate priors is expected to im-
prove the performance. Suppose we know the exact priors
by considering the labels of all points. We then apply the
approximate and exact priors to PGP. We directly measure

the performance with or without priors, given the same base
model. The results are presented in Fig. 4(b), which illus-
trate that, while the estimated priors are effective in most
cases, the supposedly more accurate exact priors can fur-
ther improve the performance.

(a) Corrective power of different integration methods

|L| = 10 |L| = 20 |L| = 150

Cancer USPS Yeast Cancer USPS Yeast Cancer USPS Yeast

CMN .449 .264 .310 .255 .275 .307 .087 .250 .084
BAYES .333 .564 .388 .373 .692 .504 .475 .781 .607

(b) Using different priors on PGP

|L| = 10 |L| = 20 |L| = 150

Cancer USPS Yeast Cancer USPS Yeast Cancer USPS Yeast

None .923 .636 .568 .927 .722 .600 .950 .873 .678
Approx .910 .704 .593 .927 .796 .633 .958 .931 .721
Exact .929 .733 .622 .937 .805 .647 .960 .932 .730

Figure 4. Effect of incorporating class priors in prediction.

6. Conclusion
We proposed a novel framework of Probabilistic Graph-
based Pointwise Smoothness (PGP), hinging on the foun-
dational data closeness and label coupling models. We
further transformed such smoothness into a set of prob-
ability constraints, which can be solved uniquely to infer
p (Y |X). We also studied the theoretical properties of PGP
in terms of its generalization error and robustness. Finally,
we empirically demonstrated that PGP is superior to exist-
ing state-of-the-art baselines.
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