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Abstract

Label propagation is a popular graph-based semi-
supervised learning framework. So as to obtain
the optimal labeling scores, the label propagation
algorithm requires an inverse matrix which in-
curs the high computational cost of O(n3+cn2),
where n and c are the numbers of data points and
labels, respectively. This paper proposes an effi-
cient label propagation algorithm that guarantees
exactly the same labeling results as those yielded
by optimal labeling scores. The key to our ap-
proach is to iteratively compute lower and upper
bounds of labeling scores to prune unnecessary
score computations. This idea significantly re-
duces the computational cost to O(cnt) where t
is the average number of iterations for each label
and t ≪ n in practice. Experiments demonstrate
the significant superiority of our algorithm over
existing label propagation methods.

1. Introduction
Semi-supervised learning has been a dominant research
topic in the machine learning area. Given a dataset con-
sisting of both labeled and unlabeled data points, the task
is to assign labels to the unlabeled subset. A number
of semi-supervised learning methods have been proposed
(Chapelle et al., 2010). One major framework, label prop-
agation, was proposed by Zhou et al. (Zhou et al., 2003).
Our goal in this paper is to develop an efficient algorithm
for label propagation.

The key assumption in label propagation is that data points
occupying the same manifold are very likely to share the
same semantic label (Zhou et al., 2003). To this end, label
propagation aims to “propagate” labels of the labeled data
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points to the unlabeled data points according to the intrin-
sic data manifold structures collectively revealed by a large
number of data points. This implies that the label propaga-
tion algorithm can more successfully estimate the labels as
the number of (labeled or unlabeled) data points increases.
Obviously this results in higher computation time.

Theoretically, the labeling scores of the unlabeled data
points are computed by minimizing the cost function where
the optimal solution is obtained by means of the inverse of
the adjacency matrix of a data graph (e.g., k-NN graph)
(Zhou et al., 2003). Since the size of the adjacency matrix
is generally O(n2), computing its inverse takes O(n3) time
where n is the number of data points (Belkin et al., 2006).
Consequently, O(n3 + cn2) time is required to determine
the labels for all unlabeled data points from c types of la-
bels, which might be intractable for large-scale datasets.
The original label propagation algorithm proposed by Zhou
et al. uses the power method (Golub & Loan, 2012) to en-
hance computation speed (Zhou et al., 2003); the power
method is the standard approach for label propagation.
Even though the power method converges to the theoret-
ically correct scores, practically, the algorithm terminates
when the residual is less than some predetermined value
(Xu et al., 2011). The labeling results (scores) after ter-
mination can differ from the theoretical ones in practice,
resulting in unsatisfactory performance.

In this paper, we propose a new efficient label propaga-
tion algorithm. The key idea of our approach is to com-
pute lower and upper bounding scores and thus iteratively
prune unnecessary score computations in determining a la-
bel for each node. The resulting computation time of our
approach falls to O(cnt), where t is the average num-
ber of iterations for each label. In practice, t ≪ n, so
our approach is significantly faster than the original algo-
rithm. Even though many approximation approaches have
been proposed for efficient label propagation (Fergus et al.,
2009; Kumar et al., 2009; Talwalkar et al., 2008; Yu & Yu,
2005; Zhu et al., 2003), one key advantage of our approach
compared to them is that it guarantees the same label-
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Table 1. Definition of main symbols.
Symbol Definition

n Number of data points
c Number of labels
xi i-th data point
li i-th label

y(xi) Label of data point xi

f(xi|lj) i-th element of vector fj
ft(xi|lj) Upper bound of f(xi|lj) in the t-th iteration
f
t
(xi|lj) Lower bound of f(xi|lj) in the t-th iteration
fi i-th column vector of matrix F
yi i-th column vector of matrix Y
W n × n adjacency matrix of the k-NN graph
S Normalization matrix of W
F n × c classification matrix
Y n × c initial label matrix

ing results as the optimal solution yielded by the inverse
matrix computation. Moreover, our approach can han-
dle several types of graphs such as the linear neighbor-
hood graph and the sparse L1 graph (Wang & Zhang, 2008;
Elhamifar & Vidal, 2011). On the other hand, the previ-
ous approaches do not have this property since their fo-
cus is on the graph Laplacian, where edge weights are
forced to be non-negative (von Luxburg, 2007). Alexan-
drescu et al. collapsed multiple nodes having the same
label before applying the power method to increase its
speed (Alexandrescu & Kirchhoff, 2007). In addition, Sub-
ramanya et al. effectively used the cache in a parallel
computing implementation by ordering the nodes for the
power method (Subramanya & Bilmes, 2009). Since we
iteratively compute the estimations similar to the power
method, their approaches complement our approach. Ex-
periments confirm that our approach is much faster than
the existing methods. Note that our approach does not re-
quire users to set any inner-parameters whereas the previ-
ous approaches, including the power method, have inner-
parameters that significantly impact the labeling results.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the original label propagation ap-
proach by Zhou et al. and the power method. Section 3
introduces the main ideas and details of our algorithm. Sec-
tion 4 reviews the results of our experiments. Section 5
provides our conclusions.

2. Preliminary
In this section, we briefly review label propagation pro-
posed by Zhou et al. (Zhou et al., 2003). Table 1
lists the main symbols and their definitions. X =
{x1, x2, . . . , xm, xm+1, . . . , xn} represents a set of data
points, and L = {l1, l2, . . . , lc} is the label set. The
first m data points, {x1, x2, . . . , xm}, are labeled by
{y(x1), y(x2), . . . , y(xm)|y(xi) ∈ L} and the remaining
data points are unlabeled. The goal of label propagation is
to predict the labels of unlabeled data points which can be
achieved as mentioned below.

First, a graph G = {V,E} is constructed where the set of
nodes V is the set of data points X, i.e., V = X. E is the
set of edges whose weights reflect the similarities among
data points. The k-NN graph scheme is the most popu-
lar approach for graph construction. In the k-NN graph,
a node pair share an undirected edge if the two nodes are
k-nearest neighbors (von Luxburg, 2007). This indicates
that the number of edges is O(n) and the graph is symmet-
ric. Conventionally, the edge weight between point xi and
xj , Wij , is obtained by a Gaussian kernel (Bishop, 2007);
Wij = exp{−||xi − xj ||2/2σ2} if an edge connects data
point xi to xj , otherwise Wij = 0. In this equation, σ is a
hyperparameter. Many researchers have proposed efficient
approaches for the k-NN graph construction (Chen et al.,
2009; Connor & Kumar, 2010; Dong et al., 2011).

Next, the node scores are computed for each label to deter-
mine labels for unlabeled data points. In label propagation,
the labeling scores are defined as the optimal solution that
minimizes the cost function. The n × c size matrix F cor-
responds to a classification on data points X by labeling
each data point; matrix F holds the labeling scores of all
data points for each label. Y is an n× c size matrix where
Yij = 1 if point xi is initially labeled as y(xi) = lj and
Yij = 0 otherwise. Let Fi and Yi be the i-th row vector
of F and Y, respectively, i.e., F = [F1,F2, . . . ,Fn]

T and
Y = [Y1,Y2, . . . ,Yn]

T . The cost function C(F) associ-
ated with classification matrix F is defined as follows:

C(F) = 1
2

∑n
i,j=1Wij

∥∥∥ Fi√
Dii

− Fj√
Djj

∥∥∥2
+
(
1
α − 1

)∑n
i=1 ∥Fi −Yi∥2

(1)

In Equation (1), D is a diagonal matrix where Dii =∑n
j=1 Wij , and α is a constant parameter such that 0 <

α < 1 (Zhou et al., 2003). The cost function is designed
to enhance the accuracy of label prediction. The first and
second terms in the cost function C(F) correspond to the
smoothness constraint and the fitting constraint, respec-
tively. The smoothness constraint means that a good classi-
fying function should not change too much between nearby
points. The fitting constraint means good classification
should not change too much from the initial label assign-
ment. Minimizing the cost function yields the optimal F in
the following closed form:

F = (I− αS)−1Y (2)

where I is an identity matrix of size n × n and S is com-
puted from matrix W as S = D−1/2WD−1/2. Let fi
(1 ≤ i ≤ c) be the i-th column vector of matrix F that
corresponds to label li, and let f(xi|lj) be the i-th element
of vector fj that corresponds to data point xi. The label of
data point xi, y(xi), is obtained as follows:

y(xi) = argmax1≤j≤c f(xi|lj) (3)
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Equation (2) indicates that the labeling score computation
involves the matrix inversion operation; it requires O(n3)
time to compute the inverse matrix (Belkin et al., 2006).
Moreover, it takes O(cn2) time to compute the classifica-
tion matrix F since matrix F is obtained as the product
of matrix (I − αS)−1 and Y whose sizes are n × n and
n × c, respectively. Consequently, the approach requires
O(n3 + cn2) time to obtain labels from the graph which is
prohibitively high.

Zhou et al. proposed to utilize the power method
(Golub & Loan, 2012) to enhance the labeling speed, and
this is the standard approach for label propagation. Their
approach iteratively updates the labeling scores in the fol-
lowing form where Ft is the classification matrix of the t-th
iteration (Zhou et al., 2003):

Ft+1 = αSFt + (1− α)Y (4)

It is known that the scores yielded by the power method are
equivalent to those by the optimal solution (Equation (2))
after convergence; F∞ = F. However, in practice, the
power method terminates the iterations when the residual is
less than some predetermined value (Xu et al., 2011). This
indicates that the power method approximately computes
the labeling scores. Even though the power method is the
standard approach for label propagation, it does not output
the same labeling results as the the optimal solution.

3. Proposed method
This section presents our fast label propagation approach;
it outputs the same labeling results as the optimal solu-
tion. First, we give an overview of the ideas underlying
our approach and then provide a full description in Sec-
tions 3.1 to 3.4. We also give some theoretical analyses
of its performance in Section 3.5. Finally, we show that
we can handle other graph construction approaches, such
as linear neighborhood graphs (Wang & Zhang, 2008) and
sparse L1 graphs (Elhamifar & Vidal, 2011), as well as k-
NN graphs in Section 3.6.

3.1. Ideas

The power method iteratively computes the labeling scores
until convergence for all labels. In order to enhance the
efficiency, we do not update the scores for all labels. In-
stead, our approach updates labeling scores for a subset
of labels. Subset membership is determined by using the
lower and upper bounds of labeling scores. This approach
has several strong advantages. First, if there is no label to
be updated, we terminate the iterations without waiting for
convergence, unlike the power method. This implies that
our approach needs fewer iterations than the power method.
Second, we can obtain exactly the same labeling results
as the optimal solution. This is because the lower/upper

bounds allow us to safely discard unnecessary score com-
putations. Finally, our approach does not require any user-
defined inner-parameter. By contrast, the power method
requires setting of the predetermined threshold for iteration
termination, which induces a trade-off between efficiency
and accuracy. That is, our approach is user-friendly.

3.2. Lower/upper bounds

We iteratively compute the lower and upper bounds for
the labeling scores to efficiently obtain a label for each
node. In the t-th iteration (t = 0, 1, 2, . . .), we compute the
lower/upper bounds for label set Lt; we detail the proce-
dure used to obtain Lt in Section 3.3. Let yi be the i-th col-
umn vector of matrix Y, and let y(xi|lj) be the i-th element
of vector yj . yi corresponds to scores of initially labeled
nodes for label li. y(xi|lj) = Yij is the initial label score
of data point xi with respect to label lj . We here intro-
duce propagation score pt(xi|l) to obtain the lower/upper
bounds. We iteratively compute propagation score pt(xi|l)
of data point xi for label l in the t-th iteration as follows:

pt(xi|l) =
{

y(xi|l) (t = 0)∑
xj∈X Sijpt−1(xj |l) (t ̸= 0)

(5)

This equation indicates that (1) the propagation scores are
initialized by the initial label setting if t = 0 and (2) the
propagation scores are incrementally updated from those of
the previous iteration and the matrix S. The lower bound
of data point xi for label l, f

t
(xi|l), is obtained by using

the propagation scores as follows:

Definition 1 (Lower bound) The lower bound of labeling
score f(xi|l) in the t-th iteration is computed as follows:

f
t
(xi|l)=(1−α)

{∑t
τ=0{ατpτ (xi|l)}+

αt+1σ p
t
(l)

1−ασ

}
(6)

where σ and p
t
(l) are defined as follows:

σ = min1≤i≤n

∑
xj∈X Sij (7)

p
t
(l) = min1≤i≤n pt(xi|l) (8)

Before describing the lower bounding property of f
t
(xi|l),

we introduce the following two lemmas which underlie the
lower bounding property:

Lemma 1 (L1 norm of row elements) The value of σ is
not larger than 1, i.e. , σ ≤ 1.
Proof As shown in (Zhou et al., 2003), the i-th eigenvalue
of matrix S, λi, is −1 ≤ λi ≤ 1. Since S is clearly
a non-negative matrix, we have the following inequality
for the spectral radius of matrix S, ρ(S), from the Perron-
Frobenius theorem (Golub & Loan, 2012):

σ = min1≤i≤n

∑
xj∈X Sij ≤ ρ(S) = max1≤i≤n |λi| ≤ 1

Therefore, we have σ ≤ 1. □
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Lemma 2 (Lower bounding difference) For the (t + τ)-
th iteration where τ ≥ 1, we have pt+τ (xi|l) ≥ p

t
(l)στ

Proof We prove Lemma 2 by mathematical induction
(Gunderson, 2010).

Initial step: From Equation (5), we have the following in-
equality in the (t+1)-th iteration:

pt+1(xi|l)=
∑

xj∈X Sijpt(xj |l)≥p
t
(l)

∑
xj∈X Sij≥p

t
(l)σ

Inductive step: In the (t+τ−1)-th iteration, we assume that
pt+τ−1(xi|l) ≥ p

t
(l)στ−1 holds. From Equation (5),

pt+τ (xi|l) =
∑

xj∈X Sijpt+τ−1(xj |l)

≥ p
t
(l)στ−1

∑
xj∈X Sij ≥ p

t
(l)στ

This completes the inductive step. Therefore, pt+τ (xi|l) ≥
p
t
(l)στ holds. □

By utilizing Lemma 1 and 2, we show the lower bounding
property of f

t
(xi|l).

Lemma 3 (Lower bound) For the labeling score of data
point xi, f t

(xi|l)≤f(xi|l) holds in the t-th iteration.
Proof From Equation (4), we have

Ft=αSFt−1+(1−α)Y=α2S2Ft−2+(1−α)(αSY+Y)

= . . .=αtStY + (1− α)
∑t−1

τ=0(α
τSτY)

Since (1) limt→∞(αS)t = 0 as shown in (Zhou et al.,
2003) and (2) the power method has the property of con-
verging to the theoretically correct scores, we have

F = lim
t→∞

{(αS)tY + (1− α)
∑t−1

τ=0(α
τSτY)}

= (1− α)
∑∞

τ=0(α
τSτY)

Therefore, for column vector f in matrix F and the corre-
sponding column vector y in matrix Y, we have the fol-
lowing equation from Equation (5):

f = (1− α)
∑∞

τ=0(α
τSτy) = (1− α)

∑∞
τ=0(α

τpτ (l))

where pτ (l) is an n × 1 vector where the i-th element is
pτ (xi|l). Consequently, the i-th element of vector f , which
corresponds to data point xi, can be computed as follows:

f(xi|l) = (1− α)
∑∞

τ=0{ατpτ (xi|l)}

From the above equation and Lemma 2, f
t
(xi|l) can be

computed as follows:

f(xi|l)=(1−α)
{∑t

τ=0(α
τpτ (xi|l))+

∑∞
τ=1(α

t+τpt+τ (xi|l))
}

≥(1−α)
{∑t

τ=0(α
τpτ (xi|l))+αtp

t
(l)

∑∞
τ=1(α

τστ )
}

Since 0 < α < 1 and στ ≤ 1 from Lemma 1, we have∑∞
τ=1(α

τστ ) = ασ
1−ασ . As a result,

f(xi|l)≥(1−α)
{∑t

τ=0{ατpτ (xi|l)}+
αt+1σ p

t
(l)

1−ασ

}
=f

t
(xi|l)

which completes the proof. □
The upper bound can be obtained by exploiting the propa-
gation scores as follows:

Definition 2 (Upper bound) In the t-th iteration, the fol-
lowing equation gives the upper bound of labeling score
f(xi|l), f t(xi|l):

f t(xi|l) =

(1−α)
∑t

τ=0{ατpτ (xi|l)}+αt+1
{
pt(xi|l)+nδtS(xi)

1−α

} (9)

In this equation, S(xi) and δt are defined as follows:

S(xi) = max1≤j≤n Sij (10)

δt=

{
n (t = 0)∑

xi∈X max{pt(xi|l)−pt−1(xi|l), 0} (t ̸= 0)
(11)

The upper bounding property of Definition 2 is based on
the following two lemmas:

Lemma 4 (L1 norm of column elements) Letting ei be
an n × 1 vector of zeros with only the i-th element set to
1, we have Sτei ≤ n.
Proof Let U = [u1,u2, . . . ,un] be an n× n matrix com-
posed of the eigenvectors of S where ui is eigenvector of
eigenvalue λi. In addition, let D be a diagonal matrix of
eigenvalues such that D = diag (λ1, λ2, . . . , λn). Since
matrix S is symmetric, we have U−1 = UT . Therefore,
Sτ = (UDU−1)τ = UDτUT . As shown in (Zhou et al.,
2003), we have −1 ≤ λi ≤ 1. Therefore,

Sτei=
∑

1≤j≤n λ
τ
juju

T
j ei≤

∑
1≤j≤n 1

τuju
T
j ei=n

As a result, we have Sτei ≤ n. □

Lemma 5 (Upper bounding difference) For the (t+τ)-th
iteration, pt+τ (xi|l) ≤ pt(xi|l) + τnδtS(xi) holds.
Proof Letting Sτ−1

ij be the (i, j) element of matrix Sτ−1,
from Equation (5), we have

pt+τ (xi|l)− pt+τ−1(xi|l)
=
∑

xj∈X
∑

xk∈X SijS
τ−1
jk {pt(xk|l)− pt−1(xk|l)}

≤
∑

xk∈X
∑

xj∈X S(xi)S
τ−1
jk max{pt(xk|l)− pt−1(xk|l), 0}

=S(xi)
∑

xk∈X max{pt(xk|l)−pt−1(xk|l), 0}
(∑

xj∈X Sτ−1
jk

)
From Lemma 4, we have

∑
xj∈X Sτ−1

jk = Sτ−1ek ≤ n.
Therefore, from Equation (11),

pt+τ (xi|l)− pt+τ−1(xi|l) ≤ nδtS(xi)

As a result,

pt+τ(xi|l)≤pt+τ−1(xi|l)+nδtS(xi)≤ . . .≤pt(xi|l)+τnδtS(xi)

which completes the proof. □
The upper bounding property is introduced as follows:
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Lemma 6 (Upper bound) We have f t(xi|l)≥ f(xi|l) for
the labeling score of data point xi in the t-th iteration.
Proof As shown in the proof of Lemma 3,

f(xi|l)=(1−α)
{∑t

τ=0(α
τpτ (xi|l))+

∑∞
τ=1(α

t+τpt+τ (xi|l))
}

Therefore, from Lemma 5, we have

f(xi|l) ≤ (1− α)
{∑t

τ=0(α
τpτ (xi|l))+

αtpt(xi|l)
∑∞

τ=1 α
τ + αtnδtS(xi)

∑∞
τ=1 τα

τ
}

Since
∑∞

τ=1 α
τ = α

1−α and
∑∞

τ=1 τα
τ = α

(1−α)2 ,

f(xi|l) ≤ (1− α)
{∑t

τ=0(α
τpτ (xi|l))+

αt+1pt(xi|l)
1−α + αt+1nδtS(xi)

(1−α)2

}
= f t(xi|l)

Consequently, we have f t(xi|l)≥f(xi|l). □
As described in Section 3.1, we iteratively compute the
lower/upper bounds. Note that we do not compute the
bounds with Definition 1 and 2 in each iteration. Instead,
we incrementally update the lower/upper bounds for effi-
cient labeling by using the following property:

Lemma 7 (Incremental update) In the t-th iteration, if
the propagation score of data point xi is obtained, the
lower/upper bounds of the t-th iteration can be incremen-
tally updated from those of the (t− 1)-th iteration at O(1)
time as follows:

f
t
(xi|l) =

f
t−1(xi|l)+(1−α)αt

{
pt(xi|l)+

σ(αp
t
(l)−p

t−1
(l))

1−ασ

} (12)

f t(xi|l) =

ft−1(xi|l)+αt
{
pt(xi|l)−pt−1(xi|l)+nS(xi)(αδt−δt−1)

1−α

} (13)

The proof of Lemma 7 is omitted due to space limits. How-
ever, this property can be shown by computing f

t
(xi|l) −

f
t−1

(xi|l) and f t(xi|l)−f t−1(xi|l) from Definition 1 and
2, respectively. We can efficiently compute the lower/upper
bounds in the iterations by utilizing Lemma 7.

For the convergence values of f
t
(xi|l) and f t(xi|l), we

have the following property:

Lemma 8 (Convergence of the lower/upper bounds)
The lower/upper bounds converge to the exact labeling
score. That is, f∞(xi|l) = f∞(xi|l) = f(xi|l) holds.

Even though we omit the proof of this lemma due to space
limits, it can be derived from Equation (6) and (9) by us-
ing the property of pt(xi|l) ≤ n obtained from Lemma 4.
This lemma implies that the bounds are expected to tighten
as the number of iterations increases. Furthermore, this
lemma gives the theoretical guarantee that our approach
outputs the same labeling results as the optimal solution.

3.3. Label set

In the t-th iteration, we compute the lower/upper bounds
for label set Lt instead of all the labels to enhance the effi-
ciency. In this section, we first define label set Lt, and then
introduce its theoretical property.

We obtain label set Lt by using the lower/upper bounds in
each iteration. Formally, the label set in the t-th iteration,
Lt, is given as follows:

Definition 3 (Label set) Letting lj ̸= li and t ̸= 0, label li
is included in label set Lt if the following condition holds
for data point x such that x ∈ X:

(1)∃lj s.t. f
t−1

(x|li) ≤ f t−1(x|lj), and

(2)∀lj ∈ L, f t−1(x|li) ≥ f
t−1

(x|lj)

If t = 0, the label set Lt is initialized as L, i.e., Lt = L.

We introduce the following two lemmas to describe the
property of label set Lt:

Lemma 9 (Labeled data) If we have f
t
(x|li) > f t(x|lj)

for all labels lj such that lj ̸= li and lj ∈ L, the label of
data point x is determined as li by the optimal solution.
Proof If f

t
(x|li) > f t(x|lj) holds for such label lj , from

Lemma 3 and 6, we have

f(x|lj) ≤ f t(x|lj) < f
t
(x|li) ≤ f(x|li)

Therefore, it is clear that max1≤k≤c f(x|lk) = f(x|li). As
a result, from Equation (3),

y(x) = argmax1≤k≤c f(x|lk) = li

Therefore, the optimal solution labels data point x as li. □

Lemma 10 (Unlabeled data) The optimal solution deter-
mines the label of data point x as not li if f t(x|li) <
f
t
(x|lj) holds for a label lj such that lj ̸= li and lj ∈ L.

Proof If f t(x|li) < f
t
(x|lj) holds for such label lj , from

Lemma 3 and 6, we have

f(x|li) ≤ f t(x|li) < f
t
(x|lj) ≤ f(x|lj)

Therefore, it is clear that max1≤k≤c f(x|lk) ̸= f(x|li).
Consequently, from Equation (3),

y(x) = argmax1≤k≤c f(x|lk) ̸= li

This indicates that data point x is not labeled as li by the
optimal solution. □
From Lemma 9 and 10, we introduce the following prop-
erty of label set Lt:
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Lemma 11 (Label set) If label li is included in label set
Lt and t ̸= 0, there exists data point x whose label is not
determined as or as not li by the lower and upper bounds.
Proof If lj ̸= li and t ̸= 0, from Lemma 9 and 10,
there are the following two conditions under which data
point x is not determined to have/not to have label li by
the lower/upper bounds: (1) there exists a label lj such that
f
t−1

(x|li) ≤ f t−1(x|lj), and (2) f t−1(x|li) ≥ f
t−1

(x|lj)
holds for all labels lj ∈ L. These two conditions are equiv-
alent to those of the label set Lt as shown in Definition 3.
Consequently, the statement of Lemma 11 holds. □
Lemma 11 validates our approach with the property to out-
put the same labeling results as the optimal solution.

3.4. Labeling algorithm

Algorithm 1 is the full description of our approach. We
initially set t := 0 and Lt := L (lines 1-2). If t = 0, we
compute the lower and upper bounds from Equation (6) and
(9), respectively (lines 5-9). Otherwise, we incrementally
update the lower/upper bounds to enhance the processing
speed from Lemma 7 (lines 10-16). We then compute label
set Lt+1 from Definition 3 (lines 18-24). We iteratively
repeat these procedures until no label remains in Lt+1 (line
28). We finally determine the label of each node from the
lower bounds (lines 29-31).

Note that, our algorithm does not require any user-defined
inner-parameters. Moreover, it terminates the iterations au-
tomatically unlike the power method. Therefore, our ap-
proach provides to the user with a simple way to determine
labels with enhanced processing speed.

3.5. Theoretical analyses

We introduce theoretical analyses addressing labeling re-
sults and the computational cost of our approach.

Theorem 1 (Labeling results) The labeling results of our
approach are the same as those of the optimal solution.

Proof We assume that we reach termination after t itera-
tions. As shown in Algorithm 1, we determine the label of
data point x as follows:

y(x) = argmax1≤k≤c f t
(x|lk)

In addition, we perform iterations until the label set con-
tains no label. Therefore, let label li and lj be li, lj ∈ L
and li ̸= lj , we have (1) ∀lj , f

t
(x|li) > f t(x|lj) or (2)

∃lj such that f t(x|li) < f
t
(x|lj) after the iterations from

Definition 3.

If f
t
(x|li) > f t(x|lj) holds ∀lj , the label of data point x is

determined as li by the optimal solution from Lemma 9. In
addition, since f

t
(x|lj) ≤ f t(x|lj) < f

t
(x|li) holds from

Algorithm 1 Proposed algorithm
1: t := 0;
2: Lt := L;
3: repeat
4: for each label li ∈ Lt do
5: if t = 0 then
6: for each data point xj ∈ X do
7: compute propagation score pt(xj |li) by Equation (5);
8: compute the lower/upper bounds by Equation (6) and (9);
9: end for
10: else
11: for each data point xj ∈ X do
12: update propagation score pt(xj |li) by Equation (5);
13: update the lower/upper bounds by Equation (12) and (13);
14: end for
15: end if
16: end for
17: Lt+1 := ∅;
18: for each data point xi ∈ X do
19: for each label lj ∈ Lt do
20: if ∃lks.t.f

t
(xi|lj)≤ft(xi|lk) and∀lk∈L,ft(xi|lj)≥f

t
(xi|lk) then

21: add label lj to label set Lt+1;
22: end if
23: end for
24: end for
25: if Lt ̸= ∅ then
26: t := t + 1;
27: end if
28: until Lt = ∅
29: for each data point xi ∈ X do
30: y(xi) = argmax1≤j≤c f

t
(xi|lj);

31: end for

Lemma 3 and 6, we have

y(x) = argmax1≤k≤c f t
(x|lk) = li

Therefore, our approach also determines li as the label of
data point x.

If we have f t(x|li) < f
t
(x|lj) for a label lj , li is not deter-

mined as the label of data point x according to the optimal
solution from Lemma 10. In addition, since f

t
(x|li) ≤

f t(x|li) < f
t
(x|lj) holds from Lemma 3 and 6, we have

y(x) = argmax1≤k≤c f t
(x|lk) ̸= li

As a result, our approach also determines the label of data
point x as not li.

Consequently, the labeling results of the optimal solution
and our approach are identical. □

Theorem 2 (Computational cost) Our approach requires
O(cnt) time to obtain the labeling result.

Proof For each label, our approach iteratively computes
the propagation scores to obtain the lower/upper bounds.
This process needs O(nt) time since the number of edges
in the graph is O(n) as described in Section 2. The
lower/upper bounds of data points in the iterations are ob-
tained at O(nt) time since it needs O(1) time to compute
the lower/upper bounds from the propagation scores as de-
scribed in Lemma 7. As a result, it requires O(cnt) time to
obtain the lower/upper bounds from the propagation scores
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Figure 1. Labeling time of each approach.

in the iteration since the number of labels is c. In addition,
our approach computes the label set from Definition 3 by
using the lower/upper bounds, which needs O(cnt) time.
Consequently, our approach requires O(cnt) time. □

3.6. Extension

In Section 3.1 to 3.5, we assume the use of k-NN graphs
since it is the most popular graph structure for label propa-
gation. In this section, we briefly describe the extension of
our approach to handle other popular graph structures such
as linear neighborhood graph (Wang & Zhang, 2008) and
sparse L1 graph (Elhamifar & Vidal, 2011).

A linear neighborhood graph is constructed so that each
node is represented as a linear combination of its local
neighbor nodes, just like locally linear embedding (LLE)
(Roweis & Saul, 2000). In a sparse L1 graph, nearest
neighbors of each data points and corresponding edge
weights are obtained by solving an L1-norm sparse opti-
mization problem. Note that these graphs can have a neg-
ative edge weight. The major change of our approach is to
compute the lower/upper bounds for these graph structures.
More specifically, the bounds are computed as follows:

Definition 4 (Lower/upper bounds) The following equa-
tions give the lower bound f

t
(xi|l) and the upper bound

f t(xi|l) for linear neighborhood graph and sparse L1

graph:

f
t
(xi|l)=(1−α)

∑t
τ=0{ατpτ (xi|l)}+αt+1 p

t
(l)

f t(xi|l)=(1−α)
∑t

τ=0{ατpτ (xi|l)}+αt+1
{
pt(xi|l)+δtS(xi)

1−α

}
While we omit the details of the above definition, it can
be derived from the property of these graph structures such
that

∑
xj∈X Sij = 1. The next section evaluates the label-

ing speed of our approach for linear neighborhood graphs
and sparse L1 graphs as well as k-NN graphs.

4. Experimental evaluation
We performed experiments to compare the proposed ap-
proach to the optimal solution and the power method in

Table 2. Number of average iterations in each approach.

Dataset Approach Graph
k-NN linear L1

Reuters-21578
Proposed 435.3 427.5 62.9
Power 990.2 633.6 143.7

COIL-100 Proposed 588.1 646.3 112.7
Power 879.3 913.5 247.1

terms of efficiency and effectiveness. The experiments
used the following standard datasets.

• Reuters-21578 1: This dataset contains documents re-
leased by the Reuters newswire. Documents with mul-
tiple category labels were discarded. As a result, it
contained 8, 293 documents of 65 categories. tf-idf
was used as the document feature; it has 18, 933 di-
mensions.

• COIL-100 2: This dataset contains images of 100 ob-
jects; the number of object labels is 100. Images of
the objects were taken at pose intervals of 5 degrees;
72 poses per object resulting in 7, 200 images. We re-
sized all images to 32×32 and used RGB pixel values
as the feature vector, resulting in 3, 048 dimensions.

In this section, “Proposed”, “Power”, and “Optimal” rep-
resent the results of the proposed approach, the power
method, and the optimal solution, respectively. The re-
sults of the optimal solution are obtained by computing the
inverse matrices. Following previous papers (Zhou et al.,
2003; Xu et al., 2011), we set α = 0.99 and stop iterat-
ing the power method when the residual drops below 10−4.
We conducted the experiments for the linear neighborhood
graph and sparse L1 graph as well as k-NN graph, where
100 nearest neighbors were used to construct each graph 3.
In the experiments, 10 data points in each category/object
were initially labeled. All experiments were conducted on
a Linux 2.70 GHz Intel Xeon sever.

4.1. Efficiency

We evaluated the labeling time of each approach. Figure 1
shows the results. In addition, Table 2 details the number of

1http://www.daviddlewis.com/resources/testcollections/reuters21578/
2http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
3We set the parameter λ = 10 on sparse L1 graph.
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Table 3. Precision against the optimal solution.

Dataset Approach Graph
k-NN linear L1

Reuters-21578
Proposed 1.000 1.000 1.000
Power 0.725 0.723 0.812

COIL-100 Proposed 1.000 1.000 1.000
Power 0.899 0.982 0.980

average iterations needed by the proposed approach and the
power method. In this table, “k-NN”, “linear”, and “L1”
represent the results of each approach for k-NN graph, lin-
ear neighborhood graph, and sparse L1 graph, respectively.

Figure 1 shows that our approach is much faster than the
previous approaches for all the types of graphs. Our ap-
proach is up to 410 and 2.3 times faster than the optimal so-
lution and the power method, respectively. Since the opti-
mal solution requires matrix inversion to obtain the labeling
scores, it needs O(n3+cn2) time as described in Section 2.
On the other hand, our approach avoids computing the
matrix inversion; it iteratively computes the lower/upper
bounds to determine the labels in O(cnt) time (Theorem 2).
The power method also exploits iterative computation in a
similar way to our approach. However, the power method
computes the labeling scores for all the labels while our
approach updates the lower/upper bounds only for selected
labels. Furthermore, we terminate the iterations without
waiting for convergence if no label remains to be updated
(Algorithm 1). Therefore, as shown in Table 2, our ap-
proach needs fewer iterations than the power method. As a
result, our approach has better labeling speed than the pre-
vious approaches.

4.2. Effectiveness

One major advantage of our approach is that it outputs the
same labeling results as the optimal solution. The power
method can obtain the exact labeling scores if it performs
iterations until convergence. However, in practice, itera-
tions are terminated to enhance the labeling speed, i.e., it
approximately computes the labeling scores.

We evaluated the precision of the labeling results by our
approach and the power method against the optimal solu-
tion. In this experiment, precision is the fraction of labeling
results of an approach that match the labeling results of the
optimal solution. Precision takes a value between 0 and
1, and, precision is 1 if the labeling results are identical to
those of the optimal solution. Table 3 indicates the preci-
sion of each approach. In addition, Table 4 shows classifi-
cation accuracy of each approach for ground-truth labels.

Table 3 shows that, as expected, the precision of our ap-
proach is 1 under all conditions examined. This is because
our approach has the theoretical property that the labeling

Table 4. Classification accuracy.

Dataset Approach Graph
k-NN linear L1

Reuters-21578
Optimal 0.744 0.597 0.603
Proposed 0.744 0.597 0.603
Power 0.595 0.538 0.547

COIL-100
Optimal 0.533 0.891 0.902
Proposed 0.533 0.891 0.902
Power 0.531 0.889 0.900

results of our approach are same as those of the optimal
solution as shown in Theorem 1. In contrast, the power
method has precision under 1; the power methods and the
optimal solutions output different labeling results. This is
because the power method terminates its iterative computa-
tion if the residual is less than the predetermined threshold.
Precision is expected to improve if the threshold is set to
a smaller score, however, this obviously reduces labeling
speed. It is clear that setting the threshold forces a trade-
off between precision and labeling speed.

As shown in Table 4, classification results of our approach
is same as those of the optimal solution since our approach
output the same labeling results as the optimal solution as
shown in Table 3. Table 4 also indicates that the power
method has lower classification accuracy than the optimal
solution. As described in Section 2, the optimal solution
gives the scores that minimize the cost function. Since the
cost function is designed to improve classification accu-
racy, the optimal solution has high classification accuracy.
However, the power method outputs different labeling re-
sults from the optimal solution as shown in Table 3. As a
result, the power method has lower classification accuracy.

Table 4 along with Figure 1 indicates that the power method
enhances labeling speed at the sacrifice of classification ac-
curacy even though it is currently the standard approach
to computing labeling scores. On the other hand, our ap-
proach achieves higher labeling speed than the previous ap-
proaches while its labeling results replicate those of the op-
timal solution. Furthermore, our approach does not require
any inner-parameters to be set unlike the power method.
This indicates that our approach is an attractive option for
the research community in use in label propagation.

5. Conclusions
This paper proposed an efficient label propagation algo-
rithm that gives the same labeling results as the opti-
mal solution. Our approach computes lower and upper
bounds of the labeling scores to prune unnecessary score
computations. Experiments show that our approach can
achieve high efficiency without sacrificing accuracy unlike
the power method. Our approach can improve the effec-
tiveness of future label-propagation-based applications.
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