
Dual Query: Practical Private Query Release
for High Dimensional Data

Marco Gaboardi M.GABOARDI@DUNDEE.AC.UK

University of Dundee, Dundee, Scotland, UK
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Abstract

We present a practical, differentially pri-
vate algorithm for answering a large num-
ber of queries on high dimensional datasets.
Like all algorithms for this task, ours neces-
sarily has worst-case complexity exponen-
tial in the dimension of the data. However,
our algorithm packages the computationally
hard step into a concisely defined integer
program, which can be solved non-privately
using standard solvers. We prove accuracy
and privacy theorems for our algorithm, and
then demonstrate experimentally that our al-
gorithm performs well in practice. For ex-
ample, our algorithm can efficiently and ac-
curately answer millions of queries on the
Netflix dataset, which has over 17,000 at-
tributes; this is an improvement on the state
of the art by multiple orders of magnitude.1

1. Introduction

Privacy is becoming a paramount concern for ma-
chine learning and data analysis tasks, which often
operate on personal data. For just one example of the
tension between machine learning and data privacy,
Netflix released an anonymized dataset of user movie

1 This is an extended abstract of the full version of this paper
(Gaboardi et al., 2014), which contains full details of our algo-
rithm and experiments.
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ratings for teams competing to develop an improved
recommendation mechanism. The competition was a
great success (the winning team improved on the ex-
isting recommendation system by more than 10%),
but the ad hoc anonymization was not as successful:
Narayanan & Shmatikov (2008) were later able to re-
identify individuals in the dataset, leading to a lawsuit
and the cancellation of subsequent competitions.

Differentially private query release is an attempt to
solve this problem. Differential privacy is a strong for-
mal privacy guarantee (that, among other things, prov-
ably prevents re-identification attacks), and the prob-
lem of query release is to release accurate answers to
a set of statistical queries. As observed early on by
Blum et al. (2005), performing private query release
is sufficient to simulate any learning algorithm in the
statistical query model of Kearns (1998).

Since then, the query release problem has been ex-
tensively studied in the differential privacy literature.
While simple perturbation can be used to privately an-
swer a small number of queries (Dwork et al., 2006),
more sophisticated approaches can accurately answer
nearly exponentially many queries in the size of the
private database (Blum et al., 2013; Dwork et al.,
2009; 2010; Roth & Roughgarden; Hardt & Roth-
blum, 2010; Gupta et al., 2012; Hardt et al., 2012).
A natural approach, employed by many of these al-
gorithms, is to answer queries by generating synthetic
data: a safe version of the dataset that approximates
the real dataset on every statistical query of interest.

Unfortunately, even the most efficient approaches for
query release have a per-query running time linear in
the size of the data universe, which is exponential in
the dimension of the data (Hardt & Rothblum, 2010).
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Moreover, this running time is necessary in the worst
case (Ullman, 2013), especially if the algorithm pro-
duces synthetic data (Ullman & Vadhan, 2011).

This exponential runtime has hampered practical eval-
uation of query release algorithms. One notable ex-
ception is due to Hardt et al. (2012), who perform
a thorough experimental evaluation of one such al-
gorithm, which they called MWEM. They find that
MWEM has quite good accuracy in practice and scales
to higher dimensional data than suggested by a the-
oretical (worst-case) analysis. Nevertheless, running
time remains a problem, and the approach does not
seem to scale to high dimensional data (with more
than 30 or so attributes for general queries, and more
when the queries satisfy special structure2). The crit-
ical bottleneck is the size of the state maintained by
the algorithm: MWEM, like many query release al-
gorithms, needs to manipulate an object that has size
linear in the size of the data universe (i.e., exponential
in the dimension). This quickly becomes impractical
as the record space grows more complex.

We present DualQuery, an alternative algorithm
which is dual to MWEM in a sense that we will
make precise. Rather than manipulating an object of
exponential size, DualQuery solves a concisely rep-
resented (but NP-hard) optimization problem. Criti-
cally, the optimization step does not require a solution
that is private or exact, so it can be handled by exist-
ing, highly optimized solvers. Except for this step, all
parts of our algorithm are extremely efficient. As a re-
sult, DualQuery requires (worst-case) space and (in
practice) time only linear in the number of queries of
interest, which is often significantly smaller than the
number of possible records. Like existing algorithms
for query release, DualQuery has a provable accuracy
guarantee and satisfies the strong differential privacy
guarantee.

We evaluate DualQuery on a variety of datasets by re-
leasing 3-way marginals (also known as conjunctions
or contingency tables), demonstrating that it solves the
query release problem accurately and efficiently even
when the data includes hundreds of thousands of fea-
tures. We know of no other algorithm to perform ac-
curate, private query release for rich classes of queries
on real data with more than even 100 features.

2Hardt et al. (2012) are able to scale up to 1000 features on
synthetic data when the features are partitioned into a number of
small buckets, and the queries are chosen to never depend on fea-
tures in more than one bucket.

Related work. Differentially private learning has
been studied since Blum et al. (2005) showed how
to convert learning algorithms in the SQ model of
Kearns (1998) into differentially private learning algo-
rithms with similar accuracy guarantees. Since then,
private machine learning has become a very active
field with both foundational sample complexity re-
sults (Kasiviswanathan et al., 2011; Chaudhuri & Hsu,
2011; Beimel et al., 2013; Duchi et al., 2013) and
numerous efficient algorithms for particular learning
problems (Chaudhuri & Monteleoni, 2008; Chaudhuri
et al., 2011; Rubinstein et al., 2012; Kifer et al., 2012;
Chaudhuri et al., 2012; Thakurta & Smith, 2013).

In parallel, there has been a significant amount of
work on privately releasing synthetic data based on
a true dataset while preserving the answers to large
numbers of statistical queries (Blum et al., 2013;
Dwork et al., 2009; Roth & Roughgarden; Dwork
et al., 2010; Hardt & Rothblum, 2010; Gupta et al.,
2012). These results are extremely strong in an in-
formation theoretic sense: they ensure the consistency
of the synthetic data with respect to an exponentially
large family of statistics. But, all of these algorithms
(including the notable multiplicative weights algo-
rithm of Hardt & Rothblum (2010), which achieves
the theoretically optimal accuracy and runtime) have
running time exponential in the dimension of the data.
With standard cryptographic assumptions, this is nec-
essary in the worst case for mechanisms that answer
arbitrary statistical queries (Ullman, 2013).

Nevertheless, there have been some experimental
evaluations of these approaches on real datasets. Most
related to our work is the evaluation of the MWEM
mechanism by Hardt et al. (2012), which is based on
the private multiplicative weights mechanism (Hardt
& Rothblum, 2010). This algorithm is inefficient (it
manipulates a probability distribution over a set expo-
nentially large in the dimension of the data space) but
with some heuristic optimizations, Hardt et al. (2012)
were able to implement the multiplicative weights al-
gorithm on several real datasets with up to 77 at-
tributes (and even more when the queries are restricted
to take positive values only on a small number of dis-
joint groups of features). However, it seems difficult
to scale this approach to higher dimensional data.

Another family of query release algorithms are based
on the Matrix Mechanism (Li et al., 2010; Li &
Miklau, 2012). The runtime guarantees of the matrix
mechanism are similar to the approaches based on
multiplicative weights—the algorithm manipulates a
“matrix” of queries with dimension exponential in the
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number of features. Yaroslavtsev et al. (2013) evalu-
ate an approach based on this family of algorithms on
low dimensional datasets, but scaling to high dimen-
sional data also seems challenging. A recent work by
Zhang et al. (2014) proposes a low-dimensional ap-
proximation for high-dimensional data distribution by
privately constructing Bayesian networks, and shows
that such a representation gives good accuracy on
some real datasets.

Our algorithm is inspired by the view of the syn-
thetic data generation problem as a zero-sum game,
first proposed by Hsu et al. (2013). In this interpre-
tation, Hardt et al. (2012) solves the game by hav-
ing a data player use a no-regret learning algorithm,
while the query player repeatedly best responds by
optimizing over queries. In contrast, our algorithm
swaps the roles of the two players: the query player
now uses the no-regret learning algorithm, whereas
the data player now finds best responses by solving an
optimization problem. This is reminiscent of “Boost-
ing for queries,” proposed by Dwork et al. (2010); the
main difference is that our optimization problem is
over single records rather than sets of records. As a
result, our optimization can be handled non-privately.

2. Differential privacy background

Differential privacy has become a standard algorith-
mic notion for protecting the privacy of individual
records in a statistical database. It formalizes the re-
quirement that the addition or removal of a data record
does not change the probability of any outcome of the
mechanism by much.

To begin, databases are multisets of elements from an
abstract domain X , representing the set of all pos-
sible data records. Two databases D,D′ ⊂ X are
neighboring if they differ in a single data element
(‖D4D′‖ ≤ 1).

Definition 2.1 (Dwork et al. (2006)). A mechanism
M : X n → R satisfies (ε, δ)-differential privacy if
for every S ⊆ R and for all neighboring databases
D,D′ ∈ X n, the following holds:

Pr[M(D) ∈ S] ≤ eε Pr[M(D′) ∈ S] + δ

Definition 2.2. For any predicate ϕ : X → {0, 1}, the
linear query Qϕ : X n → [0, 1] is defined by

Qϕ(D) =
∑
x∈D

ϕ(x)/|D|.

We will use a fundamental tool for private data analy-
sis: we can bound the privacy cost of an algorithm as
a function of the privacy costs of its subcomponents.
Lemma 2.3 (Dwork et al. (2010)). Let M1, . . . ,Mk

be such that each Mi is (εi, 0)-private with εi ≤
ε′. Then M(D) = (M1(D), . . . ,Mk(D)) is (ε, 0)-
private for ε =

∑k
i=1 εi, and (ε, δ)-private for

ε =
√

2 log(1/δ)kε′ + kε′(eε
′ − 1)

for any δ ∈ (0, 1).

3. The query release game

The analysis of our algorithm relies on the interpreta-
tion of query release as a two player, zero-sum game
(Hsu et al., 2013). In the present section, we review
this idea and related tools.

Game definition. Suppose we want to answer a set
of queries Q. For each query q ∈ Q, we can form
the negated query q, which takes values q(D) = 1 −
q(D) for every database D. For the remainder, we
will assume that Q is closed under negation; if not,
we may add negated copies of each query to Q.

Let there be two players, whom we call the data player
and query player. The data player has action set equal
to the data universe X , while the query player has ac-
tion set equal to the query classQ. Given a play x ∈ X
and q ∈ Q, we let the payoff be

A(x, q) := q(D)− q(x), (1)

whereD is the true database. As a zero sum game, the
data player will try to minimize the payoff, while the
query player will try to maximize the payoff.

Equilibrium of the game. Let ∆(X ) and ∆(Q) be
the set of probability distributions over X and Q. We
consider how well each player can do if they random-
ize over their actions, i.e., if they play from a probabil-
ity distribution over their actions. By von Neumann’s
minimax theorem,

min
u∈∆(X )

max
w∈∆(Q)

A(u,w) = max
w∈∆(Q)

min
u∈∆(X )

A(u,w),

for any two player zero-sum game, where

A(u,w) := Ex∼u,q∼wA(x, q)

is the expected payoff. The common value is called
the value of the game, which we denote by vA.
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This suggests that each player can play an optimal
strategy, assuming best play from the opponent—this
is the notion of equilibrium strategies, which we now
define. We will soon interpret these strategies as solu-
tions to the query release problem.
Definition 3.1. Let α > 0. Let A be the payoffs for
a two player, zero-sum game with action sets X ,Q.
Then, a pair of strategies u∗ ∈ ∆(X ) andw∗ ∈ ∆(Q)
form an α-approximate mixed Nash equilibrium if

A(u∗, w) ≤ vA + α and A(u,w∗) ≥ vA − α

for every strategy u ∈ ∆(X ), w ∈ ∆(Q).

If the true database D is normalized to be a distribu-
tion D̂ in ∆(X ), then D̂ always has zero payoff:

A(D̂, w) = E
x∼D̂,q∼w[q(x)− q(D)] = 0.

Hence, the value of the game vA is at most 0. Also,
for any data strategy u, the payoff of query q is the
negated payoff of the negated query q:

A(u, q) = Ex∼u[q(x)− q(D)] = Ex∼u[q(D)− q(x)],

which is A(u, q). Thus, any query strategy that places
equal weight on q and q has expected payoff zero, so
vA is at least 0. Hence, vA = 0.

Now, let (u∗, w∗) be an α-approximate equilibrium.
Suppose that the data player plays u∗, while the query
player always plays query q. By the equilibrium guar-
antee, we then have A(u∗, q) ≤ α, but the expected
payoff on the left is simply q(D) − q(u∗). Likewise,
if the query player plays the negated query q, then

−q(D) + q(u∗) = A(u∗, q) ≤ α,

so q(D)−q(u∗) ≥ −α. Hence for every query q ∈ Q,
we know |q(u∗) − q(D)| ≤ α. This is precisely what
we need for query release: we just need to privately
calculate an approximate equilibrium.

Solving the game. To construct the approximate
equilibrium, we will use the multiplicative weights
update algorithm (MW). This algorithm maintains a
distribution over actions (initially uniform) over a se-
ries of steps. At each step, the MW algorithm receives
a (possibly adversarial) loss for each action. Then,
MW reweights the distribution to favor actions with
less loss. The algorithm can be found in the full ver-
sion of this paper.

For our purposes, the most important application of
MW is to solving zero-sum games. Freund & Schapire

(1996) showed that if one player maintains a distribu-
tion over actions using MW, while the other player
selects a best-response action versus the current MW
distribution (i.e., an action that maximizes his ex-
pected payoff), the average MW distribution and em-
pirical best-response distributions will converge to an
approximate equilibrium rapidly.
Theorem 3.2 (Freund & Schapire (1996)). Let α > 0,
and let A(i, j) ∈ [−1, 1]m×n be the payoff matrix for
a zero-sum game. Suppose the first player uses mul-
tiplicative weights over their actions to play distribu-
tions p1, . . . , pT , while the second player plays (α/2)-
approximate best responses x1, . . . , xT , i.e.,

A(pt, xt) ≥ max
x

A(pt, x)− α/2.

Setting T = 16 log n/α2 and η = α/4 in the MW
algorithm, the empirical distributions

1

T

T∑
i=1

pi and
1

T

T∑
i=1

xi

form an α-approximate mixed Nash equilibrium.

4. Dual query release

By the game interpretation, the algorithm of Hardt &
Rothblum (2010) (and the MWEM algorithm of Hardt
et al. (2012)) uses MW for the data player, while the
query player plays best responses. For privacy, their
algorithm selects the query best-responses privately
via the exponential mechanism of McSherry & Tal-
war (2007). Our algorithm simply reverses the roles.

While MWEM uses a no-regret algorithm to main-
tain the data player’s distribution, we will instead use
a no-regret algorithm for the query player’s distribu-
tion. Likewise, instead of finding a maximum payoff
query at each round, our algorithm selects a minimum
payoff record at each turn. The full algorithm can be
found in Algorithm 1.

Our privacy argument differs slightly from the analy-
sis for MWEM. There, the data distribution is public,
and finding a query with high error requires access
to the private data. Our algorithm instead maintains
a distribution Q over queries which depends directly
on the private data, so we cannot use Q directly. In-
stead, we argue that queries sampled from Q are pri-
vacy preserving. Then, we can use a non-private opti-
mization method to find a minimal error record versus
queries sampled from Q. We then trade off privacy
(which degrades as we take more samples) with accu-
racy (which improves as we take more samples, since
the distribution of sampled queries converges to Q).
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Given known hardness results for the query release
problem (Ullman, 2013), our algorithm must have
worst-case runtime polynomial in the universe size
|X |, so is not theoretically more efficient than prior
approaches. In fact, even compared to prior work on
query release (e.g., Hardt & Rothblum (2010)), our
algorithm has a weaker accuracy guarantee. However,
our approach has an important practical benefit: the
computationally hard step can be handled with stan-
dard, non-private solvers.

The iterative structure of our algorithm, combined
with our use of constraint solvers, also allows for sev-
eral heuristics improvements. For instance, we may
run for fewer iterations than predicted by theory. Or,
if the optimization problem turns out to be hard (even
in practice), we can stop the solver early at a subop-
timal (but often still good) solution. These heuristic
tweaks can improve accuracy beyond what is guaran-
teed by our accuracy theorem, while always maintain-
ing a strong provable privacy guarantee.

Algorithm 1 DualQuery
Input: Database D ∈ R|X | (normalized) and linear
queries q1, . . . , qk ∈ {0, 1}|X |.
Initialize: Let Q =

⋃k
j=1 qj ∪ qj , Q1 uniform dis-

tribution on Q,

T =
16 log |Q|

α2
, η =

α

4
, s =

48 log (2|X |T/β)

α2
.

For t = 1, . . . , T :
Sample s queries {qi} from Q according to Qt.
Let q̃ := 1

s

∑
i qi.

Find xt with A(q̃, xt) ≥ maxxA(q̃, x)− α/4.
Update: For each q ∈ Q:
Qt+1

q := exp(−ηA(q, xt)〉) ·Qt
q.

Normalize Qt+1.
Output synthetic database D̂ :=

⋃T
t=1 x

t.

Privacy. The privacy proofs are largely routine,
based on the composition theorems. Rather than fix-
ing ε and solving for the other parameters, we present
the privacy cost ε as function of parameters T, s, η.
Later, we will tune these parameters for our experi-
mental evaluation. DualQuery satisfies the following
privacy guarantee. (All proofs can be found in the full
version of this paper (Gaboardi et al., 2014).)

Theorem 4.1. Let δ ∈ (0, 1). Algorithm 1 is (ε, δ)-
private for

ε =
4ηT

√
2sT log(1/δ)

n
.

Accuracy. We show accuracy in two steps. First, we
show that the “average query” formed from the sam-
ples is close to the average query weighted by Qt.
Next, we show that our algorithm finds an approxi-
mate equilibrium of the query release game.

Theorem 4.2. With probability at least 1 − β,
DualQuery finds a synthetic database that answers
all queries in Q within additive error α.

Remark 4.3. The guarantee in Theorem 4.2 may seem
a little unusual, since the convention in the literature
is to treat ε, δ as inputs to the algorithm. We can do the
same: from Theorem 4.1 and plugging in for T, η, s,

α = O

(
log1/2 |Q| log1/6(1/δ) log1/6(2|X |/γ)

n1/3ε1/3

)
,

for γ < β/T .

5. Case study: 3-way marginals

In our algorithm, the computationally difficult step is
finding the data player’s approximate best response
against the query player’s distribution. As mentioned
above, the form of this problem depends on the partic-
ular query classQ. In this section, we first discuss the
optimization problem in general, and then specifically
for the well-studied class of marginal queries Thaler
et al. (2012); Gupta et al. (2013); Dwork et al. (2014).
For instance, in a database of medical information in
binary attributes, a particular marginal query may be:
What fraction of the patients are over 50, smoke, and
exercise?

The best-response problem. Recall that the query
release game has payoff A(x, q) defined by Equa-
tion (1); the data player tries to minimize the pay-
off, while the query player tries to maximize it. If the
query player has distribution Qt over queries, the data
player’s best response minimizes the expected loss:

argmin
x∈X

E
q←Qt

[q(D)− q(x)] .

To ensure privacy, the data player actually plays
against the distribution of samples q̂1, . . . , q̂s. Since



Dual Query Release

the database D is fixed and q̂i are linear queries, the
best-response problem is

argmin
x∈X

1

s

s∑
i=1

q̂i(D)− q̂i(x) = argmax
x∈X

s∑
i=1

q̂i(x).

3-way marginal queries. To look at the precise
form of the best-response problem, we consider 3-way
marginal queries. We think of records as having d bi-
nary attributes, so that the data universe |X | is all bit-
strings of length d. We write xi for x ∈ X to mean the
ith bit of record x.
Definition 5.1. Let X = {0, 1}d. A 3-way marginal
query is a linear query specified by 3 integers a 6=
b 6= c ∈ [d], taking values

qabc(x) =

{
1 : xa = xb = xc = 1
0 : otherwise.

Recall that the query class Q includes each query and
its negation. So, we also have negated conjunctions:

qabc(x) =

{
0 : xa = xb = xc = 1
1 : otherwise.

Given sampled conjunctions {ûi} and negated con-
junctions {v̂i}, the best-response problem is

argmax
x∈X

∑
i

ûi(x) +
∑
j

v̂j(x).

In other words, this is a MAXCSP problem—we can
associate a clause to each conjunction:

qabc ⇒ (xa ∧ xb ∧ xc) and qabc ⇒ (xa ∨ xb ∨ xc),

and we want to find x ∈ {0, 1}d satisfying as many
clauses as possible.

Since most solvers do not directly handle MAXCSP
problems, we convert this optimization problem into
a more standard, integer program form. We introduce
a variable xi for each literal xi, a variable ci for each
sampled conjunction ûi, a variable di for each sam-
pled negated conjunction v̂i, and we form the follow-
ing integer program.

max
∑
i

ci +
∑
j

dj

with ∀ûi = qabc : xa + xb + xc ≥ 3ci
∀v̂j = qabc : (1− xa) + (1− xb) + (1− xc) ≥ dj
xi, ci, di ∈ {0, 1}

Note that xi, 1 − xi corresponds to the literals xi, xi,
and ci = 1, di = 1 exactly when their respective
clauses are satisfied. Thus, the objective is the number
of satisfied clauses. The resulting integer program can
be solved using any standard solver; we use CPLEX.

Dataset Size Attributes Binary attributes
Adult 30162 14 235
KDD99 494021 41 396
Netflix 480189 17,770 17,770

Figure 1. Test Datasets

6. Experimental evaluation

We evaluate DualQuery on a large collection of 3-
way marginal queries on several real datasets (Fig-
ure 1) and high dimensional synthetic data. Adult and
KDD99 are from the UCI repository (Bache & Lich-
man, 2013), and have a mixture of discrete (but non-
binary) and continuous attributes, which we discretize
into binary attributes. We also use the (in)famous Net-
flix movie ratings dataset, with more than 17,000 bi-
nary attributes.

Rather than set the parameters as in Algorithm 1, we
experiment with a range of parameters. For instance,
we frequently run for fewer rounds (lower T ) and take
fewer samples (lower s). As such, the accuracy guar-
antee (Theorem 4.2) need not hold for our parameters.
However, we find that our algorithm gives good error,
often much better than predicted. In all cases, our pa-
rameters satisfy the privacy guarantee Theorem 4.1.

Accuracy. We evaluate the accuracy of the algo-
rithm on 500,000 3-way marginals on Adult, KDD99
and Netflix. We report maximum error in Figure 2,
averaged over 5 runs. (Marginal queries have range
[0, 1], so error 1 is trivial.) The runs are (ε, 0.001)-
differentially private, with ε ranging from 0.25 to 5.3

Scaling to More Queries. Next, we evaluate accu-
racy and runtime when varying the number of queries.
We use a set of 40,000 to 2 million randomly gen-
erated marginals Q on the KDD99 dataset and run
DualQuery with (1, 0.001)-privacy. As shown in Fig-
ure 3, both average and max error remain mostly
stable, demonstrating improved error compared to
simpler perturbation approaches. For example, the

3By Lemma 2.3, our algorithm actually satisfies (ε, δ)-privacy
for smaller values of δ. For example, our algorithm is also
(
√
2ε, δ′)-private for δ′ = 10−6.
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Figure 2. Average max error of (ε, 0.001)-private DualQuery on 500,000 3-way marginals versus ε.
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Figure 3. Error and runtime of (1, 0.001)-private DualQuery on KDD99 versus number of queries.

Laplace mechanism’s error growth rate is O(
√
|Q|)

under (ε, δ)-differential privacy.

Scaling to Higher Dimensional Data. Finally, we
evaluate accuracy and runtime behavior for data di-
mension ranging from 50 to 512,000. We evaluate
DualQuery under (1, 0.001)-privacy on 100,000 3-
way marginals on synthetically genearted datasets. We
report runtime, max, and average error over 3 runs
in Figure 4; note the logarithmic scale for attributes
axis. We do not include query evaluation in our time
measurements—this overhead is common to all ap-
proaches that answer a set of queries.

When generating the synthetic data, one possibility is
to set each attribute to be 0 or 1 uniformly at random.
However, this generates very uniform synthetic data:
a record satisfies any 3-way marginal with probability
1/8, so most marginals will have value near 1/8. To
generate more challenging and realistic data, we pick
a separate bias pi ∈ [0, 1] uniformly at random for
each attribute i. For each data point, we then set at-
tribute i to be 1 independently with probability equal
to pi. As a result, different 3-way marginals have dif-
ferent answers on our synthetic data.

Implementation details. The implementation is
written in OCaml, using the CPLEX constraint solver.
We ran the experiments on a mid-range desktop ma-

chine with a 4-core Intel Xeon processor and 12 Gb
of RAM. Heuristically, we set a timeout for each
CPLEX call to 20 seconds, accepting the best cur-
rent solution if we hit the timeout. For the experiments
shown, the timeout was rarely reached.

Data discretization. We discretize KDD99 and
Adult datasets into binary attributes by mapping each
possible value of a discrete attribute to a new bi-
nary feature. We bucket continuous attributes, map-
ping each bucket to a new binary feature. We also
ensure that our randomly generated 3-way marginal
queries are sensible (i.e., they don’t require an origi-
nal attribute to take two different values).

Setting free attributes. Since the collection of sam-
pled queries may not involve all of the attributes,
CPLEX often finds solutions that leave some at-
tributes unspecified. We set these free attributes
heuristically: for real data, we set the attributes to 0
as these datasets are fairly sparse; for synthetic data,
we set attributes to 0 or 1 uniformly at random.

Parameter tuning. DualQuery has three parame-
ters that can be set in a wide variety of configurations
without altering the privacy guarantee (Theorem 4.1):
number of iterations (T ), number of samples (s), and
learning rate (η), which controls how aggressively to
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Figure 4. Error and runtime of (1, 0.001)-private DualQuery on 100,000 3-way marginal queries versus number of attributes.

update the distribution. For a fixed level of ε and δ,
there are many feasible private parameter settings.

Performance depends strongly on the choice of pa-
rameters: T has an obvious impact, increasing s in-
creases the number of constraints in the integer pro-
gram for CPLEX. We have investigated a range of
parameters; for the experiments we have used some
informal heuristics coming from our observations (pa-
rameters details deferred to our full version).

Parameter setting should be done under differential
privacy for a truly realistic evaluation. Overall, we do
not know of a principled approach to handle this issue;
private parameter tuning is an area of active research
(see e.g., Chaudhuri & Vinterbo (2013)).

7. Discussion and conclusion

We have given a new private query release mechanism
that can handle datasets with dimensionality multiple
orders of magnitude larger than what was previously
possible. Indeed, it seems we have not reached the
limits of our approach—even on synthetic data with
more than 500,000 attributes, DualQuery continues
to generate useful answers with about 30 minutes of
overhead on top of query evaluation (which by itself
is on the scale of hours). We believe that DualQuery
makes private analysis of high dimensional data prac-
tical for the first time.

However, this remarkable improvement in running
time is not free: our theoretical accuracy bounds are
worse than those of previous approaches (Hardt &
Rothblum, 2010; Hardt et al., 2012). For low dimen-
sional datasets for which it is possible to maintain
a distribution over records, the MWEM algorithm of
Hardt et al. (2012) likely remains the state of the art
(for an experimental comparison, see our full version
of the paper). Our work complements MWEM by al-
lowing private data analysis on higher-dimensional
data sets.
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