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Abstract
Bayesian optimization is a powerful framework
for minimizing expensive objective functions
while using very few function evaluations. It has
been successfully applied to a variety of prob-
lems, including hyperparameter tuning and ex-
perimental design. However, this framework has
not been extended to the inequality-constrained
optimization setting, particularly the setting in
which evaluating feasibility is just as expensive
as evaluating the objective. Here we present con-
strained Bayesian optimization, which places a
prior distribution on both the objective and the
constraint functions. We evaluate our method on
simulated and real data, demonstrating that con-
strained Bayesian optimization can quickly find
optimal and feasible points, even when small fea-
sible regions cause standard methods to fail.

1. Introduction
Bayesian optimization has become a popular tool to solve
a variety of optimization problems where traditional nu-
merical methods are insufficient. For many optimization
problems, traditional global optimizers will effectively find
minima (Liberti & Maculan, 2006). However, these meth-
ods require evaluating the objective function many times.
Bayesian optimization is designed to deal specifically with
objective functions that are prohibitively expensive to com-
pute repeatedly, and therefore must be evaluated as few
times as possible. A popular application is hyperparameter
tuning, where the task is to minimize the validation error of
a machine learning algorithm as a function of its hyperpa-
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rameters (Snoek et al., 2012; Bardenet et al., 2013; Swersky
et al., 2013). In this setting, evaluating the objective func-
tion (validation error) requires training the machine learn-
ing algorithm and evaluating it on validation data. Another
application is in experimental design, where the goal is to
optimize the outcome of some laboratory experiment as a
function of tunable parameters (Azimi et al., 2010b). In
this setting, evaluating a specific parameter setting incurs
resource costs–materials, money, time, etc.–required to run
the experiment.

In addition to expensive evaluations of the objective func-
tion, many optimization programs have similarly expen-
sive evaluations of constraint functions. For example, to
speed up k-Nearest Neighbor classification (Cover & Hart,
1967), one may deploy data structures for approximate
nearest neighbor search. The parameters of such data struc-
tures,e.g. locality sensitive hashing (LSH) (Gionis et al.,
1999; Andoni & Indyk, 2006), represent a trade-off be-
tween test time and test accuracy. The goal of optimiz-
ing these hyperparameters is to minimize test time, while
constraining test accuracy: a parameter setting is only fea-
sible if it achieves the same accuracy as the exact model.
Similarly, in the experimental design setting, one may wish
to maximize the yield of a chemical process, subject to
the constraint that the amount of some unwanted byprod-
uct produced is below a specific threshold. In computer
micro-architecture, fine-tuning the particular specifications
of a CPU (e.g. L1-Cache size, branch predictor range, cy-
cle time) needs to be carefully balanced to optimize CPU
speed, while keeping the power usage strictly within a pre-
specified budget. The speed and power usage of a particular
configuration can only be evaluated with expensive simula-
tion of typical workloads (Azizi et al., 2010). In all of these
examples, the feasibility of an experiment is not known un-
til after the experiment had been completed, and thus fea-
sibility can not always be determined in advance. In the
context of Bayesian optimization, we say that evaluating



feasibility in these cases is also prohibitively expensive, of-
ten on the same order of expense as evaluating the objective
function. These problems are particularly difficult when the
feasible region is relatively small, and it may be prohibitive
to even find a feasible experiment, much less an optimal
one.

In this paper, we extend the Bayesian optimization frame-
work naturally to scenarios of optimizing an expensive-to-
evaluate function under equally expensive-to-evaluate con-
straints. We evaluate our proposed framework on two sim-
ulation studies and two real world learning tasks, based
on LSH hyperparameter tuning (Gionis et al., 1999) and
SVM model compression (Bucilu et al., 2006; Burges &
Schölkopf, 1997).

Across all experiments, we outperform uniform sam-
pling (Bergstra & Bengio, 2012) on 13 out of 14 datasets—
including cases where uniform sampling fails to find even
a single feasible experiment.

2. Background
To motivate constrained Bayesian optimization, we begin
by presenting Bayesian optimization and the key object on
which it relies, the Gaussian process.

2.1. Gaussian Processes

A Gaussian process is an uncountable collection of random
variables, any finite subset of which have a joint Gaussian
distribution. A Gaussian process thus provides a distribu-
tion over functions `(·) ∼ GP (µ(·), k(·, ·)), parameter-
ized by mean function µ(·) and covariance kernel k(·, ·),
which are defined such that, for any pairs of input points
x,x′ ∈ Rd, we have:

µ(x) = E[`(x)]

k(x,x′) = E[(`(x)− µ(x))(`(x′)− µ(x′))].

Given a set of input points X = {x1, ...,xn}, the corre-
sponding function evaluations `(X) = {`(x1), ..., `(xn)},
and some query point x̂, the joint Gaussianity of all finite
subsets implies:

[
`(X)
`(x̂)

]
∼ N

([
µ(X)
µ(x̂)

]
,

[
k(X,X) k(X, x̂)
k(x̂,X) k(x̂, x̂)

])
,

where we have (in the standard way) overloaded the
functions `(·), µ(·), and k(·, ·) to include elementwise-
operation across their inputs. We then can calculate the
posterior distribution of `(·) at the query point x̂, which
we denote ˜̀(x̂) ∼ p (`(x̂)|x̂,X, `(X)). Using the standard
conditioning rules for Gaussian random variables, we see

˜̀(x̂) ∼ N
(
µ̃`(x̂), Σ̃2

`(x̂)
)

, where:

µ̃`(x̂) = µ(x̂) + k(x̂,X)k(X,X)−1(`(X)− µ(X))

Σ̃2
`(x̂) = k(x̂, x̂)− k(x̂,X)k(X,X)−1k(X, x̂).

A full treatment of the use of Gaussian processes for ma-
chine learning is Rasmussen (2006). In the context of this
work, the critical takeaway is that, given observed function
values `(X) = {`(x1), ..., `(xn)}, we are able to update
our posterior belief ˜̀(x̂) of the function `(·) at any query
point, with simple linear algebra.

2.2. Bayesian optimization

Bayesian optimization is a framework to solve programs:

min
x

`(x),

where the objective function `(x) is considered pro-
hibitively expensive to evaluate over a large set of values.
Given this prohibitive expense, in the Bayesian formal-
ism, the uncertainty of the objective `(·) across not-yet-
evaluated input points is modeled as a probability distri-
bution. Bayesian optimization models `(·) as a Gaussian
process, which can be evaluated relatively cheaply and of-
ten (Brochu et al., 2010). At each iteration the Gaussian
process model is used to select the most promising candi-
date x∗ for evaluation. The costly function ` is then only
evaluated at `(x∗) in this iteration. Subsequently, the Gaus-
sian process naturally updates its posterior belief ˜̀(·) with
the new data pair (x∗, `(x∗)), and that pair is added to the
known experiment set T` = {(x1, `(x1)), ..., (xn, `(xn))}.
This iteration can be repeated to iterate to an optimum.

The critical step is the selection of the candidate point x∗,
which is done via an acquisition function that enables ac-
tive learning of the objective `(·) (Settles, 2010). The per-
formance of Bayesian optimization depends critically on
the choice of acquisition function. A popular choice is the
Expected improvement of a candidate point (Jones et al.,
1998; Mockus et al., 1978). Let x̂ be some candidate point,
and let ˜̀(x̂) be the Gaussian process posterior random vari-
able for `(x̂). Let x+ be the best point in T` (evaluated thus
far), namely:

x+ = min
x∈T`

`(x).

Following Mockus et al. (1978), we then define the im-
provement of the candidate point x̂ as the decrease of `(x̂)
against `(x+), which due to our Gaussian process model is
itself a random quantity:

Ĩ(x̂) = max
{

0, `(x+)− ˜̀(x̂))
}
, (1)

and thus the expected improvement (EI) acquisition func-
tion is the expectation over this truncated Gaussian vari-
able:

EI(x̂) = E
[
Ĩ(x̂)|x̂

]
. (2)



Mockus et al. (1978); Jones et al. (1998) derive an easy-to-
compute closed form for the EI acquisition function:

EI(x̂) = Σ̃`(x̂) (ZΦ(Z) + φ(Z))

with: Z =
µ̃`(x̂)− `(x+)

Σ̃`(x̂)
,

where Φ is the standard normal cumulative distribution
function, and φ is the standard normal probability density
function. In summary, the Gaussian process model within
Bayesian optimization leads to the simple acquisition func-
tion EI(x̂) that can be used to actively select candidate
points.

3. Method
In this paper we extend Bayesian Optimization to incorpo-
rate inequality constraints, allowing problems of the form

min
c(x)≤λ

`(x). (3)

where both `(x) and c(x) are the results of some expensive
experiment. These values may often be the result of the
same experiment, and so when we conduct the experiment,
we compute both the value of `(x) and that of c(x).

3.1. Constrained Acquisition Function

Adding inequality constraints to Bayesian optimization is
most directly done via the EI acquisition function, which
needs to be modified in two ways. First, we augment our
definition of x+ to be the feasible point with the lowest
function value observed in T . Second, we assign zero im-
provement to all infeasible point. This leads to the follow-
ing constrained improvement function for a candidate x̂:

IC(x̂) = ∆(x̂) max
{

0, `(x+)− `(x̂)
}

= ∆(x̂)I(x̂)

where ∆(x̂) ∈ {0, 1} is a feasibility indicator function that
is 1 if c(x̂) ≤ λ, and 0 otherwise.

Because c(x) and `(x) are both expensive to compute, we
again use the Bayesian formalism to model each with a
conditionally independent Gaussian process, given x. Dur-
ing Bayesian optimization, after we have picked a candi-
date x̂ to run, we evaluate `(x̂) and add (x̂, `(x̂)) to the
set T` as previously, and we also now evaluate c(x̂) and
add (x̂, c(x̂)) to the set Tc, which is then used to update
the Gaussian process posterior c̃(x) ∼ N (µ̃c(x), Σ̃2

c(x))
as above.

With this model, our Gaussian process models the con-
strained acquisition function as the random quantity:

ĨC(x) = ∆̃(x) max
{

0, `(x+)− ˜̀(x))
}

= ∆̃(x)Ĩ(x),

where the quantity ∆̃(x) is a Bernoulli random variable
with parameter:

PF (x̂) := Pr [c̃(x) ≤ λ] =

∫ λ

−∞
p(c(x̂)|x̂, Tc)dc(x̂)

Conveniently, due to the marginal Gaussianity of c̃(x̂), the
quantity PF (x̂) is a simple univariate Gaussian cumulative
distribution function.

These steps lead to the expected constrained improvement
acquisition function:

EIC(x̂) = E
[
ĨC(x̂)|x̂

]
= E

[
∆̃(x̂)Ĩ(x̂)|x̂

]
= E

[
∆̃(x̂)|x̂

]
E
[
Ĩ(x̂)|x̂

]
= PF (x̂)EI(x̂),

where the third equality comes from the conditional inde-
pendence of c(x) and `(x), given x.

Thus the expected constrained improvement acquisition
function EIC(x̂) is precisely the standard expected im-
provement of x̂ over the best feasible point so far weighted
by the probability that x̂ is feasible.

It is worth noting that, while infeasible points are never
considered our best experiment, they are still useful to
add to T` and Tc to improve the Gaussian process poste-
riors. Practically speaking, infeasible samples help to de-
termine the shape and descent directions of c(x), allow-
ing the Gaussian process to discern which regions are more
likely to be feasible without actually sampling there. This
property–that we do not need to sample in feasible regions
to find them–will prove highly useful in cases where the
feasible region is relatively small, and uniform sampling
would have difficulty finding these regions.

3.2. Multiple Inequality Constraints

It is possible to extend the above derivation to perform
Bayesian optimization with multiple inequality constraints,
c(x) ≤ Λ, where c(x)= [c1(x), ..., ck(x)] and Λ =
[λ1, ..., λk]. We simply redefine ∆̃(x) as the Bernoulli ran-
dom variable with E

[
∆̃(x)

]
= p(c̃1(x) ≤ λ1, ..., c̃k(x) ≤

λk), and the remainder of the EIc(x̂) constrained acquisi-
tion function is unchanged.

Note that p(c̃1(x) ≤ λ1, ..., c̃k(x) ≤ λk) is a multivariate
Gaussian probability. In the simplest case, we assume the
constraints are conditionally independent given x, which
conveniently factorizes the probability as

∏k
i=1 p(c̃i(x) ≤

λi), a product of univariate Gaussian cumulative distribu-
tion functions. In the case of dependent constraints, this



multivariate Gaussian probability can be calculated with
available numerical methods (Cunningham et al., 2011).
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Figure 1. Objective functions `(x, y) and constraint functions
c(x, y) used for simulations 1 and 2.

4. Results
We evaluate our method, which we call constrained
Bayesian Optimization (cBO) on two synthetic tasks and
two real world applications. In all cases we compare cBO
with function minimization by uniform sampling, an ap-
proach that is generally considered competitive (Bergstra
& Bengio, 2012) and typically more efficient than grid-
searching (Bishop, 2006). Our implementation is written
in MATLABTM . All GP hyperparameters were selected
by maximizing the marginal likelihood. We will release
our code and all scripts to reproduce the results in this sec-
tion at http://tinyurl.com/kgj56vy.

4.1. Simulation Function

For the purpose of visualizing our method, we first evalu-
ate it on two simulations with 2D objective and constraint
functions. We compare cBO to standard Bayesian opti-
mization and uniform sampling. All methods are allowed
30 evaluations of `(·) and c(·).

Simulation 1. For the first simulation, the objective func-
tion is

`(x, y) = cos(2x) cos(y) + sin(x),

which we want to minimize subject to the constraint

c(x, y) = cos(x) cos(y)− sin(x) sin(y) ≤ 0.5.

The top row of figure 1 depicts the contour plots of these
functions, and the top row of figure 2 depicts the function

evaluations initiated by all three methods during optimiza-
tion. The infeasible regions are made opaque in figure 2.
Black × symbols indicate infeasible locations at which `(·)
and c(·) were evaluated. Circles (black with white filling)
indicate feasible evaluations.

After a short amount of time, cBO narrows in on the global
minimum of the constrained objective (the dark blue spot in
the top right corner). In contrast, uniform sampling misses
the optimum and wastes a lot of evaluations (22/30) outside
the feasible region. It is noteworthy that cBO also initiates
multiple evaluations outside the feasible regions (14/30),
however these are very close to the global minimum (top
right) or at the infeasible second minimum (dark blue spot
at the bottom right), thus exploring the edge of feasibil-
ity where it matters the most. BO without constraints my-
opically optimizes to the infeasible global minimum (the
bottom right corner), because it has no knowledge of the
constraints.

Simulation 2. In the second simulation, we demonstrate
how cBO can quickly find the minimum feasible value of a
function even when this feasible region is very small. Here,
the objective function (to be minimized) is

`(x, y) = sin(x) + y,

subject to the constraint

c(x, y) = sin(x) sin(y) ≤ −0.95.

The contour plots of these functions are in the bottom row
of figure 1. The results of this simulation are displayed in
the lower row of figure 2. The feasible regions are small
enough that uniform sampling might take some time to
sample a feasible point, and none of the 30 samples are
feasible. BO without constraints manages to sample two
feasible points, but without knowledge of the constraints,
these were sampled by chance with the ultimate goal of BO
being the global optimum in the lower right. By contrast,
cBO is quickly able to use infeasible samples to sufficiently
learn the constraint function c(x, y) to locate the feasible
regions.

4.2. Locality Sensitive Hashing

As a first real world task, we evaluate cBO by selecting pa-
rameters for locality-sensitive hashing (LSH) (Gionis et al.,
1999; Andoni & Indyk, 2006) for approximate k-nearest
neighbors (kNN) (Cover & Hart, 1967). We begin with a
short description of LSH and the constrained optimization
problem. We then present the performance of cBO along-
side the uniform baseline. We do not compare against stan-
dard BO, as without knowledge of the constraints, BO only
samples feasible points by chance.



cBOUniform Sampling

INFEASIBLE

INFEASIBLE

INFEASIBLE

INFEASIBLE

BO

INFEASIBLE INFEASIBLEINFEASIBLE

Si
m

ul
at

io
n 

1
Si

m
ul

at
io

n 
2

Figure 2. Evaluation of Uniform sampling, standard Bayesian Optimization (BO), and constrained Bayesian Optimization on the simu-
lation problems. Areas shaded in white are infeasible regions. White circle indicate feasible points, and black crosses indicate infeasible
points.

Locality-sensitive hashing (LSH) is an approximate
method for nearest neighbor search based on random pro-
jections. The overall intuition is that nearest neighbors al-
ways stay close after projections. LSH defines j random
projections, or hash functions, h1, . . . , hj . This ‘hashing’
is performed multiple times, in sets of j hash functions, and
each set is called a hash table.

For further details we refer the interested reader to a review
by Slaney & Casey (2008).1 The key idea is that these
hyperparameters of LSH (the number of hash functions j
and the number of hash tables L) create a tradeoff between
speed and accuracy.

Ideally, one wants to search for the fastest setting that
does not impact the classification error. Formally, the con-
straint function c(j, L) is the leave-one-out (LOO) classi-
fication error obtained with the LSH data structure with j
hash functions and L hash tables. Let ε denote the LOO
classification error without LSH. Then our constraint is
c(j, L) ≤ ε. Our objective, `(j, L), is the time required to
compute the LOO kNN classification error on the training
set, which we aim to minimize.

We allow both cBO and uniform sampling to perform 100

1We use the LSH implementation from the Caltech Image
Search Toolbox, http://tinyurl.com/caltechLSH.

Table 1. Mean LSH results with standard deviations over 10 runs
for selecting the number of hash tables and functions for approx-
imate kNN search. We show speedup over kNN and the percent-
age of infeasible points sampled.

LSH
SPEEDUP (`) % INFEASIBLE

DATASET CBO UNIFORM CBO UNIFORM

YALEFACES 3.33± 1.53× 2.61± 0.54× 89± 7.0% 70± 3.3%
COIL 18.6± 13.6× 9.69± 1.77× 84± 8.4% 74± 3.4%

ISOLET 6.97± 1.21× 5.49± 0.87× 67± 16% 48± 4.2%
USPS 3.58± 0.89× 3.33± 0.52× 81± 14% 69± 2.0%

LETTERS 1.64± 0.70× 1.56± 0.71× 70± 14% 93± 2.4%
ADULT* 2.80± 2.13× 2.47± 1.63× 97± 3.5% 96± 2.5%

W8A* 3.01± 0.30× 2.32± 0.12× 54± 15% 54± 1.4%
MNIST* 1.69± 0.59× 1.37± 0.28× 71± 16% 64± 1.4%

function evaluations to find feasible settings of j and L.

Evaluation. Table 1 shows results for learning these LSH
parameters under the LOO constraint on 8 popular datasets
for face detection (YaleFaces) (Georghiades et al., 2001),
insurance policy prediction (COIL), letter recognition from
audio and font-specific features (Isolet and Letters), income
and webpage classification (Adult and W8a), and optical
character recognition (USPS, MNIST). We subsampled the
training data of three of the larger datasets to 10% (marked
in the table with an asterisk). We compare cBO with uni-
form sampling of the LSH parameters (both optimized over
the same range). The table shows the speedup obtained



with the final LSH model over standard Euclidean kNN
search. In all cases the cBO-selected model is, on average,
faster than the one obtained with uniform sampling.

Uniform sampling sometimes finds more feasible points
than cBO. This is likely because the objective function is
often decreasing at the boundary of the feasible region, for
example, see the lower left corner of figure 3. This is be-
cause the boundary represents the region where LSH be-
comes too approximate, and sacrifices accuracy. cBO, in an
effort to minimize the objective as much as possible, must
explore this boundary to find its edge, resulting in more in-
feasible points sampled.

Figure 4 shows the traceplots of the fastest feasible LSH
kNN time as a function of sample iterations on the Coil
and Adult data sets. The red and blue dots depict iterations
in which feasible points are selected. On the Coil dataset,
after only 13 iterations, cBO finds a feasible setting of j and
L that has a lower evaluation time than any setting discov-
ered by uniform sampling. On Adult, it is able to further
decrease the evaluation time from one that is similar to a
setting eventually found by uniform sampling.

Figure 3 shows a contour plot of the 2D objective surface
on the USPS handwritten digits data set. The infeasible re-
gion is masked out in light blue. Feasible evaluation points
are marked as white circles, whereas infeasible evaluations
are denoted as black crosses. cBO queries only a few in-
feasible parameter settings and narrows in on the fastest
model settings (dark blue feasible region). The majority
of infeasible points sampled are near the feasibility border
(bottom left). These points are nearly feasible and likely
have low objective. Because of this and the thin regions
of feasibility, cBO explores this region with the hopes of
further minimizing `(·). Although uniform sampling does
evaluate parameters near the optimum, the final model only
obtains a speedup of 3.03× whereas cBO returns a model
with speedup 4.1× (see Table 1).

4.3. SVM Compression

Our second real-world application is speeding up sup-
port vector machines (SVM) (Cortes & Vapnik, 1995)
through hyperparameter search and support-vector “com-
pression” (Burges & Schölkopf, 1997). In this work,
Burges & Schölkopf (1997) describe a method for reduc-
ing the number of SVM support vectors used for the kernel
support vector machine. Their approach is to first train a
kernel SVM and record the learned model and its predic-
tions on the training set. Then, one selects an initial small
subset of m support vectors and re-optimizes them so that
an SVM with only m support vectors matches the predic-
tions of the original model. This re-optimization can be
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Figure 4. Plot of the best LSH nearest neighbor search evaluation
time (`) found so far versus iteration for cBO and uniform sam-
pling over one run on the Coil and Adult datasets.

done efficiently with conjugate gradient descent2 and can
be very effective at speeding up SVMs during test-time—
however it is highly dependent on several hyperparameters
and has the potential to degrade a classifier’s performance.

We restrict our setting to the popular radial basis function
(RBF) kernel (Schölkopf & Smola, 2001),

k(x, z) = exp
(
γ2‖x− z‖22

)
, (4)

which is sensitive to a width parameter γ2. To speed up
SVM evaluation we need to select values for γ2, the SVM
cost parameterC, and the number of support vectorsm that
minimize the validation evaluation time. However, to avoid
degrading the performance of our classifier by using fewer
support vectors, we need to constrain the validation error to
increase by no more than s% over the original SVM model.

To be precise, we first train an SVM on a particular data
set (all hyperparameters are tuned with standard Bayesian
optimization). We then compress this model to minimize
validation evaluation time, while only minimally affecting
its validation error (up to a relative increase of s%). For

2http://tinyurl.com/minimize-m
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a particular parameter setting
{
γ2, C,m

}
, an evaluation of

`() and c() involves first compressing an SVM with param-
eters

{
γ2, C

}
down tom support vectors following Burges

& Schölkopf (1997), and then evaluating the resulting clas-
sifier on the validation set. The value of `(γ2, C,m) is the
time required for the evaluation (not the compression), and
the value of c(γ2, C,m) is the validation error. This er-
ror is constrained to be no more than s% larger than the
validation error of the original SVM. As in the LSH task,
we allow both cBO and uniform sampling to perform 100
evaluations.

Comparison. Table 2 shows results for learning γ2, C and
m on six medium scale UCI datasets3 including spam clas-
sification (Spam), gamma particle and engine output de-
tection (Magic and IJCNN1), and tree type identification
(Forest). We also evaluate on Adult and W8a, as with LSH.
Similar to LSH, we subsampled the training data of five of
the larger datasets to 10% (marked in the table with an as-
terisk, the table shows the data set size after subsampling).
We consider the two cases of s = 1% and s = 10% rel-
ative validation error increase. The table presents the best
speedups found by cBO and uniform sampling, the corre-
sponding number of support vectors (SVs), as well as the
percent of parameter settings that turned out to be infeasi-
ble. cBO outperforms uniform sampling on all datasets in
speedup. In the most extreme case (Adult), the compressed
SVM model was 551× faster than the original with only
1% relative increase in validation error. On two data sets
(IJCNN1 and Forest), uniform subsampling does not find a
single compressed model that guarantees a validation error
increase below 1% (as well as 10% for IJCNN1). The table
also shows the number of support vectors m, to which the

3http://tinyurl.com/ucidatasets

SVM is compressed. In all cases is the cBO model substan-
tially smaller than the one obtained with uniform sampling.

One interesting observation is that uniform sampling finds
more feasible points for Adult and W8a datasets. A possible
explanation for this is that a very fast parameter setting is
right near the feasibility border. Indeed, it is likely for only
m = 3 support vectors many settings of γ2 and C will be
infeasible.

5. Related Work
There has been a large amount of recent work on using
sampling methods for blackbox optimization in machine
learning. A popular application of these methods is hyper-
parameter tuning for machine learning algorithms, or op-
timizing the validation performance of a machine learning
algorithm as a function of its hyperparameters. Bergstra
& Bengio (2012) demonstrates that uniform sampling per-
forms significantly better than the common grid search ap-
proach. They propose that the use of Bayesian optimization
for this task is promising, and uniform sampling serves as
a baseline for Bayesian optimization papers (Snoek et al.,
2012).

A large number of relevant papers have been published on
the topic of hyperparameter tuning as well Hutter et al.
(2011); Bergstra et al. (2011). Most similar to our work
is Bernardo et al. (2011) and Snoek (2013). Constraints
are considered in these, but only feasibility is observed. As
a result, it is difficult to predict where feasible points will
be before observing them. The method in these works is
therefore less applicable in the less general scenario that
we consider, where the constraint function is actually com-
putable. Snoek et al. (2012) introduces Spearmint, a pop-
ular tool for this application. Spearmint marginalizes over



Table 2. SVM compression results with standard deviations over 10 runs for selecting γ2, C, and the number of support vectors m.

1% RELATIVE ERROR INCREASE 10% RELATIVE ERROR INCREASE
NUMBER OF SPEEDUP (`) % INFEASIBLE SVS SPEEDUP ` % INFEASIBLE SVS

DATASET SAMPLES CBO UNIFORM CBO UNIFORM CBO UNIFORM CBO UNIFORM CBO UNIFORM CBO UNIFORM

SPAM 3681 50± 24× 22± 8.2× 96± 3.5% 99± 0.8% 539± 643 746± 263 294± 43× 123± 48× 87± 5.2% 82± 4.5% 7.3± 3.2 110± 105

MAGIC* 1522 273± 84× 43± 21× 94± 4.1% 99.4± 0.7% 62± 89 348± 173 361± 32× 73± 58× 91± 6.0% 99± 1.2% 23± 4.1 239± 122

ADULT* 3256 1248± 244× 1007± 185× 24± 1.0% 6.6± 2.3% 10± 9.7 20± 16 1371± 34× 1007± 185× 22± 1.2% 1.3± 0.8% 3.8± 0.7 20± 16

W8A* 4975 555± 142× 463± 77× 29± 9.5% 19± 2.8% 236± 716 28± 24 625± 156× 494± 80× 25± 8.1% 13± 2.2% 227± 701 22± 26

IJCNN1* 4999 8.7± 0.96× − 99.6± 0.5% 100± 0.0% 1099± 667 − 9.2± 0.47× 7.9± 0.0× 99± 1.4% 99.9± 0.3% 909± 672 1946± 0

FOREST* 5229 79± 42× 38± 17× 95± 4.3% 99± 1.0% 819± 841 1195± 596 179± 58× 66± 42× 96± 2.5% 96± 2.5% 178± 126 910± 744

the Gaussian process hyperparameters using slice sampling
rather than finding the maximum likelihood hyperparame-
ters. Spearmint also introduces the EI per cost acquisition
function, which—in addition to its applications with costs
other than time—often allows for faster optimization when
some parameters affect the running time of an experiment.

There has been other work on the hyperparameter tuning
problem as well. A few papers have also been published
dealing with multi task validation Bardenet et al. (2013);
Swersky et al. (2013), where the goal is either to opti-
mize multiple datasets simultaneously, or use the knowl-
edge gained from tuning previous datasets to provide a
warm start to the optimization of new datasets. Paralleliz-
ing Bayesian optimization is an active research area (Azimi
et al., 2010a; 2012; Snoek et al., 2012). Wang et al. (2013)
adapts Bayesian optimization to very high dimensional set-
tings.

A number of other extensions to and applications of
Bayesian optimization exist as well. Azimi et al. (2010b)
extends Bayesian optimization to the case where one can-
not control the precise value of some parameters in an ex-
periment. Mahendran et al. (2012) applies Bayesian op-
timization to perform adaptive MCMC. Finally, Hoffman
et al. (2013) introduce constraints on the number of func-
tion evaluations, rather than expensive-to-compute con-
straints, which we model with cBO.

6. Discussion
In conclusion, in this paper we extended Bayesian Opti-
mization to incorporate expensive to evaluate inequality
constraints. We believe this algorithm has the potential to
gain traction in the machine learning community and be-
come a practical and valuable tool. Classical Bayesian op-
timization provides an excellent means to get the most out
of many machine learning algorithms. However, there are
many algorithms–particularly approximate algorithms with
the goal of speed–that the standard Bayesian optimization
framework is ill-suited to optimize. This is because it has
no way of dealing with the tradeoff between speed and ac-
curacy that these algorithms present.

We extend the Bayesian optimization framework to deal
with these tradeoffs via constrained optimization, and

present two applications of our method that yield substan-
tial speedups at little to no loss in accuracy for two of the
most popular machine learning algorithms, kernel Support
Vector Machines and k-Nearest Neighbors.

Although not the primary focus of this paper, the strong
results of our model-compression applications (Burges &
Schölkopf, 1997; Bucilu et al., 2006) demonstrate the high
impact potential of cBO. The use of cBO eliminates all hy-
perparameters from the compression algorithm and guar-
antees that any output model matches the validation accu-
racy of the original classifier. In our experiments we obtain
speedups of several order of magnitudes with kernel SVM,
making the algorithm by Burges & Schölkopf (1997) (with
cBO) suddenly a compelling option for many practitioners
who care about test-time performance (Xu et al., 2012).

In addition, we believe that our method will find use in ar-
eas beyond machine learning as well. In particular, many
industrial applications may have adjustable processes that
produce unwanted byproducts—such as carbon emissions
in manufacturing, side reactions in drug synthesis, or heat
in computing infrastructures (Azizi et al., 2010)—that must
be kept under certain levels. Our algorithm provides a way
to quickly and cheaply tune these processes so that output is
maximized while maintaining acceptable levels of byprod-
uct.
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