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Abstract

This supplementary material contains all proofs
and technical details omitted from the main text,
along with ancillary comments, discussion about
related work, and extra experimental results.

1. Proof of Theorem 1

The following sequence of lemmas are of preliminary im-
portance. The first one needs extra variance conditions on
the processX generating the context vectors.

We find it convenient to introduce the node counterpart
to TCBj,t−1(x), and the cluster counterpart tõTCBi,t−1.
Given round t, node i ∈ V , and cluster indexj ∈
{1, . . . ,mt}, we let

TCBi,t−1(x) =
√

x⊤M−1
i,t−1x

(
σ

√
2 log

|Mi,t−1|
δ/2

+ 1

)

T̃CBj,t−1 =
σ
√

2d log t + 2 log(2/δ) + 1√
1 + Aλ(T̄j,t−1, δ/(2m+1d))

,

being

T̄j,t−1 =
∑

i∈V̂j,t

Ti,t−1 = |{s ≤ t − 1 : is ∈ V̂j,t}| ,

i.e., the number of past rounds where a node lying in clus-
terV̂j,t was served. From a notational standpoint, notice the
difference1 betweenT̃CBi,t−1 andTCBi,t−1(x), both refer-
ring to a single nodei ∈ V , andT̃CBj,t−1 andTCBj,t−1(x)

1 Also observe that2nd has been replaced by2m+1d inside
the log’s.
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which refer to an aggregation (cluster) of nodesj among
the available ones at timet.

Lemma 1. Let, at each roundt, context vectorsCit
=

{xt,1, . . . ,xt,ct
} being generated i.i.d. (conditioned

on it, ct and all past indices i1, . . . , it−1, rewards
a1, . . . , at−1, and setsCi1 , . . . , Cit−1

) from a random pro-
cessX such that||X|| = 1, E[XX⊤] is full rank, with min-
imal eigenvalueλ > 0. Let also, for any fixed unit vector
z ∈ R

d, the random variable(z⊤X)2 be (conditionally)
sub-Gaussian with variance parameter2

ν2 = Vt

[
(z⊤X)2 | ct

]
≤ λ2

8 log(4ct)
∀t .

Then
TCBi,t(x) ≤ T̃CBi,t

holds with probability at least1 − δ/2, uniformly overi ∈
V , t = 0, 1, 2 . . ., andx ∈ R

d such that||x|| = 1.

Proof. Fix nodei ∈ V and roundt. By the very way the
algorithm in Figure1 is defined, we have

Mi,t = I +
∑

s≤t : is=i

x̄sx̄
⊤
s = I + Si,t .

First, notice that by standard arguments (e.g., (Dekel et al.,
2010)) we have

log |Mi,t| ≤ d log(1 + Ti,t/d) ≤ d log(1 + t) .

Moreover, denoting byλmax(·) andλmin(·) the maximal
and the minimal eigenvalue of the matrix at argument we

2 Random variable (z⊤X)2 is conditionally sub-
Gaussian with variance parameterσ2 > 0 when
Et

ˆ

exp(γ (z⊤X)2)| ct

˜

≤ exp
`

σ2 γ2/2
´

for all γ ∈ R.
The sub-Gaussian assumption can be removed here at the cost of
assuming the conditional variance of(z⊤X)2 scales withct like
λ2

ct
, instead of λ2

log(ct)
.
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have that, for any fixed unit normx ∈ R
d,

x⊤M−1
i,t x ≤ λmax(M

−1
i,t ) =

1

1 + λmin(Si,t)
.

Hence, we want to show with probability at least1−δ/(2n)
such that

λmin(Si,t) ≥ λTi,t/4 − 8 log

(
Ti,t + 3

δ/(2nd)

)

− 2

√
Ti,t log

(
Ti,t + 3

δ/(2nd)

) (1)

holds for any fixed nodei. To this end, fix a unit norm
vectorz ∈ R

d, a rounds ≤ t, and consider the variable

Vs = z⊤ (x̄sx̄
⊤
s − Es[x̄sx̄

⊤
s | cs]

)
z

= (z⊤x̄s)
2 − Es[(z

⊤x̄s)
2 | cs] .

The sequenceV1, V2, . . . , VTi,t
is a martingale difference

sequence, with optional skipping, whereTi,t is a stopping
time.3 Moreover, the following claim holds.

Claim 1. Under the assumption of this lemma,

Es[(z
⊤x̄s)

2 | cs] ≥ λ/4 .

Proof of claim. Let4 in round s the context vectors
be Cis

= {xs,1, . . . ,xs,cs
}, and consider the corre-

sponding i.i.d. random variablesZi = (z⊤xs,i)
2 −

Es[(z
⊤xs,i)

2 | cs], i = 1, . . . , cs. Since by assumption
these variables are (zero-mean) sub-Gaussian, we have that
(see, e.g., (Massart, 2007)[Ch.2])

Ps (Zi < −a | ct) ≤ Ps (|Zi| > a | ct) ≤ 2e−a2/2ν2

.

holds for anyi, wherePs(·) is the shorthand for the condi-
tional probability

P
(
·
∣∣ (i1, Ci1 , a1), . . . , (is−1, Cis−1

, as−1), is
)

.

The above implies

Ps

(
min

i=1,...,cs

(z⊤xs,i)
2 ≥ λ − a

∣∣∣ ct

)

≥
(
1 − 2e−a2/2ν2

)cs

.

Therefore

Es[(z
⊤x̄s)

2 | cs] ≥ Es

[
min

i=1,...,cs

(z⊤xs,i)
2
∣∣∣ cs

]

≥ (λ − a)
(
1 − 2e−a2/2ν2

)cs

.

3 More precisely, we are implicitly considering the sequence
ηi,1V1, ηi,2V2, . . . , ηi,tVt, whereηi,s = 1 if is = i, and 0 other-
wise, withTi,t =

Pt

s=1 ηi,s.
4 This proof is based on standard arguments, and is reported

here for the sake of completeness.

Since this holds for alla ∈ R, we seta =
√

2ν2 log(4cs)

to get
(
1 − 2e−a2/2ν2

)cs

= (1 − 1
2cs

)cs ≥ 1/2 (because

cs ≥ 1), andλ − a ≥ λ/2 (because of the assumption on
ν2). Putting together concludes the proof of the claim.

We are now in a position to apply a Freedman-like inequal-
ity for matrix martingales due to (Oliveira, 2010; Tropp,
2011) to the (matrix) martingale difference sequence

E1[x̄1x̄
⊤
1 | c1] − x̄1x̄

⊤
1 , E2[x̄2x̄

⊤
2 | c2] − x̄2x̄

⊤
2 , . . .

with optional skipping. Setting for brevityXs = x̄sx̄
⊤
s ,

and

Wt =
∑

s≤t : is=i

(
Es[X

2
s | cs] − E

2
s[Xs | cs]

)
,

Theorem 1.2 in (Tropp, 2011) implies

P

(
∃t : λmin (Si,t) ≤ Ti,tλmin(E1[X1 | c1]) − a, ||Wt|| ≤ σ2

)

≤ d e
− a2/2

σ2+2a/3 .
(2)

where||Wt|| denotes the operator norm of matrixWt.

We apply Claim1, so thatλmin(E1[X1 | c1]) ≥ λ/4, and
proceed as in, e.g., (Cesa-Bianchi & Gentile, 2008). We
set for brevityA(x, δ) = 2 log (x+1)(x+3)

δ , andf(A, r) =

2A +
√

Ar. We can write

P

(
∃t : λmin(Si,t) ≤ λminTi,t/4 − f(A(||Wt||, δ), ||Wt||)

)

≤
∞∑

r=0

P

(
∃t : λmin(Si,t) ≤ λminTi,t/4 − f(A(r, δ), r),

⌊||Wt||⌋ = r
)

≤
∞∑

r=0

P

(
∃t : λmin (Si,t) ≤ λminTi,t/4 − f(A(r, δ), r),

||Wt|| ≤ r + 1
)

≤ d

∞∑

r=0

e−
f2(A(r,δ),r)/2

r+1+2f(A(r,δ),r)/3 ,

the last inequality deriving from (2). Becausef(A, r) sat-
isfiesf2(A, r) ≥ Ar + A + 2

3f(A, r)A, we have that the
exponent in the last exponential is at leastA(r, δ)/2, im-
plying

∞∑

r=0

e−A(r,δ)/2 =

∞∑

r=0

δ

(r + 1)(r + 3)
< δ

which, in turn, yields

P

(
∃t : λmin(Si,t) ≤ Ti,tλmin/4

− f(A(||Wt||, δ/d), ||Wt||)
)

≤ δ .



Online Clustering of Bandits (Supplemental)

Finally, observe that

||Wt|| ≤
∑

s≤t : is=i

||Es[X
2
s | cs]||

=
∑

s≤t : is=i

||Es[Xs | cs]||

≤
∑

s≤t : is=i

Es[||Xs | cs||]

≤ Ti,t .

Therefore we conclude

P

(
∀t : λmin(Si,t) ≥ λminTi,t/4 − f(A(Ti,t, δ/d), Ti,t)

)

≥ 1 − δ .

Stratifying overi ∈ V , replacingδ by δ/(2n) in the last
inequality, and overapproximating proves the lemma.

Lemma 2. Under the same assumptions as in Lemma1,
we have

||ui − wi,t|| ≤ T̃CBi,t

holds with probability at least1− δ, uniformly overi ∈ V ,
andt = 0, 1, 2, . . ..

Proof. From (Abbasi-Yadkori et al., 2011) it follows that

|u⊤
i x − w⊤

i,tx| ≤ TCBi,t(x)

holds with probability at least1 − δ/2, uniformly overi ∈
V , t = 0, 1, 2, . . .. andx ∈ R

d. Hence,

||ui − wi,t|| ≤ max
x∈Rd : ||x||=1

|u⊤
i x − w⊤

i,tx|

≤ max
x∈Rd : ||x||=1

TCBi,t(x)

≤ T̃CBi,t ,

the last inequality holding with probability≥ 1 − δ/2 by
Lemma1. This concludes the proof.

Lemma 3. Under the same assumptions as in Lemma1:

1. If ||ui − uj || ≥ γ and T̃CBi,t + T̃CBj,t < γ/2 then

||wi,t − wj,t|| > T̃CBi,t + T̃CBj,t

holds with probability at least1 − δ, uniformly over
i, j ∈ V andt = 0, 1, 2, . . .;

2. if ||wi,t − wj,t|| > T̃CBi,t + T̃CBj,t then

||ui − uj || ≥ γ

holds with probability at least1 − δ, uniformly over
i, j ∈ V andt = 0, 1, 2, . . ..

Proof. 1. We have

γ ≤ ||ui − uj ||
= ||ui − wi,t + wi,t − wj,t + wj,t − uj ||
≤ ||ui − wi,t|| + ||wi,t − wj,t|| + ||wj,t − uj ||
≤ T̃CBi,t + ||wi,t − wj,t|| + T̃CBj,t

(from Lemma2)

≤ ||wi,t − wj,t|| + γ/2,

i.e., ||wi,t − wj,t|| ≥ γ/2 > T̃CBi,t + T̃CBj,t .

2. Similarly, we have

T̃CBi,t + T̃CBj,t < ||wi,t − wj,t||
≤ ||ui − wi,t|| + ||ui − uj ||

+ ||wj,t − uj ||
≤ T̃CBi,t + ||ui − uj || + T̃CBj,t ,

implying ||ui − uj || > 0. By the well-separatedness
assumption, it must be the case that||ui − uj || ≥ γ.

From Lemma3, it follows that if any two nodesi and j
belong to different true clusters and the upper confidence
boundsT̃CBi,t andT̃CBj,t are both small enough, then it is
very likely that edge(i, j) will get deleted by the algorithm
(Lemma3, Item 1). Conversely, if the algorithm deletes
an edge(i, j), then it is very likely that the two involved
nodesi andj belong to different true clusters (Lemma3,
Item 2). Notice that, we haveE ⊆ Et with high probability
for all t. Because the clusterŝV1,t, . . . , V̂mt,t are induced
by the connected components ofGt = (V,Et), every true
clusterVi must be entirely included (with high probabil-
ity) in some cluster̂Vj,t. Said differently, for all roundst,
the partition ofV produced byV1, . . . , Vm is likely to be a
refinement of the one produced byV̂1,t, . . . , V̂mt,t (in pass-
ing, this also shows that, with high probability,mt ≤ m for
all t). This is a key property to all our analysis. See Figure
2 in the main text for reference.

Lemma 4. Under the same assumptions as in Lemma1, if
ĵt is the index of the current cluster nodeit belongs to, then
we have

TCBbjt,t−1(x) ≤ T̃CBbjt,t−1

holds with probability at least1 − δ/2, uniformly over all
roundst = 1, 2, . . ., andx ∈ R

d such that||x|| = 1.

Proof. The proof is the same as the one of Lemma1, except
that at the very end we need to stratify over all possible
shapes for cluster̂Vbjt,t

, rather than over then nodes. Now,

since with high probability (Lemma3), V̂bjt,t
is the union

of true clusters, the set of all such unions is with the same
probability upper bounded by2m.
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The next lemma is a generalization of Theorem 1 in
(Abbasi-Yadkori et al., 2011), and shows a convergence re-
sult for aggregate vector̄wj,t−1.

Lemma 5. Let t be any round, and assume the partition of
V produced by true clustersV1, . . . , Vm is a refinement of
the one produced by the current clustersV̂1,t, . . . , V̂mt,t.
Let j = ĵt be the index of the current cluster nodeit
belongs to. Let this cluster be the union of true clusters
Vj1 , Vj2 , . . . , Vjk

, associated with (distinct) parameter vec-
torsuj1 ,uj2 , . . . ,ujk

, respectively. Define

ūt = M̄−1
j,t−1




k∑

ℓ=1


1

k
I +

∑

i∈Vjℓ

(Mi,t−1 − I)


ujℓ


 .

Then:

1. Under the same assumptions as in Lemma1,

||ūt − w̄j,t−1|| ≤
√

3m T̃CBj,t−1

holds with probability at least1 − δ, uniformly over
cluster indicesj = 1, . . . ,mt, and roundst =
1, 2, . . . .

2. For any fixedu ∈ R
d we have

||ūt − u|| ≤ 2

k∑

ℓ=1

||ujℓ
− u|| ≤ 2SD(u) .

Proof. Let Xℓ,t−1 be the matrix whose columns are thed-
dimensional vectors̄xs, for all s < t : is ∈ Vjℓ

, aℓ,t−1

be the column vector collecting all payoffsas, s < t :
is ∈ Vjℓ

, andηℓ,t−1 be the corresponding column vector
of noise values. We have

w̄j,t−1 = M̄−1
j,t−1b̄j,t−1 ,

with

b̄j,t−1 =
k∑

ℓ=1

Xℓ,t−1aℓ,t−1

=

k∑

ℓ=1

Xℓ,t−1

(
X⊤

ℓ,t−1ujℓ
+ ηℓ,t−1

)

=

k∑

ℓ=1


∑

i∈Vjℓ

(Mi,t−1 − I)ujℓ
+ Xℓ,t−1 ηℓ,t−1


 .

Thus

w̄j,t−1 − ūt = M̄−1
j,t−1

(
k∑

ℓ=1

(
Xℓ,t−1 ηℓ,t−1 −

1

k
ujℓ

))

and, for any fixedx ∈ R
d : ||x|| = 1, we have

(
w̄⊤

j,t−1x − ū⊤
t x
)2

=



(

k∑

ℓ=1

(
Xℓ,t−1 ηℓ,t−1 −

1

k
ujℓ

))⊤

M̄−1
j,t−1x




2

≤ x⊤M̄−1
j,t−1x

(
k∑

ℓ=1

(
Xℓ,t−1 ηℓ,t−1 −

1

k
ujℓ

))⊤

M̄−1
j,t−1

×
(

k∑

ℓ=1

(
Xℓ,t−1 ηℓ,t−1 −

1

k
ujℓ

))

≤ 2x⊤M̄−1
j,t−1x

×
(( k∑

ℓ=1

Xℓ,t−1 ηℓ,t−1

)⊤
M̄−1

j,t−1

( k∑

ℓ=1

Xℓ,t−1 ηℓ,t−1

)

+
1

k2

( k∑

ℓ=1

ujℓ

)⊤
M̄−1

j,t−1

( k∑

ℓ=1

ujℓ

))

(using(a + b)2 ≤ 2a2 + 2b2) .

We focus on the two terms inside the big braces. Because
V̂j,t is made up of the union of true clusters, we can strat-
ify over the set of all such unions (which are at most2m

with high probability), and then apply the martingale re-
sult in (Abbasi-Yadkori et al., 2011) (Theorem 1 therein),
showing that

(
k∑

ℓ=1

Xℓ,t−1 ηℓ,t−1

)⊤

M̄−1
j,t−1

(
k∑

ℓ=1

Xℓ,t−1 ηℓ,t−1

)

≤ 2σ2

(
log

|M̄j,t−1|
δ/2m+1

)

holds with probability at least1 − δ/2. As for the second
term, we simply write

1

k2

(
k∑

ℓ=1

ujℓ

)⊤

M̄−1
j,t−1

(
k∑

ℓ=1

ujℓ

)
≤ 1

k2

∣∣∣
∣∣∣

k∑

ℓ=1

ujℓ

∣∣∣
∣∣∣
2

≤ 1 .

Putting together and overapproximating we conclude that

|w̄⊤
j,t−1x − ū⊤

t x| ≤
√

3m TCBj,t−1(x)

and, since this holds for all unit-normx, Lemma4 yields

||w̄j,t−1 − ūt|| ≤
√

3m T̃CBj,t−1 ,

thereby concluding the proof of part 1.

As for part 2, because

M̄j,t−1 = I +

k∑

ℓ=1

∑

i∈Vjℓ

(Mi,t−1 − I) ,
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we can rewriteu as

u = M̄−1
j,t−1


u +

k∑

ℓ=1

∑

i∈Vjℓ

(Mi,t−1 − I)u


 ,

so that

ūt − u = M̄−1
j,t−1

(
1

k

k∑

ℓ=1

(ujℓ
− u)

+

k∑

ℓ=1

∑

i∈Vjℓ

(Mi,t−1 − I) (ujℓ
− u)

)
.

Hence

||ūt − u|| ≤ 1

k

∣∣∣
∣∣∣M̄−1

j,t−1

k∑

ℓ=1

(ujℓ
− u)

∣∣∣
∣∣∣

+

k∑

ℓ=1

∣∣∣
∣∣∣M̄−1

j,t−1

∑

i∈Vjℓ

(Mi,t−1 − I) (ujℓ
− u)

∣∣∣
∣∣∣

≤ 1

k

k∑

ℓ=1

||ujℓ
− u)|| +

k∑

ℓ=1

||ujℓ
− u||

≤ 2

k∑

ℓ=1

||ujℓ
− u|| ,

as claimed.

The next lemma gives sufficient conditions onTi,t (or on
T̄j,t) to insure thatT̃CBi,t (or T̃CBj,t) is small. We state
the lemma forT̃CBi,t, but the very same statement clearly
holds when we replacẽTCBi,t by T̃CBj,t, Ti,t by T̄j,t, and
n by 2m.

Lemma 6. The following properties hold for upper confi-
dence bound̃TCBi,t:

1. T̃CBi,t is nonincreasing inTi,t;

2. LetA = σ
√

2d log(1 + t) + 2 log(2/δ) + 1. Then

T̃CBi,t ≤
A√

1 + λTi,t/8

when

Ti,t ≥
2 · 322

λ2
log

(
2nd

δ

)
log

(
322

λ2
log

(
2nd

δ

))
;

3. We have
T̃CBi,t ≤ γ/4

when

Ti,t ≥
32

λ
max

{
A2

γ2
,
64

λ
log

(
2nd

δ

)

× log

(
322

λ2
log

(
2nd

δ

))}
.

Proof. The proof follows from simple but annoying calcu-
lations, and is therefore omitted.

We are now ready to combine all previous lemmas into the
proof of Theorem 1.

Proof. Let t be a generic round,̂jt be the index of the cur-
rent cluster nodeit belongs to, andjt be the index of the
true clusterit belongs to. Also, let us define the aggregate
vectorw̄jt,t−1 as follows :

w̄jt,t−1 = M̄−1
jt,t−1b̄jt,t−1,

M̄jt,t−1 = I +
∑

i∈Vjt

(Mi,t−1 − I),

b̄jt,t−1 =
∑

i∈Vjt

bi,t−1 .

Assume Lemma3 holds, implying that the current clus-
ter V̂bjt,t

is the (disjoint) union of true clusters, and define
the aggregate vector̄ut accordingly, as in the statement of
Lemma5. Notice thatw̄jt,t−1 is the true cluster counter-
part tow̄bjt,t−1, that is,w̄jt,t−1 = w̄bjt,t−1 if Vjt

= V̂bjt,t
.

Also, observe that̄ut = uit
whenVjt

= V̂bjt,t
. Finally, set

for brevity
x∗

t = argmax
k=1,...,ct

u⊤
it

xt,k .

We can rewrite the time-t regretrt as follows:

rt = u⊤
it

x∗
t − u⊤

it
x̄t

= u⊤
it

x∗
t − w̄⊤

jt,t−1x
∗
t + w̄⊤

jt,t−1x
∗
t − w̄⊤

bjt,t−1
x∗

t

+ w̄⊤
bjt,t−1

x∗
t − w̄⊤

jt,t−1x̄t + w̄⊤
jt,t−1x̄t − u⊤

it
x̄t .

Combined with

w̄⊤
bjt,t−1

x∗
t +TCBbjt,t−1(x

∗
t ) ≤ w̄⊤

bjt,t−1
x̄t+TCBbjt,t−1(x̄t),

and rearranging gives

rt ≤ u⊤
it

x∗
t − w̄⊤

jt,t−1x
∗
t − TCBbjt,t−1(x

∗
t ) (3)

+ w̄⊤
jt,t−1x̄t − u⊤

it
x̄t + TCBbjt,t−1(x̄t) (4)

+ (w̄jt,t−1 − w̄bjt,t−1)
⊤(x∗

t − x̄t) . (5)

We continue by bounding with high probability the three
terms (3), (4), and (5).

As for (3), and (4), we simply observe that Lemma2 al-
lows5 us to write

u⊤
it

x∗
t − w̄⊤

jt,t−1x
∗
t ≤ ||uit

− w̄jt,t−1|| ≤ T̃CBjt,t−1 ,

5 This lemma applies here since, by definition,w̄jt,t−1 is built
only from payoffs from nodes inVjt , sharing the common un-
known vectoruit .
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and

w̄⊤
jt,t−1x̄t − u⊤

it
x̄t ≤ ||uit

− w̄jt,t−1|| ≤ T̃CBjt,t−1 .

Moreover,

TCBbjt,t−1(x̄t) ≤ T̃CBbjt,t−1

(by Lemma4)

≤ T̃CBjt,t−1

(by Lemma3 and the definition of̂jt).

Hence,
(3) + (4) ≤ 3T̃CBjt,t−1 (6)

holds with probability at least1 − 2δ, uniformly overt.

As for (5), letting{·} be the indicator function of the pred-
icate at argument, we can write

(w̄jt,t−1 − w̄bjt,t−1)
⊤(x∗

t − x̄t)

= (w̄jt,t−1 − uit
)⊤(x∗

t − x̄t) + (uit
− ūt)

⊤(x∗
t − x̄t)

+ (ūt − w̄bjt,t−1)
⊤(x∗

t − x̄t)

≤ 2 T̃CBjt,t−1 + 2 ||uit
− ūt|| + 2

√
3m T̃CBbjt,t−1

(using Lemma2, ||x∗
t − x̄t|| ≤ 2, and Lemma5, part 1)

= 2 T̃CBjt,t−1 + 2 {Vjt
6= V̂bjt,t

} ||uit
− ūt||

+ 2
√

3m T̃CBbjt,t−1

≤ 2(1 +
√

3m) T̃CBjt,t−1 + 4 {Vjt
6= V̂bjt,t

}SD(uit
)

(by Lemma3, and Lemma5, part 2) .

Piecing together we have so far obtained

rt ≤ (5 + 2
√

3m) T̃CBjt,t−1

+ 4 {Vjt
6= V̂bjt,t

}SD(uit
) . (7)

We continue by bounding{Vjt
6= V̂bjt,t

}. From Lemma3,
we clearly have

{Vjt
6= V̂bjt,t

}
≤ {∃i ∈ Vjt

,∃j /∈ Vjt
: (i, j) ∈ Et}

≤
{
∃i ∈ Vjt

,∃j /∈ Vjt
: ∀s < t

(
(is 6= i)

∨ (is = i, ||wi,s−1 + wj,s−1|| ≤ T̃CBi,s−1 + T̃CBj,s−1)
)}

≤ {∃i ∈ Vjt
: ∀s < t is 6= i}

+
{
∃i ∈ Vjt

,∃j /∈ Vjt
:

∀s < t ||wi,s−1 + wj,s−1|| ≤ T̃CBi,s−1 + T̃CBj,s−1

}

≤ {∃i ∈ Vjt
: ∀s < t is 6= i}

+ {∃i ∈ Vjt
,∃j /∈ Vjt

:

∀s < t T̃CBi,s−1 + T̃CBj,s−1 ≥ γ/2}
≤ {∃i ∈ Vjt

: ∀s < t is 6= i}
+ {∃i ∈ V : ∀s < t T̃CBi,s−1 ≥ γ/4} .

At this point, we apply Lemma6 to T̃CBi,t with

A2 =
(
σ
√

2d log(1 + T ) + 2 log(2/δ) + 1
)2

≤ 4σ2(d log(1 + T ) + log(2/δ)) + 2,

and set for brevity

B =
32

λ
max

{
A2

γ2
,
64

λ
log

(
2nd

δ

)

× log

(
322

λ2
log

(
2nd

δ

))}
,

C =
2 · 322

λ2
log

(
2m+1d

δ

)
log

(
322

λ2
log

(
2m+1d

δ

))
.

We can write

{∃i ∈ V : ∀s < t T̃CBi,s−1 ≥ γ/4}
≤ {∃i ∈ V : T̃CBi,t−2 ≥ γ/4}
≤ {∃i ∈ V : Ti,t−2 ≤ B} .

Moreover,

{∃i ∈ Vjt
: ∀s < t is 6= i}

≤ {∃i ∈ Vjt
\ {it} : Ti,t−1 = 0}

≤ {∃i ∈ V : Ti,t−1 = 0} .

That is,

{Vjt
6= V̂bjt,t

} ≤ {∃i ∈ V : Ti,t−2 ≤ B}
+ {∃i ∈ V : Ti,t−1 = 0} .

Further, using again Lemma6 (applied this time tõTCBj,t)
combined with the fact that̃TCBj,t ≤ A for all j andt, we
have

T̃CBjt,t−1 = A {T̄jt,t−1 < C} +
A√

1 + λ T̄jt,t−1/8
,

where

T̄jt,t−1 =
∑

i∈Vjt

Ti,t−1 = |{s ≤ t − 1 : is ∈ Vjt
}| .

Putting together as in (7), and summing overt = 1, . . . , T ,
we have shown so far that with probability at least1−7δ/2,

T∑

t=1

rt ≤ (5 + 2
√

3m)A

T∑

t=1

{T̄jt,t−1 < C}

+ (5 + 2
√

3m)A

T∑

t=1

1√
1 + λ T̄jt,t−1/8

+ 4

T∑

t=1

SD(uit
) {∃i ∈ V : Ti,t−2 ≤ B}

+ 4

T∑

t=1

SD(uit
) {∃i ∈ V : Ti,t−1 = 0} ,
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with Ti,t = 0 if t ≤ 0.

We continue by upper bounding with high probability the
four terms in the right-hand side of the last inequality. First,
observe that for any fixedi and t, Ti,t is a binomial ran-
dom variable with parameterst and 1/n, and T̄jt,t−1 =∑

i∈Vjt
Ti,t−1 which, for fixedit, is again binomial with

parameterst, andvjt

n , wherevjt
is the size of the true clus-

terit falls into. Moreover, for any fixedt, the variablesTi,t,
i ∈ V are indepedent.

To bound the third term, we use a standard Bernstein in-
equality twice: first, we apply it to sequences of indepen-
dent Bernoulli variables, whose sumTi,t−2 has average
E[Ti,t−2] = t−2

n (for t ≥ 3), and then to the sequence
of variables SD(uit

) whose averageE[SD(uit
)] =

1
n

∑
i∈V SD(ui) is over the random choice ofit.

Setting for brevity

D(B) = 2n

(
B +

5

3
log(Tn/δ)

)
+ 2,

whereB has been defined before, we can write

T∑

t=1

SD(uit
) {∃i ∈ V : Ti,t−2 ≤ B}

=
∑

t≤D(B)

SD(uit
) {∃i ∈ V : Ti,t−2 ≤ B}

+
∑

t>D(B)

SD(uit
) {∃i ∈ V : Ti,t−2 ≤ B}

≤
∑

t≤D(B)

SD(uit
)

+ m
∑

t>D(B)

{∃i ∈ V : Ti,t−2 ≤ B} .

Then from Bernstein’s inequality,

P (∃i ∈ V ∃t > D(B) : Ti,t−2 ≤ B) ≤ δ ,

and

P

(
∑

t≤D(B)

SD(uit
) ≥ 3

2
D(B) E[SD(uit

)]

+
5

3
m log(1/δ)

)
≤ δ .

Thus with probability≥ 1 − 2δ

T∑

t=1

SD(uit
) {∃i ∈ V : Ti,t−2 ≤ B}

≤ 3

2
D(B) E[SD(uit

)] +
5

3
m log(1/δ) .

Similarly, to bound the fourth term we have, with probabil-
ity ≥ 1 − 2δ,

T∑

t=1

SD(uit
) {∃i ∈ V : Ti,t−1 = 0}

≤ 3

2
D(0) E[SD(uit

)] +
5

3
m log(1/δ) .

Next, we crudely upper bound the first term as

(5+2
√

3m)A

T∑

t=1

{T̄jt,t−1 < C}

≤ (5 + 2
√

3m)A

T∑

t=1

{Tit,t−1 < C} ,

and then apply a very similar argument as before to show
that with probability≥ 1 − δ,

T∑

t=1

{Tit,t−1 < C} ≤ n

(
C +

5

3
log

(
T

δ

))
+ 1 .

Finally, we are left to bound the second term. The follow-
ing is a simple property of binomial random variables we
be useful.

Claim 2. Let X be a binomial random variable with pa-
rametersn andp, andλ ∈ (0, 1) be a constant. Then

E

[
1√

1 + λX

]
≤
{

3√
1+λ n p

if np ≥ 10 ;

1 if np < 10 .

Proof of claim. The second branch of the inequality is
clearly trivial, so we focus on the first one under the as-
sumptionnp ≥ 10. Let thenβ ∈ (0, 1) be a parameter that
will be set later on. We have

E

[
1√

1 + λX

]
≤ P(X ≤ (1 − β)n p)

+
1√

1 + λ (1 − β)n p
P(X ≥ (1 − β)n p)

≤ e−β2 n p/2 +
1√

1 + λ (1 − β)n p
,

the last inequality following from the standard Chernoff
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bounds. Settingβ =
√

log(1+λ n p)
n p gives

E

[
1√

1 + λX

]
≤ 1√

1 + λn p

+
1√

1 + λ (np −
√

np log(1 + λnp))

≤ 1√
1 + λn p

+
1√

1 + λn p/2

(usingnp ≥ 10)

≤ 3√
1 + λn p

,

i.e., the claimed inequality

Now,

Et−1

[
1√

1 + λ T̄jt,t−1/8

]
=

m∑

j=1

vj

n

1√
1 + λ T̄j,t−1/8

,

being T̄j,t−1 = |{s < t : is ∈ Vj}| a binomial variable
with parameterst − 1 and vj

n , wherevj = |Vj |. By the
standard Hoeffding-Azuma inequality

T∑

t=1

1√
1 + λ T̄jt,t−1/8

≤
T∑

t=1

m∑

j=1

vj

n

1√
1 + λ T̄j,t−1/8

+
√

2T log(1/δ)

holds with probability at least1 − δ, In turn, from Bern-
stein’s inequality, we have

P

(
∃t∃j : T̄j,t−1 ≤ t − 1

2n
vj −

5

3
log(Tm/δ)

)
≤ δ .

Therefore, with probability at least1 − 2δ,

T∑

t=1

1√
1 + λ T̄jt,t−1/8

≤
T∑

t=1

m∑

j=1

vj

n

1√
1 + λ

8

(
t−1
2n vj − 5

3 log(Tm/δ)
)
+

+
√

2T log(1/δ)

≤
m∑

j=1

vj

n


4n

5

3
log(Tm/δ) + 1 +

T∑

t=1

1√
1 + λ

8
t−1
4n vj




+
√

2T log(1/δ)

= 4n
5

3
log(Tm/δ) + 1 +

m∑

j=1

vj

n

T∑

t=1

1√
1 + λ

8
t−1
4n vj

+
√

2T log(1/δ) .

If we set for brevityrj = λ
8

vj

4n , j = 1, . . . ,m, we have

T∑

t=1

1√
1 + λ

8
t−1
4n vj

≤
∫ T

0

dx√
1 + (x − 1)rj

=
2

rj

(√
1 + T rj − rj −

√
1 − rj

)

≤ 2

√
T

rj
,

so that

T∑

t=1

1√
1 + λ T̄jt,t−1/8

≤ 4n
5

3
log(Tm/δ) + 1

+
√

2T log(1/δ) + 8
m∑

j=1

√
2Tvj

λn
.

Finally, we put all pieces together. In order for all claims
to hold simultaneously with probability at least1 − δ, we
need to replaceδ throughout byδ/10.5. Then we switch to
a Õ-notation, and overapproximate once more to conclude
the proof.

2. Implementation

As we said in the main text, in implementing the algo-
rithm in Figure1, the reader should keep in mind that it
is reasonable to expectn (the number of users) to be quite
large, d (the number of features of each item) to be rel-
atively small, andm (the number of true clusters) to be
very small compared ton. Then the algorithm can be im-
plemented by storing a least-squares estimatorwi,t−1 at
each nodei ∈ V , an aggregate least squares estimator
w̄bjt,t−1 for each current cluster̂jt ∈ {1, . . . ,mt}, and
an extra data-structure which is able to perform decre-
mental dynamic connectivity. Fast implementations of
such data-structures are those studied by (Thorup, 1997;
Kapron et al., 2013) (see also the research thread refer-
enced therein). In particular, in (Thorup, 1997) (Theo-
rem 1.1 therein) it is shown that a randomized construc-
tion exists that maintains a spanning forerst which, given
an initial undirected graphG1 = (V,E1), is able to per-
form edge deletions and answer connectivity queries of the
form “Is nodei connected to nodej” in expected total time

O
(
min{|V |2, |E1| log |V |} +

√
|V | |E1| log2.5 |V |

)
for

|E1| deletions. Connectivity queries and deletions can be
interleaved, the former being performed inconstanttime.
Notice that when we start off from the full graph, we
have|E1| = O(|V |2), so that the expected amortized time
per query becomes constant. On the other hand, if our
initial graph has|E1| = O(|V | log |V |) edges, then the
expected amortized time per query isO(log2 |V |). This
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becomesO(log2.5 |V |) if the initial graph has|E1| =
O(|V |). In addition, we maintain ann-dimensional vec-
tor CLUSTERINDICES containing, for each nodei ∈ V ,
the indexj of the current clusteri belongs to.

With these data-structures handy, we can implement our
algorithm as follows. After receivingit, computingjt is
O(1) (just by accessing CLUSTERINDICES). Then, com-
puting kt can be done in timeO(d2) (matrix-vector mul-
tiplication, executedct times, assumingct is a constant).
Then the algorithm directly updatesbit,t−1 and b̄bjt,t−1,
as well as the inverses of matricesMit,t−1 andM̄bjt,t−1,
which is againO(d2), using standard formulas for rank-
one adjustment of inverse matrices. In order to prepare the
ground for the subsequent edge deletion phase, it is conve-
nient that the algorithm also stores at each nodei matrix
Mi,t−1 (whose time-t update is againO(d2)).

Let DELETE(i, ℓ) and IS-CONNECTED(i, ℓ) be the two op-
erations delivered by the decremental dynamic connectiv-
ity data-structure. Edge deletion at timet corresponds to
cycling through all nodesℓ such that(it, ℓ) is an existing
edge. The number of such edges is on average equal to the

average degree of nodeit, which isO
(

|E1|
n

)
, where|E1| is

the number of edges in the initial graphG1. Now, if (it, ℓ)
has to be deleted (each the deletion test beingO(d)), then
we invokeDELETE(it, ℓ), and then IS-CONNECTED(it, ℓ).
If I S-CONNECTED(it, ℓ) = “no”, this means that the current
clusterV̂jt,t−1 has to split into two new clusters as a con-
sequence of the deletion of edge(it, ℓ). The set of nodes
contained in these two clusters correspond to the two sets

{k ∈ V : IS-CONNECTED(it, k) = “yes”},
{k ∈ V : IS-CONNECTED(ℓ, k) = “yes”}‘,

whose expected amortized computationper nodeisO(1) to
O(log2.5 n) (depending on the density of the initial graph
G1). We modify the CLUSTERINDICESvector accordingly,
but also the aggregate least squares estimators. This is be-
causew̄bjt,t−1 (represented through̄M−1

bjt,t
andb̄bjt,t

) has to

be spread over the two newborn clusters. This operation
can be performed by adding up all matricesMi,t and all
bi,t, over all i belonging to each of the two new clusters
(it is at this point that we need to accessMi,t for eachi),
and then inverting the resulting aggregate matrices. This
operation takesO(nd2 + d3). However, as argued in the
comments following Lemma3, with high probability the
number of current clustersmt can never exceedm, so that
with the same probability this operation is only performed
at mostm times throughout the learning process. Hence in

T rounds we have an overall (expected) running time

O

(
T

(
d2 +

|E1|
n

d

)
+ m (nd2 + d3) + |E1|

+ min{n2, |E1| log n} +
√

n |E1| log2.5 n

)
.

Notice that the above isn · poly(log n), if so is |E1|. In
addition, if T is large compared ton andd, the average
running time per round becomesO(d2 + d · poly(log n)).

As for memory requirements, we need to store twod × d
matrices and oned-dimensional vector at each node, one
d×d matrix and oned-dimensional vector for each current
cluster, vector CLUSTERINDICES, and the data-structures
allowing for fast deletion and connectivity tests. Over-
all, these data-structures do not require more thanO(|E1|)
memory to be stored, so that this implementation takes
O(nd2 + md2 + |E1|) = O(nd2 + |E1|), where we
again relied upon themt ≤ m condition. Again, this is
n · poly(log n) if so is |E1|.

3. Further Plots

This section contains a more thorough set of comparative
plots on the synthetic datasets described in the main text.
See Figure1 and Figure2.

4. Derivation of the Reference Bounds

We now provide a proof sketch of the reference bounds
mentioned in Section2 of the main text.

Let us start off from thesingle userbound for LIN-
UCB (either ONE or IND) one can extract from
(Abbasi-Yadkori et al., 2011). Let uj ∈ R

d be the pro-
file vector of this user. Then, with probability at least1−δ,
we have

T∑

t=1

rt = O

(√
T

(
σ2 d log T + σ2 log

1

δ
+ ||ui||2

)
d log T

)

= Õ

(√
T (σ2 d + ||uj ||2) d

)

= Õ
(
(σ d +

√
d)
√

T
)

,

the last line following from assuming||uj || = 1.

Then, a straightforward way of turning this bound into a
bound for the CLEARVOYANT algorithm that knows all
clustersV1, . . . , Vm ahead of time and runs one instance
of LINUCB per cluster is to sum the regret contributed by
each cluster throughout theT rounds. LettingTj,T denote
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Figure 1.Results on synthetic datasets. Each plot displays the
behavior of the ratio of the current cumulative regret of the al-
gorithm (“Alg”) to the current cumulative regret of RAN, where
where “Alg” is either “CLUB” or “LinUCB-IND” or “LinUCB-
ONE” or “GOBLIN”or “CLAIRVOYANT”. The cluster sizes are
balanced (z = 0). From left to right, payoff noise steps from0.1
to 0.3, and from top to bottom the number of clusters jumps from
2 to 10.
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Figure 2.Results on synthetic datasets in the case of unbalanced
(z = 2) cluster sizes. The rest is the same as in Figure1.

the set of roundst such thatit ∈ Vj , we can write

T∑

t=1

rt = Õ


(σ d +

√
d)

m∑

j=1

√
Tj,T


 .

However, becauseit is drawn uniformly at random overV ,
we also haveE[Tj,T ] = T

|Vj |
n , so that we essentially have

with high probability

T∑

t=1

rt = Õ


(σ d +

√
d)
√

T


1 +

m∑

j=1

√
|Vj |
n




 ,

i.e., Eq. (1) in the main text.

5. Further Comments

As we said in Remark3, a data-dependent variant of the
CLUB algorithm can be designed and analyzed which re-
lies on data-dependent clusterability assumptions of the set
of users with respect to a set of context vectors. These
data-dependent assumptions allow us to work in a fixed
design setting for the sequence of context vectorsxt,k,
and remove the sub-Gaussian and full-rank hypotheses re-
gardingE[XX⊤]. To make this more precise, consider
an adversary that generates (unit norm) context vectors
in a (possibly adaptive) way thatfor all x so generated
|u⊤

j x − u⊤
j′x| ≥ γ , wheneverj 6= j′. In words, the ad-

versary’s power is restricted in that it cannot generate two
distict context vectorsx andx′ such that|u⊤

j x − u⊤
j′x| is

small and|u⊤
j x′−u⊤

j′x′| is large. The two quantities must
either be both zero (whenj = j′) or both bounded away
from 0 (whenj 6= j′). Under this assumption, one can
show that a modification to theTCBi,t(x) and TCBj,t(x)
functions exists that makes the CLUB algorithm in Figure
1 achieve a cumulative regret bound similar to the one in

(5), where the
√

1
λ factor therein is turned back into

√
d, as

in the reference bound (1), but with a worse dependence on
the geometry of the set ofuj , as compared toE[SD(uit

)].
The analysis goes along the very same lines as the one of
Theorem1.

6. Related Work

The most closely related papers are (Djolonga et al.,
2013; Azar et al., 2013; Brunskill & Li , 2013;
Maillard & Mannor, 2014).

In (Azar et al., 2013), the authors define a transfer learn-
ing problem within a stochastic multiarmed bandit setting,
where a prior distribution is defined over the set of possible
models over the tasks. More similar in spirit to our pa-
per is the recent work (Brunskill & Li , 2013) that relies on
clustering Markov Decision Processes based on their model
parameter similarity. A paper sharing significant similari-
ties with ours, in terms of both setting and technical tools
is the very recent paper (Maillard & Mannor, 2014) that
came to our attention at the time of writing ours. In that
paper, the authors analyze a noncontextual stochastic ban-
dit problem where model parameters can indeed be clus-
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tered in a few (unknown) types, thereby requiring the algo-
rithm to learn the clusters rather than learning the parame-
ters in isolation. Yet, the provided algorithmic solutionsare
completely different from ours. Finally, in (Djolonga et al.,
2013), the authors work under the assumption that users are
defined using a context vector, and try to learn a low-rank
subspace under the assumption that variation across users
is low-rank. The paper combines low-rank matrix recov-
ery with high-dimensional Gaussian Process Bandits, but it
gives rise to algorithms which do not seem easy to use in
large scale practical scenarios.

7. Ongoing Research

This work could be extended along several directions.
First, we may rely on a softer notion of clustering than the
one we adopted here: a cluster is made up of nodes where
the “within distance” between associated profile vectors is
smaller than their “between distance”. Yet, this is likely
to require prior knowledge of either the distance threshold
or the number of underlying clusters, which are assumed
to be unknown in this paper. Second, it might be possible
to handle partially overlapping clusters. Third, CLUB can
clearly be modified so as to cluster nodes through off-the-
shelf graph clustering techniques (mincut, spectral cluster-
ing, etc.). Clustering via connected components has the
twofold advantage of being computationally faster and rel-
atively easy to analyze. In fact, we do not know how to
analyze CLUB when combined with alternative clustering
techniques, and we suspect that Theorem1 already delivers
the sharpest results (asT → ∞) when clustering is indeed
based on connected components only. Fourth, from a prac-
tical standpoint, it would be important to incorporate fur-
ther side information, like must-link and cannot-link con-
straints. Fifth, in recommender system practice, it is often
relevant to provide recommendations to new users, even in
the absence of past information (the so-called “cold start”
problem). In fact, there is a way of tackling this problem
through the machinery we developed here (the idea is to du-
plicate the newcomer’s node as many times as the current
clusters are, and then treat each copy as a separate user).
This would potentially allow CLUB to work even in the
presence of (almost) idle users. We haven’t so far collected
any experimental evidence on the effectiveness of this strat-
egy. Sixth, following the comments we made in Remark3,
we are trying to see if the i.i.d. and other statistical assump-
tions we made in Theorem1 could be removed.
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