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Abstract which refer to an aggregation (cluster) of nodgeamong

This supplementary material contains all proofs the available ones at tirrte

and technical details omitted from the main text, Lemma 1. Let, at each round, context vectors”;, =
along with ancillary comments, discussion about {Zi1,..., @, } being generated ii.d. (conditioned
related work, and extra experimental results. on i;,¢; and all past indicesiy,...,i;_;, rewards
ai,...,at—1, and sets’; , ..., C;, ,) from a random pro-
cessX such that| X|| = 1, E[X X "] is full rank, with min-
1. Proof of Theorem 1 imal eigenvalue\ > 0. Let also, for any fixed unit vector

z € RY, the random variabldz " X)? be (conditionally)

The following sequence of lemmas are of preliminary im-syp-Gaussian with variance parameter
portance. The first one needs extra variance conditions on
the processy generating the context vectors. A2

2 — TX 2 < -
v Vt[(z ) ‘Ct] ~ 8log(4cy)

Yt .
We find it convenient to introduce the node counterpart

to TCB;:—1(x), and the cluster counterpart uﬁm,l. Then
Given roundt, nodei € V, and cluster indexj &< TCB: () < TCB;
{1,...,m:}, welet L= TR

holds with probability at least — 6/2, uniformly overi €

M, V,t=0,1,2...,andz € R? such tha =1.
rCB (@) = [oT M ( 2 g Mot 1) . i)z

o\/2d Togt + 21og(2/3) + 1 Proof. Fix nodei € V and roundt. By the very way the

TCBj¢—1 = _ , algorithm in Figurel is defined, we have
’ V14 AN(T)i-1,0/(2mF1d))
_ = =T _ ,
being M =1+ <Z T, =1+5;,.
s<t:is=1
Tip1= Z Tior=Hs<t—1:ic €V}, First, notice that by standard arguments (eDekel et al,
i€V 2010) we have

i.e., the number of past rounds where a node lying in clus-
terV; ; was served. From a notational standpoint, notice the
differencé betweernrcs; ,_; andTcB; ;i (z), both refer-
ring to a single nodé € V, andTCB;;_; andTCB; ;1 (x)

log [M; ;| < dlog(1+T;./d) < dlog(l+t).

Moreover, denoting by\,ax () and Apmin(-) the maximal
and the minimal eigenvalue of the matrix at argument we

! Also observe thatnd has been replaced B/ 'd inside 2

Random variable (27 X)? is conditionally sub-
the log’s.

Gaussian with variance parametes? > 0 when
_— ol ) ~ Eifexp(y (2" X)?)|er] < exp(0®4°/2) for all v € R.
Proceedings of thef1*" International Conference on Machine The sub-Gaussian assumption can be removed here at the cost of

Learning Beijing, China, 2014. JMLR: W&CP volume 32. Copy- assuming the conditional variance @f ' X)? scales with; like
right 2014 by the author(s). 2% instead of 22

log(ct)
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have that, for any fixed unit norm ¢ R?,
B 1
B 1 + Amin(Si,t) .

Hence, we want to show with probability at leastd/(2n)
such that

o' M e < Apax(M; )

T,:+3
)‘min(si,t) Z )\Tz,t/4 — 810g ( it + )

5/(2nd)

_ 2\/Ti7t log (M)

holds for any fixed nodé. To this end, fix a unit norm
vectorz € R?, arounds < t, and consider the variable

Vi=2" (2.2 —Ei[z:2] |cs]) 2
= (z—r:is)2 — IEJS[(zT:F:S)2 |cs] -

The sequencé’y, Vs, ..., Vr,, is a martingale difference
sequence, with optional skipping, whéfg, is a stopping
time 2 Moreover, the following claim holds.

Claim 1. Under the assumption of this lemma,
Ei[(z72)%|cs] > \/4.

Proof of claim. Let* in round s the context vectors

be C;, = {xs1,...,2s..}, and consider the corre-
sponding i.i.d. random variable§; = (z'z,;)? —
Es[(zT@®s)?|cs], i = 1,...,cs. Since by assumption

these variables are (zero-mean) sub-Gaussian, we have that

(see, e.g.,Massart 2007)[Ch.2])
Py (Z; < —a|ci) <P (|Zi] > alc) < 9p—a/20"

holds for anyi, whereP, () is the shorthand for the condi-
tional probability

P ( : ‘ (7:1707;170/1)’ R (is—laci5,17a8—1)7is) .

The above implies

P, <_min (z—l—a:syi)2 >\N—a

=1,...,cs

Therefore

E,[(2"%,)%| cs] > E, [ (2" zs,)

2 CS]

>(A—a) (1 _ 26_(12/2”2)05 .

min
1=1,...,cs

3 More precisely, we are implicitly considering the sequence

m-,lVl, 7]1‘72‘/2, ey ni,t‘/ty Whel’eniy5 =1if s = 1, and 0 other-
wise, WithT; ¢ = 3°F_, 7.5

4 This proof is based on standard arguments, and is reported

here for the sake of completeness.

Since this holds for alk € R, we seta = /212 log(4cs)

Cs
to get(l - 23*“2/2”2) =(1- 2%5)05 > 1/2 (because
¢s > 1), and\ — a > /2 (because of the assumption on
2). Putting together concludes the proof of the clairl

We are now in a position to apply a Freedman-like inequal-
ity for matrix martingales due toQliveira, 201Q Tropp,
20117 to the (matrix) martingale difference sequence

El [iliir |Cl] — i‘li'ir, ]Eg[i‘gi';— |CQ] — 53253;, .
with optional skipping. Setting for brevitk, = z.z/,
and

W= Y (BX?]e] ~EXX[e) .

s<t:is=t

Theorem 1.2 inTropp, 2017 implies
P(3t ¢ Auin (Si) < Tohmin(Ea[X |e1]) = a, [ W] < 0?)

__a%/2
g de o%+2a/3 |

)
where||W;|| denotes the operator norm of matfi%.

We apply Claiml, so thathy,i, (E1[X1|c1]) > A/4, and
proceed as in, e.g.Cesa-Bianchi & Gentile2008. We
set for brevityA(z, §) = 2log “HE) and f(A,r) =
2A + v/ Ar. We can write

P(3t  Auin(S10) < AuinTi/4 — AW ) W)

< Z P(Ht . )\min(Si,t) < )\minTi,t/4 - f(A(Tv 6)’ 7))7
r=0

Wil =7)

S Z P(Ht . /\min (Siyt) S AminTi,t/4 - f(A(Tv 6)7 T)v
r=0

Wil <7 +1)

o0 2
__ fP(A(rS)m)/2
<d E e THIFFACS)./3 |

r=0

the last inequality deriving fron2j. Becausef (A, r) sat-
isfies f2(A,r) > Ar + A + 2 f(A,r)A, we have that the
exponent in the last exponential is at leat, §)/2, im-
plying

<46

o0 oo 5
—A(r,0)/2 _
;e Z(r+1)(r+3)

r=0
which, in turn, yields

P(ﬂt : )\min(S’i,t) < Ti,t)\min/4

~ J(A(IWll,8/d), Wil )))
<9J.
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Finally, observe that

Wl < ) B [X2 el
s<t:is=t
= Z |[Es [Xs | cs]ll
s<t:is=t
< Z Es[l| X | esl]]
s<t:is=ti
<Ti:.

Therefore we conclude

P(VE : Awin(S1) = AminTi/4 = (A(Ti0,0/), Ti) )
>1-9.

Stratifying overi € V, replacingd by §/(2n) in the last

inequality, and overapproximating proves the lemmaé.]

Lemma 2. Under the same assumptions as in Lemina

we have
[lu; — w; || < TCB;,

holds with probability at least —
andt =0,1,2,....

4, uniformly overi € V,

Proof. From (Abbasi-Yadkori et al.2011]) it follows that
|u;r:c — w;—tw| < TCB; ()

holds with probability at least — ¢/2, uniformly over: €

V,t=0,1,2,.... andz € R Hence,
lui —wigl| < max Julz—w] ]
xR : [|z||=1 ,
< max  TCB;.(x)
xR : [|z||=1
< TCBiy ,

the last inequality holding with probability 1 — §/2 by
Lemmal. This concludes the proof. O

Lemma 3. Under the same assumptions as in Lemima

1. If [[u; — u;|| > vandTCB;; + TCB;, < /2 then
||lwie —wjl| > TCB; ¢ + TCBy,¢

holds with probability at least — §, uniformly over
i,j€Vandt=0,1,2,..;
2. if ||wi7t — ’w]‘)tH > -FC\:/Bi7t + 'F(S/Bj,t then
lwi =l =

holds with probability at least — §, uniformly over
i,j € Vandt =0,1,2,

Proof. 1. We have

7 < i — |

=||u; —wip +wip —w; +wj — u,l|

< lwi — wigl] + [Jwie — wjel| + [|wje — uyll
< ﬁi,t + H'wi,t - wj.,t” + -F(\:/Bjyf/
(from Lemma2)

< |wi,e — wjel| +7/2,
i.e.|[wi; —w;|| >~/2>TCB;; + TCB;; .
2. Similarly, we have
TACT-%‘,t + TACT3j,t <|wi —wj|
<||u; —
+ |Jwjie
< TCBi¢ + ||us — uyl| + TCBjt

;— |

— uyl|

implying ||u; — u;|| > 0. By the well-separatedness
assumption, it must be the case that — u;|| > ~.

O

From Lemmas3, it follows that if any two nodes and j
belong to different true clusters and the upper confidence
boundsTcB; , andTCB; ; are both small enough, then it is
very likely that edgéi, j) will get deleted by the algorithm
(Lemma3, Item 1). Conversely, if the algorithm deletes
an edge(s, j), then it is very likely that the two involved
nodesi andj belong to different true clusters (Lemm3a
Item 2). Notice that, we havE C E; with high probability

for all t. Because the clusteis ;, ..., V,,, ; are induced
by the connected components@f = (V, E;), every true
clusterV; must be entirely included (with high probabil-
ity) in some cIusteﬁA/j,t. Said differently, for all rounds,

the partition ofl” produced by, ..., V,, is likely to be a
refinement of the one produced by, ..., Vi, ; (in pass-
ing, this also shows that, with high probability, < m for

all t). This is a key property to all our analysis. See Figure
2 in the main text for reference.

Lemma 4. Under the same assumptions as in Lenimnié
Et is the index of the current cluster noglebelongs to, then
we have

TCB;,

4a(x) <TCB; |

holds with probability at least — §/2, uniformly over all
roundst = 1,2,..., andx € R? such that|z|| = 1.

Proof. The proofis the same as the one of Lenimexcept
that at the very end we need to stratify over all possible
shapes for cIusteV ;» rather than over the nodes. Now,

since with high probab|I|ty (Lemma3), V , Is the union
of true clusters, the set of all such unlons is with the same
probability upper bounded /™. O
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The next lemma is a generalization of Theorem 1 inand, for any fixede € R?
(Abbasi-Yadkori et a].2011), and shows a convergence re-

. ||z|| = 1, we have

sult for aggregate vectan; ;.

Lemma 5. Lett be any round, and assume the partition of

is a reﬁnement of
th,t
j+ be the index of the current cluster node

V produced by true clusterg, ..., V,,
the one produced by the current clustéfﬁt, ..
Let j

belongs to. Let this cluster be the union of true clusters

Vie: Vias - Vi

torsw;,, uj,, ..

associated with (distinct) parameter vec-
., u;,, respectively. Define

T+ (M

i€V,

it— 1—1 Uuj,

?rM—‘

Then:

1. Under the same assumptions as in Lenima

Hﬁt — ﬂ)j,tle é v3m'|f5/Bj7t,1

holds with probability at least — §, uniformly over
cluster indices; 1,...,ms, and roundst
1,2,....

2. For any fixedu € R? we have

k
|, — || <2 ZHuﬂ —u|| <2SD(u) .
=1

Proof. Let X,,_; be the matrix whose columns are tihe
dimensional vectorg,, forall s < ¢t : iy € Vj,, az¢—
be the column vector collecting all payofts, s < ¢ :
is € Vj,, andn,,_, be the corresponding column vector
of noise values. We have
M—l

Wy =M, 1bj1,

with

k
bjs1= Xei1a0s1
(=1

k
= ZXe,tA (Xz—,rtqujz +Mei1)

/=1
k
= > (Mip1 = Dujy + Xei-1m04

=1 ’L'EV}‘[

Thus
b 1
Wyp—1 — W = Mo <Z <X€,t—1 MNet—1 — % ujz))
=1

(ﬁ;;t_lcc — ﬂ:m)2

(s

=1

1
k

—r—1
Mj’t 1T

-
ujtz))
k 1 T
o (3 (R b))
=1
uje))
=1
SQ:IUTMJELI:E
k
X ((ZXé,t—lm,t—1) fr. 1(2X€t 1Mt~ 1)
=1
1 T ’
() ()
=1 =1

(using(a + b)? < 2a% + 2b?) .

(Xé,t—l Meg—1—

—1
My

T -1

sz M,

x(i !

(X&t—l MNot—1 — %

We focus on the two terms inside the big braces. Because
V;.. is made up of the union of true clusters, we can strat-
ify over the set of all such unions (which are at mp$t

with high probability), and then apply the martingale re-
sult in (Abbasi-Yadkori et al.2011) (Theorem 1 therein),
showing that

T

k k
<ZXn) i <ZX?7>
/=1 /=1
M, 1|

2 |
<20 <1og 5/2m+1)

holds with probability at least — §/2. As for the second
term, we simply write

1 k k 1 k
b (3] s () < I3
=1 =1 /=1

Putting together and overapproximating we conclude that

T

|111;r,t7133 — ﬂ:w| <V3mTCBj—1(x)
and, since this holds for all unit-norm, Lemma4 yields
@1 — || < V3mTCBj -1,

thereby concluding the proof of part 1.

As for part 2, because
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we can rewriteu as

w= G (utr Y Y (Mo = D
t=1ieVy,
so that
_ 1 &
U — U = ]\41,151_1 (k Z(uj‘ - ’LL)
/=1
k
PSS M D) u>)
(=1ieVj,
Hence

k
_ L o-
e = ul] < - || A5 D (g, = )|
(=1

k
-I-ZH tll Z it—1—1) (uje—u)H
{=1

i€Vj,

k k
1
<z S g, —w)| + > [Jug, —u
=1 £=1
k
<2 ZHujz _u” )
=1
as claimed. O

The next lemma gives sufficient conditions @y (or on
T} ) to insure thatrCB; ; (or TCB;,) is small. We state

the lemma fochvBl-yt, but the very same statement clearly

holds when we replacecs; ; by TCB; ¢, T} ; by T} ;, and
n by 2™,

Lemma 6. The following properties hold for upper confi-
dence boundcs; ;:

1. TCB;, is nonincreasing i} ;;

2. LetA = o+/2d log(1 + t) + 2log(2/8) + 1. Then
A

TCBit < ————
' 1+ /\Tiﬂs/S
when
2.322 2nd 322 2nd
T > —1 1 —1 —_— :
2 5 () (v (32))
3. We have
TCB;: < /4
when

T >32 A? 64l 2nd
it = —— maxy§ —5, — —
S U (PR WA

< los (322 los (m)) }
A2 5 ‘

Proof. The proof follows from simple but annoying calcu-
lations, and is therefore omitted. O

We are now ready to combine all previous lemmas into the
proof of Theorem 1.

Proof. Lett be a generic rouncﬁ be the index of the cur-
rent cluster node; belongs to, ang; be the index of the
true clusteri; belongs to. Also, let us define the aggregate
vectorwj, ;1 as follows :

wjt t—1 — th,t 1b.7f t—1,

]t7 1_I+Z

1€eVj,

bjoi1= Y bii1-

i€Vj,

i,t— 1_

Assume LemmaB holds, implying that the current clus-
ter V;ﬁt is the (disjoint) union of true clusters, and define
the aggregate vectar, accordingly, as in the statement of
Lemmab. Notice thatw;, ;—1 is the true cluster counter-

parttow; , ,, thatis,w;, ;1 = w; , , if V), = tht
Also, observe thair, = u;, whenVj, = 1@ ,- Finally, set
for brevity
wt = argmax uTazt k-
k=1,..., ct
We can rewrite the time+egretr; as follows:
re = u—-ra:;‘ — u;z:it
T % _ T * _ T * _ T *
= U Ly Wy g Ty T Wy Ty — WS, Ty
« =T - _ T - T
+ 'wjht 1Ty — Wy T+ Wy, T — Uy, Ty

Combined with

ws

.
G T HTCBG () < Wy

and rearranging gives

re <wlap —wj , x; —TCB; (@) 3)
+'wjtt 11X — U, :ct—i—TCBA e 1(:ct) (4)
+ (W) 1 —ws,, ) (] — &) ®)

We continue by bounding with high probability the three
terms @), (4), and 6).

As for (3), and @), we simply observe that Lemnaal-
lows® us to write

T % _ —~
u;, T —wj, -1 < TCBj, 1—1 5

it - ﬁj;’z7t—lwz < ||uit

® This lemma applies here since, by definitian;, ;— is built

only from payoffs from nodes ifV},, sharing the common un-
known vectoru,, .
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and

W) & —u) By < |Jw;, — W, 41]] < TCBj, 41 .

Moreover,
TCBs , (%) < T’CVB%F1
(by Lemmad4)
< ﬁjt,t—1
(by Lemma3 and the definition oft).
Hence,

(3) + (4) < 3TCBj, 11 (6)

holds with probability at least — 24, uniformly overt.

As for (5), letting {-} be the indicator function of the pred-
icate at argument, we can write

(W), 11 — W5, , 1) (@] — &)
= (W, 11— u,) (T} — &
+ (a ) (x; — @)
< 2TCBj, 11 + 2 ||wi, — | + N%T”CVB%H
(using Lemma, ||z — &;|| < 2, and Lemm&b, part 1)
=2TCBj, 11+ 2{Vj, # V5 } lui, — ]
+ 2\/37”1{0731,15—1
< 2(1+3m)TC8j, s 1 +4{V;, # V5, ,} SD(u;,)
(by Lemma3, and Lemmab, part 2) .

W -1

Piecing together we have so far obtained
re < (5+2V3m)TCBy, 11

t

()

We continue by boundingV;, # ‘71 .. From Lemmag,
we clearly have '

Vi, #V5.4)

S {EIZ € ‘/JHEU ¢ ijt : (ZM?) € Et}
< {Eli €V 3¢ V) Vs < t((is # 1)

V (is =14, ||wis—1 +wj 1] < TCB;s—1 + -FE/Bj,sfl))}
<{JieV,, :Vs<tis#1i}

+{3ieVi. 3¢V, :

Vs <t ||’wi,371 + ’w]‘,Sle < 116/81‘,571 + ﬁj,sfl}

<{JieV, : Vs<tis#1i}

+{FieV,,3j¢V, :

Vs <t ﬁi,s—l + 'F(:,/Bj7s_1 > 7/2}

<{Fi eV, : Vs <tis#i}

+{F €V : Vs <t TCBis_1>7/4}.

At this point, we apply Lemmé& to TCB; ; with

A% = (a\/Qd log(1+ T) + 210g(2/5) + 1)2
< 40?(d log(1 + T) + log(2/6)) + 2,

and set for brevity

B = 32 max{A2 o4 log (2nd)
A v27 A )
x log (322 log (an>> } ,
A2 0
B () ()
We can write
{Fi €V : Vs <tTCB; s 1 >/4}
<{3i eV :TCBi—2>7/4}
<{3ieV :T,,_» <B}.
Moreover,
{FieV;, : Vs<tis #i}
<{3ieV; \{it} : Theo1 =0}
<{FieV: T, 1=0}.
That is,

{Vj, #V2 } <{3ieV : T, » < B}
+ {HZ eV Ti’tfl = 0} .
Further, using again Lemn&a(applied this time tacs, ;)

combined with the fact thatcs; ; < A for all j andt, we
have

A

TCBy, 1 = A{T) 11 < C}+ !
’ ’ L+ AT, 1-1/8

9

where
ijf,,tflz Z,I’i,tflz‘{sét_l : iSe‘/th‘
i€V,

Putting together as ir7}, and summing over=1,..., 7,
we have shown so far that with probability at least75 /2,

T T
> e < (5+2V3m)A > {Tj,-1 < C}
t=1 t=1

T

+(5+2V3m)A >

t=1

1

V1I+AT, -1/8
T

+4) " SD(u;,) {Ji €V : Tiy_p < B}
t=1
T

+4) SD(u;,){Fi €V : Tjy 1 =0},

t=1
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with T, = 0if ¢t <O0. Similarly, to bound the fourth term we have, with probabil-

We continue by upper bounding with high probability the ity = 1 =29,

four terms in the right-hand side of the last inequalitysEir
observe that for any fixedandt, T; ; is a binomial ran- T .

dom variable with parametetsand 1/n, and T}, ;1 = > SD(u;,){Fi eV : Ty =0}
Zievj, T; +—1 which, for fixedi,, is again binomial with t=1
parameters, and“.t, wherev;, is the size of the true clus- <
teri, falls into. Moreover, for any fixed, the variabled; ;,

1 € V are indepedent.

| w

D(0)E[SD(u;,)] + gm log(1/6) .

Next, we crudely upper bound the first term as
To bound the third term, we use a standard Bernstein in-

equality twice: first, we apply it to sequences of indepen-
dent Bernoulli variables, whose suif) ;_, has average
E[T; —2] = % (for t > 3), and then to the sequence
of variables SD(u;,) whose averageE[SD(u;,)] =

T
(5+2v3m) A Z{Tjt,t—l < C}

t=1

L3 ev SD(u;) is over the random choice of.

Setting for brevity
5
D(B) =2n (B + 3 log(Tn/5)> +2,
whereB has been defined before, we can write

T
> SD(w;,) {Fi€V : T,y o < B}

t=1
= Y SD(u;){JieV : T <B}
t<D(B)
+ Y SD(u;) {3 €V : Ty < B}
t>D(B)
< Y SD(u;,)
t<D(B)
+m > {F€V:T,,<B}.

t>D(B)
Then from Bernstein’s inequality,
P(JieV3t>DB): T a<B)<§,
and

]P’( > SD(w;,) >

t<D(B)

| W

D(B)E[SD(u;,)]

+ gm log(1/6)>§ d.

Thus with probability> 1 — 26
T
> SD(u;,){Fi€V : Ty » < B}
t=1

<

| W

D(B)E[SD(u;,)] + gm log(1/9) .

T
< (5+2vV3m)A Y {T;,-1 < C},

t=1

and then apply a very similar argument as before to show
that with probability> 1 — 9,

d 5 T
Z{Tiut—l < C} <n (C+ glog (6)) +1.

t=1

Finally, we are left to bound the second term. The follow-
ing is a simple property of binomial random variables we
be useful.

Claim 2. Let X be a binomial random variable with pa-
rametersn andp, and A € (0, 1) be a constant. Then

if np >10;

3
< V1i+Anp
if np < 10.

=[] -

Proof of claim. The second branch of the inequality is
clearly trivial, so we focus on the first one under the as-
sumptionnp > 10. Let theng € (0, 1) be a parameter that
will be set later on. We have

1
E {m} SP(X < (l—ﬂ)np)
1
1+A(1_ﬁ)in(X2 (1=p)np)
<e—[32"1?/2 1
- 1—&-)\(1—ﬁ)np7

the last inequality following from the standard Chernoff
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log(1+)\ np)

bounds. Setting = gives
[l = v
VI+AX V1+Anp
1
+
\/1 + A (np — y/nplog(1 + Anp))
< + !
T Vi+Anp /14 Anp/2
(usingnp > 10)
«__3
~ Vi+ainp’
i.e., the claimed inequality O
Now,
1 i 1
By : R D S
V1I+ AT, -1/8 SO VI AT /8
beingT;;—1 = |{s < t : is € V;}| a binomial variable

with parameters — 1 and *2, wherev; =
standard Hoeffding-Azuma inequality

|[V;]. By the

T m

T
R S
;\/1+ATM 1/ ;.: n \/1+>\Tjt 1/8
T log(1/0)

holds with probability at least — §, In turn, from Bern-
stein’s inequality, we have

t—

P (ﬂt 3j : Tjae - g log(Tm/(S)) <

Therefore, with probability at least— 20,
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If we set for brevityr; = 2 72, j = 1,...,m, we have

M-

1 </T dx
/1+%%U__ o V1+(x—1)r;

. (\/1+T7“]—7“J \/1—7“j)
J

so that

ng log(Tm/d) +1

Z \/1+)\T],t 1/

2T’Uj

+ /2T log(1/3) + 8 Em:
j=1

Finally, we put all pieces together. In order for all claims
to hold simultaneously with probability at leakt- §, we
need to replacé throughout byy/10.5. Then we switch to
aO-notation, and overapproximate once more to conclude
the proof. O

2. Implementation

As we said in the main text, in implementing the algo-
rithm in Figurel, the reader should keep in mind that it
is reasonable to expeat(the number of users) to be quite
large, d (the number of features of each item) to be rel-
atively small, andn (the number of true clusters) to be
very small compared te. Then the algorithm can be im-
plemented by storing a least-squares estimaigy_; at
each nodei € V, an aggregate least squares estimator
ws, for each current clustej, € {1,...,m:}, and

an extra data-structure which is able to perform decre-
mental dynamic connectivity. Fast implementations of
such data-structures are those studied Byofup 1997
Kapron et al. 2013 (see also the research thread refer-
enced therein). In particular, infforug 1997 (Theo-
rem 1.1 therein) it is shown that a randomized construc-
tion exists that maintains a spanning forerst which, given
an initial undirected grapli’y; = (V, E), is able to per-
form edge deletions and answer connectivity queries of the
form “Is node: connected to nod¢’ in expected total time

O (min{|V|2, |E1| log |V} + v/]V]|Ey] log?® |V|) for

|E1| deletions. Connectivity queries and deletions can be
interleaved, the former being performeddanstanttime.
Notice that when we start off from the full graph, we
have|E;| = O(|V]?), so that the expected amortized time
per query becomes constant. On the other hand, if our
initial graph has/E;| = O(|V| log|V]) edges, then the
expected amortized time per query@log® |V|). This
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becomesO(log>” |V|) if the initial graph has|E,| = T rounds we have an overall (expected) running time
O(|V]). In addition, we maintain an-dimensional vec-

tor CLUSTERINDICES containing, for each node € V, B

the index;j of the current cluster belongs to. ol ( + = d) +m (nd*+d*) + |E|

With these data-structures handy, we can implement our

algorithm as follows. After receiving,, computingy, is + min{n?, |Ey| logn} + \/m log?*5 n) _
O(1) (just by accessing GJSTERINDICES). Then, com-

puting k; can be done in timé&(d?) (matrix-vector mul-

tiplication, executed; times, assuming; is a constant).  Notice that the above ig - poly(logn), if S0 is |E1|. In
Then the algorithm directly updatés, ;. andlr +—10  addition, if T is large compared ta andd, the average
as well as the inverses of matrica$; ;_, and M5 , ,,  running time per round becomé¥d? + d - poly(log n)).

2
which is againO(d*), using standard formulas for rank- As for memory requirements, we need to store te d

one adjustment of inverse matrices. In order to prepare the
Matrices and oné-dimensional vector at each node, one

ground for the subsequent edge deletion phase, it is conve:-
. . ) . d x d matrix and onel-dimensional vector for each current
nient that the algorithm also stores at each nodeatrix

. . : cluster, vector CUSTERINDICES, and the data-structures
M1 (whose timet update is again)(d?)). allowing for fast deletion and connectivity tests. Over-
Let DELETE(Z, £) and IS-CONNECTED(Z, £) be the two op-  all, these data-structures do not require more (@), |)
erations delivered by the decremental dynamic connectivmmemory to be stored, so that this implementation takes
ity data-structure. Edge deletion at timeorresponds to  O(nd? + md? + |E1|) = O(nd? + |E1|), where we
cycling through all nodeg such that(i;, ¢) is an existing again relied upon then, < m condition. Again, this is
edge. The number of such edges is on average equal to tle poly(logn) if sois|E|.

average degree of node which isO ('E1 ) where|E, | is

the number of edges in the initial graph . Now, if (i;,¢) 3. Further Plots
has to be deleted (each the deletion test béig)), then
we invokeDELETE(i;, £), and then $-CONNECTED(7, {).

If | S-=CONNECTED(i¢, £) = “no”, this means that the current
clusterf/jt +—1 has to split into two new clusters as a con-
sequence of the deletion of ed@g, ¢). The set of nodes
contained in these two clusters correspond to the two sets4. Derivation of the Reference Bounds

This section contains a more thorough set of comparative
plots on the synthetic datasets described in the main text.
See Figurdl and Figure2.

We now provide a proof sketch of the reference bounds
mentioned in Sectiof of the main text.

{k €V : Is-CONNECTED(i¢, k) = “yes”}, Let us start off from thesingle userbound for LIN-
{k €V : IS-CONNECTED(/, k) = “yes” ', UCB (either ONE or IND) one can extract from
(Abbasi-Yadkori et al.2011). Letwu; € R? be the pro-
file vector of this user. Then, with probability at ledst ¢,
we have

whose expected amortized computatien nodes O(1) to

O(log*® n) (depending on the density of the initial graph _ 5 5 1 e
G'1). We modify the QUSTERINDICESVector accordingly, z;rt =0 T 0% dlogT + 0% log ) +llwil[* ) dlogT

but also the aggregate least squares estimators. This is be-

causews, , (represented througMg andlr t) has to =0 <\/T (02 d + ||u;|?) d)
be spread over the two newborn clusters ThIS operation B
can be performed by adding up all matricks ; and all =0 ((ad—i- \/E)\/T) ,

b; ., over alli belonging to each of the two new clusters

(it is at this point that we need to accet ; for eachi), .

and then inverting the resulting aggregate matrices. Thléhe last line following from assumingu,|| = 1.
operation take®(n d? + d*). However, as argued in the Then, a straightforward way of turning this bound into a
comments following Lemm&, with high probability the  bound for the CLEARVOYANT algorithm that knows all
number of current clusters, can never exceeah, so that  clustersVy, ..., V,, ahead of time and runs one instance
with the same probability this operation is only performedof LINUCB per cluster is to sum the regret contributed by
at mostm times throughout the learning process. Hence ineach cluster throughout thérounds. Lettingl’; + denote
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However, becausg is drawn uniformly at random ovér,

we also havé&[T; r| = T“fj", so that we essentially have
with high probability

Balancad Custers —— N, of Clustars: 2 Payoff Noie: 0.1 Bl Custers — No. o Chustrs: 2 Payof Noss: 0.3

—ocLuB

—— LINUCB-IND 08|
— LINUCB-ONE z
~——GOBLIN 507
—— CLAIRVOYANT fos

—CLUB
——LINUCB-IND

7 m
. -
S > r=0((earvavT (143 /1)
t=1 i=1

foakoe - i.e., Eg. () in the main text.

R R T R T T B Ca A 5. Further Comments

Founds

S As we said in Remarl, a data-dependent variant of the

e one | — CLUB algorithm can be designed and analyzed which re-

— Conmvour lies on data-dependent clusterability assumptions ofeéhe s
of users with respect to a set of context vectors. These

data-dependent assumptions allow us to work in a fixed

design setting for the sequence of context vectors,

and remove the sub-Gaussian and full-rank hypotheses re-

—— LINUCB-IND 08|
— LINUCB-ONE z
~—GOBLIN 507
— CLAIRVOYANT g

05 1 15 2 25 3 35 4 45 5 05 1 15 2 25 3 35 4 45 5

““““““ gardingE[X X T]. To make this more precise, consider
Figure 1.Results on synthetic datasets. Each plot displays thean adversary that generates (unit norm) context vectors
behavior of the ratio of the current cumulative regret of the al-in a (possibly adaptive) way thdor all « so generated

gorithm (“Alg”) to the current cumulative regret of RAN, where

J) _ _ |lu!x —wl x| >+, wheneverj # j'. In words, the ad-
where “Alg” is either “CLUB” or “LinUCB-IND” or “LinUCB- J J

ONE” or “GOBLIN"or “CLAIRVOYANT". The cluster sizes are versary’s power is restricted in that it cannot generate two
) - , T Tl
balanced { — 0). From left to right, payoff noise steps frofn distict context vectors andz’ such thatu;  — u; | is

00.3, and from top to bottom the number of clusters jumps from SMall andw | =’ —uj,#'| is large. The two quantities must

2 t0 10. either be both zero (whep = ;') or both bounded away
from O (whenj # j’). Under this assumption, one can
show that a modification to thecs, ;(x) andTCB; ;(x)
functions exists that makes the CLUB algorithm in Figure
1 achieve a cumulative regret bound similar to the one in

1 1
—ous o —ais (5), where the\g factor therein is turned back intgdd, as
0.8 LINUCB-IND 0.8 LINUCB-IND
z ——LINUCB-ONE H ——LINUCB-ONE . .
to7 — coaun X —coaLn in the reference bound (1), but with a worse dependence on
EO.B —— CLAIRVOYANT En.s —— CLAIRVOYANT

the geometry of the set af;, as compared t&[SD(u,, )].
The analysis goes along the very same lines as the one of
fffffffffffffffffffffffffffffffffffffffffff Theoreml.

6. Related Work

. The most closely related papers arBjglonga et al.
E%'?Eg@:v’:; 2013 Azaretal, 2013 Brunskill & Li, 2013
Maillard & Mannor, 2014).

—ocLuB

03| —— LINUCB-IND 08|
z — LINUCB-ONE z
507 ~——GOBLIN 507
E —— CLAIRVOYANT H

In (Azar et al, 2013, the authors define a transfer learn-
ing problem within a stochastic multiarmed bandit setting,
where a prior distribution is defined over the set of possible

TUTEIEIAS T ErEng models over the tasks. More similar in spirit to our pa-
Figure 2 Results on synthetic datasets in the case of unbalanceger is the recent workBrunskill & Li, 2013 that relies on
(= = 2) cluster sizes. The rest is the same as in Fidure clustering Markov Decision Processes based on their model
parameter similarity. A paper sharing significant similari
the set of rounds such that, € V;, we can write ties with ours, in terms of both setting and technical tools

is the very recent papeMaillard & Mannor, 2014 that
T m came to our attention at the time of writing ours. In that
Z ry = O (od+ \/3) Z Tir| . paper, the authors analyze a noncontextual stochastic ban-
=1 i=1 dit problem where model parameters can indeed be clus-
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tered in a few (unknown) types, thereby requiring the algo-Azar, M. G., Lazaric, A., and Brunskill, E. Sequential
rithm to learn the clusters rather than learning the parame- transfer in multi-armed bandit with finite set of models.
ters inisolation. Yet, the provided algorithmic solutiars In NIPS pp. 2220-2228, 2013.

completely different from ours. Finally, irDjolonga et al. . . . .
2013, the authors work under the assumption that users argrunskill, E. and Li, L. Sample complexity of multi-task
defined using a context vector, and try to learn a low-rank "€inforcement learning. IDAI, 2013.

subspace under the assumption that variation across Usefgsa-Bianchi, N. and Gentile, C. Improved risk tail bounds
is low-rank. The paper combines low-rank matrix recov-  tor on-jine algorithmsIEEE Trans. on Information The-
ery with high-dimensional Gaussian Process Bandits, but it ory, 54(1):386-390, 2008.

gives rise to algorithms which do not seem easy to use in
large scale practical scenarios. Dekel, O., Gentile, C., and Sridharan, K. Robust selective
sampling from single and multiple teachers. GOLT,

7. Ongoing Research pp. 346-358, 2010.

This work could be extended along several directionsPiolonga, J., Krause, A., and Cevher, V. High-dimensional

First, we may rely on a softer notion of clustering than the 92ussian process bandits NfPS pp. 1025-1033, 2013.

one we adopted here: a cluster is made up of nodes Whei{%\pron, Bruce M., King, Valerie, and Mountjoy, Ben. Dy-
the “within distance” between associated profile vectors is  ,5mic graph connectivity in polylogarithmic worst case
smaller than their “between distance”. Yet, this is likely ime nProc. SODApp. 1131-1142, 2013.

to require prior knowledge of either the distance threshold

or the number of underlying clusters, which are assumedJaillard, O. and Mannor, S. Latent bandits. IGML,

to be unknown in this paper. Second, it might be possible 2014.

to handle partially overlapping clusters. Third, CLUB can
clearly be modified so as to cluster nodes through off-the
shelf graph clustering techniques (mincut, spectral elust
ing, etc.). Clustering via connected components has the

twofold advantage of being computationally faster and rel-gjieira, R.I. Concentration of the adjacency matrix and of

atively easy to analyze. In fact, we do not know how 10 e |aplacian in random graphs with independent edges.
analyze CLUB when combined with alternative clustering 5.y preprint arXiv:0911.06002010.

techniques, and we suspect that Theoteatready delivers

the sharpest results (45— oo) when clustering is indeed Thorup, M. Decremental dynamic connectivity. Rmoc.
based on connected components only. Fourth, from a prac- SODA pp. 305-313, 1997.

tical standpoint, it would be important to incorporate fur-
ther side information, like must-link and cannot-link con-
straints. Fifth, in recommender system practice, it isrofte
relevant to provide recommendations to new users, even in
the absence of past information (the so-called “cold start”
problem). In fact, there is a way of tackling this problem
through the machinery we developed here (the idea is to du-
plicate the newcomer’s node as many times as the current
clusters are, and then treat each copy as a separate user).
This would potentially allow CLUB to work even in the
presence of (almost) idle users. We haven't so far collected
any experimental evidence on the effectiveness of this stra
egy. Sixth, following the comments we made in Remark

we are trying to see if the i.i.d. and other statistical agsum
tions we made in Theorefncould be removed.

Massart, P.Concentration Inequalities and Model Selec-
tion. Volume 1896 of Lecture Notes in Mathematics.
Springer, Berlin, 2007.

Tropp, J. Freedman’s inequality for matrix martingales.
arXiv preprint arXiv:1101.3039y12011.
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