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Abstract

We introduce a novel algorithmic approach

to content recommendation based on adaptive

clustering of exploration-exploitation (“bandit”)

strategies. We provide a sharp regret analysis of

this algorithm in a standard stochastic noise set-

ting, demonstrate its scalability properties, and

prove its effectiveness on a number of artificial

and real-world datasets. Our experiments show

a significant increase in prediction performance

over state-of-the-art methods for bandit prob-

lems.

1. Introduction

Presenting personalized content to users is nowdays a cru-

cial functionality for many online recommendation ser-

vices. Due to the ever-changing set of available options,

these services have to exhibit strong adaptation capabil-

ities when trying to match users’ preferences. Coarsely

speaking, the underlying systems repeatedly learn a map-

ping between available content and users, the mapping be-

ing based on context information (that is, sets of features)

which is typically extracted from both users and contents.

The need to focus on content that raises the users’ inter-

est, combined with the need of exploring new content so

as to globally improve users’ experience, generates a well-

known exploration-exploitation dilemma, which is com-

monly formalized as a multi-armed bandit problem (e.g.,

(Lai & Robbins, 1985; Auer et al., 2001; Audibert et al.,

2009; Caron et al., 2012)). In particular, the contextual

bandit methods (e.g., (Auer, 2002; Langford & Zhang,

2007; Li et al., 2010; Chu et al., 2011; Bogers, 2010;

Abbasi-Yadkori et al., 2011; Crammer & Gentile, 2011;

Krause & Ong, 2011; Seldin et al., 2011; Yue et al., 2012;
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Djolonga et al., 2013), and references therein) have rapidly

become a reference algorithmic technique for implement-

ing adaptive recommender systems.

Within the above scenarios, the widespread adoption

of online social networks, where users are engaged in

technology-mediated social interactions (making product

endorsement and word-of-mouth advertising a common

practice), raises further challenges and opportunities to

content recommendation systems: On one hand, because

of the mutual influence among friends, acquaintances, busi-

ness partners, etc., users having strong ties are more likely

to exhibit similar interests, and therefore similar behavior.

On the other hand, the nature and scale of such interactions

calls for adaptive algorithmic solutions which are also com-

putationally affordable.

Incorporating social components into bandit algorithms can

lead to a dramatic increase in the quality of recommen-

dations. For instance, we may want to serve content to a

group of users by taking advantage of an underlying net-

work of social relationships among them. These social rela-

tionships can either be explicitly encoded in a graph, where

adjacent nodes/users are deemed similar to one another, or

implicitly contained in the data, and given as the outcome

of an inference process that recognizes similarities across

users based on their past behavior. Examples of the first

approach are the recent works (Buccapatnam et al., 2013;

Delporte et al., 2013; Cesa-Bianchi et al., 2013), where a

social network structure over the users is assumed to

be given that reflects actual interest similarities among

users – see also (Caron & Bhagat, 2013; Valko et al., 2014)

for recent usage of social information to tackle the so-

called “cold-start” problem. Examples of the second

approach are the more traditional collaborative-filtering

(e.g., (Schafer et al., 1999)), content-based filtering, and

hybrid approaches (e.g. (Burke, 2005)).

Both approaches have important drawbacks hindering their

practical deployment. One obvious drawback of the “ex-
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plicit network” approach is that the social network infor-

mation may be misleading (see, e.g., the experimental ev-

idence reported by (Delporte et al., 2013)), or simply un-

available. Moreover, even in the case when this information

is indeed available and useful, the algorithmic strategies to

implement the needed feedback sharing mechanisms might

lead to severe scaling issues (Cesa-Bianchi et al., 2013), es-

pecially when the number of targeted users is large. A stan-

dard drawback of the “implicit network” approach of tra-

ditional recommender systems is that in many practically

relevant scenarios (e.g., web-based), content universe and

popularity often undergo dramatic changes, making these

approaches difficult to apply.

In such settings, most notably in the relevant case when

the involved users are many, it is often possible to iden-

tify a few subgroups or communities within which users

share similar interests (Rashid et al., 2006; Buscher et al.,

2012), thereby greatly facilitating the targeting of users by

means of group recommendations. Hence the system need

not learn a different model for each user of the service, but

just a single model for each group.

In this paper, we carry out1 a theoretical and experimen-

tal investigation of adaptive clustering algorithms for linear

(contextual) bandits under the assumption that we have to

serve content to a set of n users organized into m << n
groups (or clusters) such that users within each group tend

to provide similar feedback to content recommendations.

We give a O(
√
T ) regret analysis holding in a standard

stochastically linear setting for payoffs where, importantly,

the hidden constants in the big-oh depend on m, rather than

n, as well as on the geometry of the user models within

the different clusters. The main idea of our algorithm is

to use confidence balls of the users’ models to both esti-

mate user similarity, and to share feedback across (deemed

similar) users. The algorithm adaptively interpolates be-

tween the case when we have a single instance of a contex-

tual bandit algorithm making the same predictions for all

users and the case when we have n-many instances provid-

ing fully personalized recommendations. We show that our

algorithm can be implemented efficiently (the large n sce-

nario being of special concern here) by means of off-the-

shelf data-structures relying on random graphs. Finally, we

test our algorithm on medium-size synthetic and real-world

datasets, often reporting a significant increase in prediction

performance over known state-of-the-art methods for ban-

dit problems.

2. Learning Model

We assume the user behavior similarity is encoded as an

unknown clustering of the users. Specifically, let V =
{1, . . . , n} represent the set of n users. Then V can be par-

1 Due to space limitations, we postpone the discussion of re-
lated work to the supplementary material.

titioned into a small number m of clusters V1, V2, . . . , Vm,

with m << n, such that users lying in the same cluster

share similar behavior and users lying in different clusters

have different behavior. The actual partition of V (includ-

ing the number of clusters m) and the common user behav-

ior within each cluster are unknown to the learner, and have

to be inferred on the fly.

Learning proceeds in a sequential fashion: At each

round t = 1, 2, . . . , the learner receives a user index

it ∈ V together with a set of context vectors Cit =
{xt,1,xt,2, . . . ,xt,ct} ⊆ R

d. The learner then selects

some x̄t = xt,kt
∈ Cit to recommend to user it, and ob-

serves some payoff at ∈ R, which is a function of both it
and the recommended x̄t. The following assumptions are

made on how index it, set Cit , and payoff at are gener-

ated in round t. Index it represents the user to be served

by the system, and we assume it is selected uniformly at

random2 from V . Once it is selected, the number of con-

text vectors ct in Cit is generated arbitrarily as a function

of past indices i1, . . . , it−1, payoffs a1, . . . , at−1, and sets

Ci1 , . . . , Cit−1
, as well as the current index it. Then the

sequence xt,1,xt,2, . . . ,xt,ct of context vectors within Cit

is generated i.i.d. (conditioned on it, ct and all past indices

i1, . . . , it−1, payoffs a1, . . . , at−1, and sets Ci1 , . . . , Cit−1
)

from a random process on the surface of the unit sphere,

whose process matrix E[XX⊤] is full rank, with mini-

mal eigenvalue λ > 0. Further assumptions on the pro-

cess matrix E[XX⊤] are made later on. Finally, payoffs

are generated by noisy versions of unknown linear func-

tions of the context vectors. That is, we assume each clus-

ter Vj , j = 1, . . . ,m, hosts an unknown parameter vector

uj ∈ R
d which is common to each user i ∈ Vj . Then

the payoff value ai(x) associated with user i and context

vector x ∈ R
d is given by the random variable

ai(x) = u
⊤
j(i)x+ ǫj(i)(x) ,

where j(i) ∈ {1, 2, . . . ,m} is the index of the clus-

ter that node i belongs to, and ǫj(i)(x) is a condition-

ally zero-mean and bounded variance noise term. Specif-

ically, denoting by Et[ · ] the conditional expectation

E
[
·
∣∣ (i1, Ci1 , a1), . . . , (it−1, Cit−1

, at−1), it
]
, we assume

that for any fixed j ∈ {1, . . . ,m} and x ∈ R
d, the variable

ǫj(x) is such that Et[ǫj(x)|x ] = 0 and Vt

[
ǫj(x)|x

]
≤

σ2, where Vt[ · ] is a shorthand for the conditional vari-

ance V
[
·
∣∣ (i1, Ci1 , a1), . . . , (it−1, Cit−1

, at−1), it
]

of the

variable at argument. So we clearly have Et[ai(x)|x ] =
u
⊤
j(i)x and Vt

[
ai(x)|x

]
≤ σ2. Therefore, u⊤

j(i)x is the

expected payoff observed at user i for context vector x.

In the special case when the noise ǫj(i)(x) is a bounded

random variable taking values in the range [−1, 1], this im-

plies σ2 ≤ 1. We will make throughout the assumption

2 Any other distribution that insures a positive probability of
visiting each node of V would suffice here.
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that ai(x) ∈ [−1, 1] for all i ∈ V and x. Notice that this

implies −1 ≤ u
⊤
j(i)x ≤ 1 for all i ∈ V and x. Finally,

we assume well-separatedness among the clusters, in that

||uj − uj′ || ≥ γ > 0 for all j 6= j′. We define the regret

rt of the learner at time t as

rt =

(
max
x∈Cit

u
⊤
j(it)

x

)
− u

⊤
j(it)

x̄t .

We are aimed at bounding with high probability (over the

variables it, xt,k, k = 1, . . . , ct, and the noise variables

ǫj(it)) the cumulative regret
∑T

t=1 rt . The kind of regret

bound we would like to obtain (we call it the reference

bound) is one where the clustering structure of V (i.e.,

the partition of V into V1, . . . , Vm) is known to the algo-

rithm ahead of time, and we simply view each one of the m
clusters as an independent bandit problem. In this case, a

standard contextual bandit analysis (Auer, 2002; Chu et al.,

2011; Abbasi-Yadkori et al., 2011) shows that, as T grows

large, the cumulative regret
∑T

t=1 rt can be bounded with

high probability as3

∑T
t=1 rt = Õ

(∑m
j=1

(
σ d+ ||uj ||

√
d
) √

T
)
.

For simplicity, we shall assume that ||uj || = 1 for all

j = 1, . . . ,m. Now, a more careful analysis exploiting

our assumption about the randomness of it (see the sup-

plementary material) reveals that one can replace the
√
T

term contributed by each bandit j by a term of the form
√
T

(
1
m +

√
|Vj |
n

)
, so that under our assumptions the ref-

erence bound becomes

T∑

t=1

rt = Õ

((
σ d+

√
d
)√

T
(
1 +

m∑

j=1

√
|Vj |
n

))
. (1)

Observe the dependence of this bound on the size of clus-

ters Vj . The worst-case scenario is when we have m clus-

ters of the same size n
m , resulting in the bound

∑T
t=1 rt = Õ

((
σ d+

√
d
) √

mT
)

.

At the other extreme lies the easy case when we have

a single big cluster and many small ones. For instance,

|V1| = n − m + 1, and |V2| = |V3| = . . . |Vm| = 1, for

m << n, gives

∑T
t=1 rt = Õ

((
σ d+

√
d
) √

T
(
1 + m√

n

))
.

A relevant geometric parameter of the set of uj is the sum

of distances SD(uj) of a given vector uj w.r.t. the set

of vectors u1, . . . ,um, which we define as SD(uj) =∑m
ℓ=1 ||uj − uℓ||. If it is known that SD(uj) is small

for all j, one can modify the abovementioned independent

3 The Õ-notation hides logarithmic factors.

bandit algorithm, by letting the bandits share signals, as is

done, e.g., in (Cesa-Bianchi et al., 2013). This allows one

to exploit the vicinity of the uj vectors, and roughly replace

1+
∑m

j=1

√
|Vj |
n in (1) by a quantity also depending on the

mutual distances ||uj −uj′ || among cluster vectors. How-

ever, this improvement is obtained at the cost of a substan-

tial increase of running time (Cesa-Bianchi et al., 2013). In

our analysis (Theorem 1 in Section 3), we would like to

leverage both the geometry of the clusters, as encoded by

vectors uj , and the relative size |Vj | of the clusters, with no

prior knowledge of m (or γ), and without too much extra

computational burden.

3. The Algorithm

Our algorithm, called Cluster of Bandits (CLUB), is de-

scribed in Figure 1. In order to describe the algorithm

we find it convenient to re-parameterize the problem de-

scribed in Section 2, and introduce n parameter vectors

u1,u2, . . . ,un, one per node, where nodes within the same

cluster Vj share the same vector. An illustrative example is

given in Figure 2.

The algorithm maintains at time t an estimate wi,t for vec-

tor ui associated with user i ∈ V . Vectors wi,t are up-

dated based on the payoff signals, similar to a standard

linear bandit algorithm (e.g., (Chu et al., 2011)) operating

on the context vectors contained in Cit . Every user i in

V hosts a linear bandit algorithm like the one described

in (Cesa-Bianchi et al., 2013). One can see that the pro-

totype vector wi,t is the result of a standard linear least-

squares approximation to the corresponding unknown pa-

rameter vector ui. In particular, wi,t−1 is defined through

the inverse correlation matrix M−1
i,t−1, and the additively-

updated vector bi,t−1. Matrices Mi,t are initialized to the

d × d identity matrix, and vectors bi,t are initialized to

the d-dimensional zero vector. In addition, the algorithm

maintains at time t an undirected graph Gt = (V,Et)
whose nodes are precisely the users in V . The algo-

rithm starts off from the complete graph, and progressively

erases edges based on the evolution of vectors wi,t. The

graph is intended to encode the current partition of V by

means of the connected components of Gt. We denote by

V̂1,t, V̂2,t, . . . , V̂mt,t the partition of V induced by the con-

nected components of Gt. Initially, we have m1 = 1 and

V̂1,1 = V . The clusters V̂1,1, V̂2,t, . . . , V̂mt,t (henceforth

called the current clusters) are indeed meant to estimate the

underlying true partition V1, V2, . . . , Vm, henceforth called

the underlying or true clusters.

At each time t = 1, 2, . . . , the algorithm receives the index

it of the user to serve, and the associated context vectors

xt,1, . . . ,xt,ct (the set Cit ), and must select one among

them. In doing so, the algorithm first determines which

cluster (among V̂1,1, V̂2,t, . . . , V̂mt,t) node it belongs to,

call this cluster V̂ĵt,t
, then builds the aggregate weight vec-
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Input: Exploration parameter α > 0; edge deletion parameter
α2 > 0
Init:

• bi,0 = 0 ∈ R
d and Mi,0 = I ∈ R

d×d, i = 1, . . . n;

• Clusters V̂1,1 = V , number of clusters m1 = 1;

• Graph G1 = (V,E1), G1 is connected over V .

for t = 1, 2, . . . , T do
Set wi,t−1 = M−1

i,t−1bi,t−1, i = 1, . . . , n;

Receive it ∈ V , and get context Cit = {xt,1, . . . ,xt,ct};

Determine ĵt ∈ {1, . . . ,mt} such that it ∈ V̂ĵt,t
, and set

M̄ĵt,t−1
= I +

∑

i∈V̂
ĵt,t

(Mi,t−1 − I),

b̄ĵt,t−1
=

∑

i∈V̂
ĵt,t

bi,t−1,

w̄ĵt,t−1
= M̄

−1

ĵt,t−1
b̄ĵt,t−1

;

Set kt = argmax
k=1,...,ct

(
w̄

⊤

ĵt,t−1
xt,k + CBĵt,t−1

(xt,k)
)
,

CBj,t−1(x) = α

√
x⊤M̄−1

j,t−1x log(t+ 1),

M̄j,t−1 = I +
∑

i∈V̂j,t

(Mi,t−1 − I) , j = 1, . . . ,mt .

Observe payoff at ∈ [−1, 1];
Update weights:

• Mit,t = Mit,t−1 + x̄tx̄
⊤
t ,

• bit,t = bit,t−1 + atx̄t,

• Set Mi,t = Mi,t−1, bi,t = bi,t−1 for all i 6= it ;

Update clusters:

• Delete from Et all (it, ℓ) such that

||wit,t−1 −wℓ,t−1|| > C̃Bit,t−1 + C̃Bℓ,t−1 ,

C̃Bi,t−1 = α2

√
1 + log(1 + Ti,t−1)

1 + Ti,t−1

,

Ti,t−1 = |{s ≤ t− 1 : is = i}|, i ∈ V ;

• Let Et+1 be the resulting set of edges, set
Gt+1 = (V,Et+1), and compute associated clusters

V̂1,t+1, V̂2,t+1, . . . , V̂mt+1,t+1 .

end for

Figure 1. Pseudocode of the CLUB algorithm. The confidence

functions CBj,t−1 and C̃Bi,t−1 are simplified versions of their

“theoretical” counterparts TCBj,t−1 and T̃CBi,t−1, defined later

on. The factors α and α2 are used here as tunable parameters that

bridge the simplified versions to the theoretical ones.

tor w̄ĵt,t−1 by taking prior x̄s, s < t, such that is ∈ V̂ĵt,t
,

and computing the least squares approximation as if all

nodes i ∈ V̂ĵt,t
have been collapsed into one. It is weight

vector w̄ĵt,t−1 that the algorithm uses to select kt. In par-

ticular,

kt = argmax
k=1,...,ct

(
w̄

⊤
ĵt,t−1

xt,k + CBĵt,t−1(xt,k)
)

.

The quantity CBĵt,t−1(x) is a version of the upper confi-

dence bound in the approximation of w̄ĵt,t−1 to a suitable

combination of vectors ui, i ∈ V̂ĵt,t
– see the supplemen-

tary material for details.

Once this selection is done and the associated payoff at
is observed, the algorithm uses the selected vector x̄t for

updating Mit,t−1 to Mit,t via a rank-one adjustment, and

for turning vector bit,t−1 to bit,t via an additive update

whose learning rate is precisely at. Notice that the up-

date is only performed at node it, since for all other i 6= it
we have wi,t = wi,t−1. However, this update at it will

also implicitly update the aggregate weight vector w̄ĵt+1,t

associated with cluster V̂ĵt+1,t+1 that node it will hap-

pen to belong to in the next round. Finally, the cluster

structure is possibly modified. At this point CLUB com-

pares, for all existing edges (it, ℓ) ∈ Et, the distance

||wit,t−1−wℓ,t−1|| between vectors wit,t−1 and wℓ,t−1 to

the quantity C̃Bit,t−1+C̃Bℓ,t−1 . If the above distance is sig-

nificantly large (and wit,t−1 and wℓ,t−1 are good approx-

imations to the respective underlying vectors uit and uℓ),

then this is a good indication that uit 6= uℓ (i.e., that node

it and node ℓ cannot belong to the same true cluster), so that

edge (it, ℓ) gets deleted. The new graph Gt+1, and the in-

duced partitioning clusters V̂1,t+1, V̂2,t+1, . . . , V̂mt+1,t+1,

are then computed, and a new round begins.

3.1. Implementation

In implementing the algorithm in Figure 1, the reader

should bear in mind that we are expecting n (the num-

ber of users) to be quite large, d (the number of features

of each item) to be relatively small, and m (the number

of true clusters) to be very small compared to n. With

this in mind, the algorithm can be implemented by stor-

ing a least-squares estimator wi,t−1 at each node i ∈ V ,

an aggregate least squares estimator w̄ĵt,t−1 for each cur-

rent cluster ĵt ∈ {1, . . . ,mt}, and an extra data-structure

which is able to perform decremental dynamic connectiv-

ity. Fast implementations of such data-structures are those

studied by (Thorup, 1997; Kapron et al., 2013) (see also

the research thread referenced therein). One can show (see

the supplementary material) that in T rounds we have an

overall (expected) running time

O
(
T
(
d2 +

|E1|
n

d
)
+m (nd2 + d3) + |E1|

+min{n2, |E1| log n}+
√
n |E1| log2.5 n

)
. (2)

Notice that the above is n · poly(log n), if so is |E1|. In

addition, if T is large compared to n and d, the average

running time per round becomes O(d2 + d · poly(log n)).
As for memory requirements, this implementation takes

O(nd2 + md2 + |E1|) = O(nd2 + |E1|). Again, this

is n · poly(log n) if so is |E1|.
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3.2. Regret Analysis

Our analysis relies on the high probability analysis con-

tained in (Abbasi-Yadkori et al., 2011) (Theorems 1 and 2

therein). The analysis (Theorem 1 below) is carried out in

the case when the initial graph G1 is the complete graph.

However, if the true clusters are sufficiently large, then we

can show (see Remark 4) that a formal statement can be

made even if we start off from sparser random graphs, with

substantial time and memory savings.

The analysis actually refers to a version of the algo-

rithm where the confidence bound functions CBj,t−1(·)
and C̃Bi,t−1 in Figure 1 are replaced by their “theoreti-

cal” counterparts TCBj,t−1(·), and T̃CBi,t−1, respectively,4

which are defined as follows. Set for brevity

Aλ(T, δ)=

(
λT

4
−8 log

(T + 3

δ

)
−2

√
T log

(T + 3

δ

))

+

where (x)+ = max{x, 0}, x ∈ R. Then, for j =
1, . . . ,mt,

TCBj,t−1(x) =
√
x⊤M̄−1

j,t−1x

(
σ

√
2 log

|M̄j,t−1|
δ/2

+ 1

)
,

(3)

being | · | the determinant of the matrix at argument, and,

for i ∈ V ,

T̃CBi,t−1 =
σ
√
2d log t+ 2 log(2/δ) + 1√
1 +Aλ(Ti,t−1, δ/(2nd))

. (4)

Recall the difference between true clusters V1, . . . , Vm and

current clusters V̂1,t, . . . , V̂mt,t maintained by the algo-

rithm at time t. Consistent with this difference, we let

G = (V,E) be the true underlying graph, made up of the m
disjoint cliques over the sets of nodes V1, . . . , Vm ⊆ V , and

Gt = (V,Et) be the one kept by the algorithm – see again

Figure 2 for an illustration of how the algorithm works. The

following is the main theoretical result of this paper,5 where

additional conditions are needed on the process X generat-

ing the context vectors.

Theorem 1. Let the CLUB algorithm of Figure 1 be

run on the initial complete graph G1 = (V,E1), whose

nodes V = {1, . . . , n} can be partitioned into m clusters

V1, . . . , Vm where, for each j = 1, . . . ,m, nodes within

cluster Vj host the same vector uj , with ||uj || = 1 for

j = 1, . . . ,m, and ||uj − uj′ || ≥ γ > 0 for any j 6= j′.
Denote by vj = |Vj | the cardinality of cluster Vj . Let the

CBj,t(·) function in Figure 1 be replaced by the TCBj,t(·)
function defined in (3), and C̃Bi,t be replaced by T̃CBi,t de-

fined in (4). In both TCBj,t and T̃CBi,t, let δ therein be

4 Notice that, in all our notation, index i always ranges over
nodes, while index j always ranges over clusters. Accordingly,
the quantities C̃Bi,t and T̃CBi,t are always associates with node
i ∈ V , while the quantities CBj,t−1(·) and TCBj,t−1(·) are always
associates with clusters j ∈ {1, . . . ,mt}.

5 The proof is provided in the supplementary material.

Figure 2. A true underlying graph G = (V,E) made up of n =
|V | = 11 nodes, and m = 4 true clusters V1 = {1, 2, 3}, V2 =
{4, 5}, V3 = {6, 7, 8, 9}, and V4 = {10, 11}. There are mt =
2 current clusters V̂1,t and V̂2,t. The black edges are the ones

contained in E, while the red edges are those contained in Et \E.

The two current clusters also correspond to the two connected

components of graph Gt = (V,Et). Since aggregate vectors w̄j,t

are build based on current cluster membership, if for instance,

it = 3, then ĵt = 1, so M̄1,t−1 = I +
∑

5

i=1
(Mi,t−1 − I),

b̄1,t−1 =
∑

5

i=1
bi,t−1, and w̄1,t−1 = M̄−1

1,t−1b̄1,t−1.

replaced by δ/10.5. Let, at each round t, context vec-

tors Cit = {xt,1, . . . ,xt,ct} being generated i.i.d. (con-

ditioned on it, ct and all past indices i1, . . . , it−1, pay-

offs a1, . . . , at−1, and sets Ci1 , . . . , Cit−1
) from a random

process X such that ||X|| = 1, E[XX⊤] is full rank,

with minimal eigenvalue λ > 0. Moreover, for any fixed

unit vector z ∈ R
d, let the random variable (z⊤X)2

be (conditionally) sub-Gaussian with variance parameter

ν2 = Vt

[
(z⊤X)2 | ct

]
≤ λ2

8 log(4c) , with ct ≤ c for all t.

Then with probability at least 1 − δ the cumulative regret

satisfies
T∑

t=1

rt=Õ

(
(σ
√
d+ 1)

√
m

(
n

λ2
+
√
T
(
1 +

m∑

j=1

√
vj
λn

))

+

(
n

λ2
+

nσ2 d

λγ2

)
E[SD(uit)] +m

)

=Õ

(
(σ
√
d+ 1)

√
mT

(
1 +

m∑

j=1

√
vj
λn

))
, (5)

as T grows large. In the above, the Õ-notation hides

log(1/δ), logm, log n, and log T factors.

Remark 1. A close look at the cumulative regret bound

presented in Theorem 1 reveals that this bound is made up

of three main terms: The first term is of the form

(σ
√
dm+

√
m)

n

λ2
+m .

This term is constant with T , and essentially accounts for

the transient regime due to the convergence of the minimal

eigenvalues of M̄j,t and Mi,t to the corresponding minimal

eigenvalue λ of E[XX⊤]. The second term is of the form
( n

λ2
+

nσ2 d

λγ2

)
E[SD(uit)] .

This term is again constant with T , but it depends through

E[SD(uit)] on the geometric properties of the set of uj as

well as on the way such uj interact with the cluster sizes

vj . Specifically,
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E[SD(uit)] =
∑m

j=1
vj

n

∑m
j′=1 ||uj − uj′ || .

Hence this term is small if, say, among the m clusters, a

few of them together cover almost all nodes in V (this is

a typical situation in practice) and, in addition, the corre-

sponding uj are close to one another. This term accounts

for the hardness of learning the true underlying clustering

through edge pruning. We also have an inverse dependence

on γ2, which is likely due to an artifact of our analysis. Re-

call that γ is not known to our algorithm. Finally, the third

term is the one characterizing the asymptotic behavior of

our algorithm as T → ∞, its form being just (5). It is in-

structive to compare this term to the reference bound (1)

obtained by assuming prior knowledge of the cluster struc-

ture. Broadly speaking, (5) has an extra
√
m factor,6 and

replaces a factor
√
d in (1) by the larger factor

√
1
λ .

Remark 2. The reader should observe that a similar al-

gorithm as CLUB can be designed that starts off from

the empty graph instead, and progressively draws edges

(thereby merging connected components and associated

aggregate vectors) as soon as two nodes host individ-

ual vectors wi,t which are close enough to one an-

other. This would have the advantage to lean on even

faster data-structures for maintaining disjoint sets (e.g.,

(Cormen et al., 1990)[Ch. 22]), but has also the significant

drawback of requiring prior knowledge of the separation

parameter γ. In fact, it would not be possible to connect

two previously unconnected nodes without knowing some-

thing about this parameter. A regret analysis similar to the

one in Theorem 1 exists, though our current understanding

is that the cumulative regret would depend linearly on
√
n

instead of
√
m. Intuitively, this algorithm is biased towards

a large number of true clusters, rather than a small number.

Remark 3. A data-dependent variant of the CLUB algo-

rithm can be designed and analyzed which relies on data-

dependent clusterability assumptions of the set of users

with respect to a set of context vectors. These data-

dependent assumptions allow us to work in a fixed design

setting for the sequence of context vectors xt,k, and re-

move the sub-Gaussian and full-rank hypotheses regarding

E[XX⊤]. On the other hand, they also require that the

power of the adversary generating context vectors be suit-

ably restricted. See the supplementary material for details.

Remark 4. Last but not least, we would like to stress that

the same analysis contained in Theorem 1 extends to the

case when we start off from a p-random Erdos-Renyi initial

graph G1 = (V,E1), where p is the independent probabil-

ity that two nodes are connected by an edge in G1. Trans-

lated into our context, a classical result on random graphs

due to (Karger, 1994) reads as follows.

6 This extra factor could be eliminated at the cost of having
a higher second term in the bound, which does not leverage the
geometry of the set of uj .

Lemma 1. Given V = {1, . . . , n}, let V1, . . . , Vm be a

partition of V , where |Vj | ≥ s for all j = 1, . . . ,m. Let

G1 = (V,E1) be a p-random Erdos-Renyi graph with p ≥
12 log(6n2/δ)

s−1 . Then with probability at least 1−δ (over the

random draw of edges), all m subgraphs induced by true

clusters V1, . . . , Vm on G1 are connected in G1.

For instance, if |Vj | = β n
m , j = 1, . . . ,m, for some

constant β ∈ (0, 1), then it suffices to have |E1| =

O
(

mn log(n/δ)
β

)
. Under these assumptions, if the initial

graph G1 is such a random graph, it is easy to show that

Theorem 1 still holds. As mentioned in Section 3.1 (Eq. (2)

therein), the striking advantage of beginning with a sparser

connected graph than the complete graph is computational,

since we need not handle anymore a (possibly huge) data-

structure having n2-many items. In our experiments, de-

scribed next, we set p = 3 logn
n , so as to be reasonably

confident that G1 is (at the very least) connected.

4. Experiments

We tested our algorithm on both artificial and freely avail-

able real-world datasets against standard bandit baselines.

4.1. Datasets

Artificial datasets. We firstly generated synthetic datasets,

so as to have a more controlled experimental setting. We

tested the relative performance of the algorithms along

different axes: number of underlying clusters, balanced-

ness of cluster sizes, and amount of payoff noise. We

set ct = 10 for all t = 1, . . . , T , with time horizon

T = 5, 000 + 50, 000, d = 25, and n = 500. For each

cluster Vj of users, we created a random unit norm vec-

tor uj ∈ R
d. All d-dimensional context vectors xt,k have

then been generated uniformly at random on the surface of

the Euclidean ball. The payoff value associated with clus-

ter vector uj and context vector xt,k has been generated

by perturbing the inner product u⊤
j xt,k through an addi-

tive white noise term ǫ drawn uniformly at random across

the interval [−σ, σ]. It is the value of σ that determines the

amount of payoff noise. The two remaining parameters are

the number of clusters m and the clusters’ relative size. We

assigned to cluster Vj a number of users |Vj | calculated as7

|Vj | = n j−z
∑

m
ℓ=1

ℓ−z , j = 1, . . . ,m, with z ∈ {0, 1, 2, 3},

so that z = 0 corresponds to equally-sized clusters, and

z = 3 yields highly unbalanced cluster sizes. Finally, the

sequence of served users it is generated uniformly at ran-

dom over the n users.

LastFM & Delicious datasets. These datasets are ex-

tracted from the music streaming service Last.fm and the

social bookmarking web service Delicious. The LastFM

dataset contains n = 1,892 nodes, and 17,632 items

7 We took the integer part in this formula, and reassigned the
remaining fractionary parts of users to the first cluster.
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(artists). This dataset contains information about the lis-

tened artists, and we used this information to create pay-

offs: if a user listened to an artist at least once the payoff

is 1, otherwise the payoff is 0. Delicious is a dataset with

n = 1,861 users, and 69,226 items (URLs). The payoffs

were created using the information about the bookmarked

URLs for each user: the payoff is 1 if the user bookmarked

the URL, otherwise the payoff is 0.8 These two datasets are

inherently different: on Delicious, payoffs depend on users

more strongly than on LastFM, that is, there are more popu-

lar artists whom everybody listens to than popular websites

which everybody bookmarks. LastFM is a “few hits” sce-

nario, while Delicious is a “many niches” scenario, making

a big difference in recommendation practice. Preprocess-

ing was carried out by closely following previous experi-

mental settings, like the one in (Cesa-Bianchi et al., 2013).

In particular, we only retained the first 25 principal com-

ponents of the context vectors resulting from a tf-idf rep-

resentation of the available items, so that on both datasets

d = 25. We generated random context sets Cit of size

ct = 25 for all t by selecting index it at random over the n
users, then picking 24 vectors at random from the available

items, and one among those with nonzero payoff for user

it.
9 We repeated this process T = 5, 000 + 50, 000 times

for the two datasets.

Yahoo dataset. We extracted two datasets from the one

adopted by the “ICML 2012 Exploration and Exploitation 3

Challenge”10 for news article recommendation. Each user

is represented by a 136-dimensional binary feature vector,

and we took this feature vector as a proxy for the identity

of the user. We operated on the first week of data. Af-

ter removing “empty” users,11 this gave rise to a dataset of

8, 362, 905 records, corresponding to n = 713, 862 distinct

users. The overall number of distinct news items turned

out to be 323, ct changing from round to round, with a

maximum of 51, and a median of 41. The news items

have no features, hence they have been represented as d-

dimensional versors, with d = 323. Payoff values at are

either 0 or 1 depending on whether the logged web system

which these data refer to has observed a positive (click) or

negative (no-click) feedback from the user in round t. We

then extracted the two datasets “5k users” and “18k users”

by filtering out users that have occurred less than 100 times

and less than 50 times, respectively. Since the system’s rec-

ommendation need not coincide with the recommendation

8 Datasets and their full descriptions are available at
www.grouplens.org/node/462.

9 This is done so as to avoid a meaningless comparison: With
high probability, a purely random selection would result in pay-
offs equal to zero for all the context vectors in Cit .

10 https://explochallenge.inria.fr/
11 Out of the 136 Boolean features, the first feature is always

1 throughout all records. We call “empty” the users whose only
nonzero feature is the first feature.

issued by the algorithms we tested, we could only retain

the records on which the two recommendations were in-

deed the same. Because records are discarded on the fly,

the actual number of retained records changes across algo-

rithms, but it is about 50, 000 for the “5k users” version and

about 70, 000 for the “18k users” version.

4.2. Algorithms

We compared CLUB with two main competitors: LinUCB-

ONE and LinUCB-IND. Both competitors are mem-

bers of the LinUCB family of algorithms (Auer, 2002;

Chu et al., 2011; Li et al., 2010; Abbasi-Yadkori et al.,

2011; Cesa-Bianchi et al., 2013). LinUCB-ONE allocates

a single instance of LinUCB across all users (thereby mak-

ing the same prediction for all users), whereas LinUCB-

IND (“LinUCB INDependent”) allocates an independent

instance of LinUCB to each user, thereby making predic-

tions in a fully personalised fashion. Moreover, on the

synthetic experiments, we added two idealized baselines:

a GOBLIN-like algorithm (Cesa-Bianchi et al., 2013) fed

with a Laplacian matrix encoding the true underlying graph

G, and a CLAIRVOYANT algorithm that knows the true

clusters a priori, and runs one instance of LinUCB per clus-

ter. Notice that an experimental comparison to multitask-

like algorithms, like GOBLIN, or to the idealized algorithm

that knows all clusters beforehand, can only be done on

the artificial datasets, not in the real-world case where no

cluster information is available. On the Yahoo dataset, we

tested the featureless version of the LinUCB-like algorithm

in (Cesa-Bianchi et al., 2013), which is essentially a ver-

sion of the UCB1 algorithm of (Auer et al., 2001). The cor-

responding ONE and IND versions are denoted by UCB-

ONE and UCB-IND, respectively. On this dataset, we also

tried a single instance of UCB-V (Audibert et al., 2009)

across all users, the winner of the abovementioned ICML

Challenge. Finally, all algorithms have also been compared

to the trivial baseline (denoted by RAN) that picks the item

within Cit fully at random.

As for parameter tuning, CLUB was run with p = 3 logn
n ,

so as to be reasonably confident that the initial graph is

at least connected. In fact, after each generation of the

graph, we checked for its connectedness, and repeated

the process until the graph happened to be connected.12

All algorithms (but RAN) require parameter tuning: an

exploration-exploitation tradeoff parameter which is com-

mon to all algorithms (in Figure 1, this is the α param-

eter), and the edge deletion parameter α2 in CLUB. On

the synthetic datasets, as well as on the LastFM and De-

licious datasets, we tuned these parameters by picking the

best setting (as measured by cumulative regret) after the

first t0 = 5, 000 rounds, and then sticked to those values

12 Our results are averaged over 5 random initial graphs, but
this randomness turned out to be a minor source of variance.
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Figure 3. Results on synthetic datasets. Each plot displays the be-

havior of the ratio of the current cumulative regret of the algorithm

(“Alg”) to the current cumulative regret of RAN, where “Alg” is

either “CLUB” or “LinUCB-IND” or “LinUCB-ONE” or “GOB-

LIN”or “CLAIRVOYANT”. In the top two plots cluster sizes are

balanced (z = 0), while in the bottom two they are unbalanced

(z = 2).

for the remaining T − t0 = 50, 000 rounds. It is these

50, 000 rounds that our plots refer to. On the Yahoo dataset,

this optimal tuning was done within the first t0 = 100, 000
records, corresponding to a number of retained records be-

tween 4, 350 and 4, 450 across different algorithms.

4.3. Results

Our results are summarized in13 Figures 3, 4, and 5. On the

synthetic datasets (Figure 3) and the LastFM and Delicious

datasets (Figure 4) we measured the ratio of the cumulative

regret of the algorithm to the cumulative regret of the ran-

dom predictor RAN (so that the lower the better). On the

synthetic datasets, we did so under combinations of num-

ber of clusters, payoff noise, and cluster size balancedness.

On the Yahoo dataset (Figure 5), because the only available

payoffs are those associated with the items recommended

in the logs, we instead measured the Clickthrough Rate

(CTR), i.e., the fraction of times we get at = 1 out of the

number of retained records so far (so the higher the better).

This experimental setting is in line with previous ones (e.g.,

(Li et al., 2010)) and, by the way data have been prepared,

gives rise to a reliable estimation of actual CTR behavior

under the tested experimental conditions (Li et al., 2011).

Based on the experimental results, some trends can be

spotted: On the synthetic datasets, CLUB always out-

performs its uninformed competitors LinUCB-IND and

LinUCB-ONE, the gap getting larger as we either decrease

the number of underlying clusters or we make the clusters

sizes more and more unbalanced. Moreover, CLUB can

13Further plots can be found in the supplementary material.
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Figure 4. Results on the LastFM (left) and the Delicious (right)

datasets. The two plots display the behavior of the ratio of the

current cumulative regret of the algorithm (“Alg”) to the cur-

rent cumulative regret of RAN, where “Alg” is either “CLUB”

or “LinUCB-IND” or “LinUCB-ONE”.
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Figure 5. Plots on the Yahoo datasets reporting Clickthrough Rate

(CTR) over time, i.e., the fraction of times the algorithm gets pay-

off one out of the number of retained records so far.

clearly interpolate between these two competitors taking, in

a sense, the best of both. On the other hand (and unsurpris-

ingly), the informed competitors GOBLIN and CLEAR-

VOYANT outperform all uninformed ones. On the “few

hits” scenario of LastFM, CLUB is again outperform-

ing both of its competitors. However, this is not happen-

ing in the “many niches” case delivered by the Delicious

dataset, where CLUB is clearly outperformed by LinUCB-

IND. The proposed alternative of CLUB that starts from an

empty graph (Remark 2) might be an effective alternative

in this case. On the Yahoo datasets we extracted, CLUB

tends to outperform its competitors, when measured by

CTR curves, thereby showing that clustering users solely

based on past behavior can be beneficial. In general, CLUB

seems to benefit from situations where it is not immediately

clear which is the winner between the two extreme solu-

tions (Lin)UCB-ONE and (Lin)UCB-IND, and an adaptive

interpolation between these two is needed.
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