Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs

Fabian Gieseke

FABIAN.GIESEKE @DIKU.DK

Department of Computer Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

Justin Heinermann

JUSTIN.HEINERMANN @ INFORMATIK.UNI-OLDENBURG.DE

Department of Computing Science, University of Oldenburg, Uhlhornsweg 84, 26111 Oldenburg, Germany

Cosmin Oancea

COSMIN.OANCEA @DIKU.DK

Department of Computer Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

Christian Igel

IGEL @DIKU.DK

Department of Computer Science, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark

Abstract

We present a new approach for combining
k-d trees and graphics processing units for near-
est neighbor search. It is well known that a di-
rect combination of these tools leads to a non-
satisfying performance due to conditional com-
putations and suboptimal memory accesses. To
alleviate these problems, we propose a variant
of the classical k-d tree data structure, called
buffer k-d tree, which can be used to reorganize
the search. Our experiments show that we can
take advantage of both the hierarchical subdivi-
sion induced by k-d trees and the huge computa-
tional resources provided by today’s many-core
devices. We demonstrate the potential of our ap-
proach in astronomy, where hundreds of million
nearest neighbor queries have to be processed.

1. Introduction

Finding the nearest neighbors for a query object is funda-
mental in data analytics. Given both a large reference and
query set, however, the involved nearest neighbor compu-
tations can quickly become a bottleneck. Depending on the
particular learning task at hand (e.g., the size of the refer-
ence/query set or the dimensionality of the input space),
various techniques can be used to accelerate the search.
Prominent examples are spatial data structures such as k-d
and cover trees (Bentley, 1975; Beygelzimer et al., 2006)
or locality-sensitive hashing (Indyk & Motwani, 1998).

Proceedings of the 31°" International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

A recent trend is to resort to graphics processing
units (GPUS) for accelerating the search (Cayton, 2012;
Garcia et al., 2010; Pan & Manocha, 2011). One way to
utilize such devices is to parallelize the search over the
query points in a brute-force manner, which can lead to
significant speed-ups. In low-dimensional feature spaces,
however, the performance gain over spatial search struc-
tures vanishes with increasing data set sizes. Therefore, a
desirable goal is to combine the benefits of both worlds.

A typical parallel k-d tree implementation assigns one
thread to each query and all threads traverse the tree simul-
taneously. While such a scheme performs well on multi-
core machines, it is ill-suited for GPU execution since
each query may induce a completely different tree traver-
sal. This results in both branch divergence and irregular,
prohibitively expensive accesses to global memory (negat-
ing much of the potential benefits of using a k-d tree).

This work presents a general purpose computation on
graphics processing units (GPGPU) solution to exact near-
est neighbor search in Euclidean spaces. Our approach re-
lies on a memory-centric (Oancea et al., 2009; Shuf et al.,
2002) refinement of a classical k-d tree, which we name
buffer k-d tree, and enables an effective, massively-parallel
processing of huge amounts of queries. Each leaf of the
new tree structure corresponds to a set of reference patterns
and uses a buffer to delay the processing of the queries
reaching that leaf until enough work has been gathered.
Processing all buffered queries is performed in a brute-
force manner. Here, we take advantage of the fact that the
queries collected in the same buffer are compared with the
same pattern in the same block-wide SIMD (single instruc-
tion, multiple data) instruction, and such memory accesses
are effectively supported by today’s GPUS via hardware
caches (Jia et al., 2012).

Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs

Our approach is memory-centric in the sense that it re-
organizes the program’s control flow to improve locality
of reference.! The experimental evaluation, conducted on
a commodity CPU+GPU system, demonstrates a signifi-
cant performance gain of our approach over a brute-force
GPU scheme (2-55x) and a multi-threaded k-d tree im-
plementation (5—34), given manually tuned CPU k-d tree
heights (and using all four cores). Our approach is suitable
for applications that permit “lazy querying” (i.e., in cases
where an increase of response latency for single test pat-
terns is not harmful), for example when a large batch of
test queries needs to be processed.

2. Background

We briefly sketch k-d tree-based and parallel nearest neigh-
bor search (see Andoni & Indyk, 2008, for other schemes).

2.1. Revisited: Nearest Neighbors via k-d-Trees

A k-d tree (Bentley, 1975; Friedman et al., 1977) for a set
P = {x,...,x,} C R? of reference points is a balanced
binary tree. The root of the tree corresponds to all points
and its two children represent disjoint (almost) equal-sized
subsets of P. Splitting up the points into subsets is done
in a level-wise manner, starting from the root (at level 0)
down to the leaves. For a given node v at level ¢, the points
associated with v are split into two halves by resorting to
the median in dimension ¢ mod d (other splitting rules may
also be applied). The recursive construction ends as soon as
anode v corresponds to a singleton or to a set of predefined
size. A k-d tree can be constructed in O(nlogn) time via
linear-time median-finding and occupies linear space.

The nearest neighbor search makes use of the hierarchical
subdivision induced by the tree: Let q € R? be a query
point. To find its nearest neighbor in P (the generalization
to k > 1 neighbors is straightforward), one traverses the
tree in two phases. In the first phase, one navigates down
from top to bottom to find the d-dimensional box that con-
tains q (using the median values stored in the nodes). By
computing the distances between q and all points stored in
the associated leaf, one can identify an initial nearest neigh-
bor candidate. In the second phase, one traverses the tree
from bottom to top, and on the way back to the root, one
checks if neighboring boxes potentially contain points that
are closer to q as the current best candidate (using the me-
dian values). In case a point might be closer, one recurses
to the subtree that has not yet been visited.

For low-dimensional spaces, a small number of leaf visits is
often enough (yielding a logarithmic runtime). The perfor-

'This is also related to I/O-efficient algorithms (Aggarwal
& Vitter, 1988; Brodal & Fagerberg, 2002), which gather large
amounts of data items before invoking a memory transfer.

mance can, however, significantly decrease with increasing
d due to the curse of dimensionality (Hastie et al., 2009).

2.2. Nearest Neighbor Search on GPUs

Nowadays GPUSsS offer massive parallelism (e.g., 2048
cores). They rely on a simplified control unit and an ex-
plicitly programmable memory hierarchy, in which global
memory is up to 100x slower than, e.g., local memory.
Two memory access patterns can lead to smaller latencies:
The first one corresponds to coalesced accesses, in which,
informally, groups of threads access consecutive memory
locations. The second one is caching, which is given when
a group of consecutive threads (repeatedly) accesses nearby
memory locations; such memory operations can effectively
be accelerated using hardware caches (Jia et al., 2012).

Most of the work on computing nearest neighbors us-
ing GPUS so far has focused on the domain of computer
graphics (e.g., on ray tracing) with data structures that
are adapted to the specific needs of such tasks (Popov
et al., 2007; Zhou et al., 2008; Wald & Havran, 2006;
Horn et al., 2007). For the more general task of nearest
neighbor search in higher dimensions (e.g., R'?), only few
schemes have been proposed: A direct way is to parallelize
the search over the query points. This approach, followed
by Garcia et al. (2010), offers a tremendous speed-up given
medium-sized data sets. However, it fails for large-scale
settings with both many reference and query points. Pan
& Manocha (2011) propose an efficient GPU implemen-
tation of locality-sensitive hashing, which is also applica-
ble to large-scale settings, but possibly yields inexact an-
swers (as its sequential analog). Other schemes are based
on the efficient use of texture memory or on adapted sorting
schemes (Bustos et al., 2006; Sismanis et al., 2012).

Some k-d tree-based methods have been proposed for,
e.g., the computation of forces between particles (Qiu
et al., 2009; Wang & Cao, 2010; Heinermann et al., 2013;
Nakasato, 2012). However, these schemes are designed
for—and limited to—very low-dimensional feature spaces
such as R? or R* and are conceptually very different from
our framework. The approach most related to our work
is given by Cayton (2012) and is based on a random ball
cover data structure. Similarly to k-d trees, this data struc-
ture induces a subdivision of the search space (into d-
dimensional balls), which can be used to accelerate the
search. In contrast to our work, however, no associated
tree structure is employed for guiding the pruning process.

Hence, except for the tree-based schemes mentioned above,
all approaches either provide efficient but possibly inexact
answers or address special instances (e.g., small d or n).
Note that other parallel schemes (not using GPUS) have
been proposed such as “distributed” k-d trees, which can
be queried in a map-reduce manner (Aly et al., 2011).

Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs

input reinsert

RS 4 < (LTI

v

top tree

buffers

Vv vy vV v

(PROCESSALLBUFFERS]

Ao e O

leaf structure | | | |

Figure 1. A buffer k-d tree: In each iteration, the procedure FIND-
LEAFBATCH removes query indices from both queues and dis-
tributes them to the buffers (or removes them if no further process-
ing is needed). In case enough work has been gathered, the proce-
dure PROCESSALLBUFFERS is invoked, which updates the near-
est neighbors and reinserts all query indices into reinsert. The
process stops as soon as both queues and all buffers are empty.

3. Algorithmic Framework

The basis for the reorganized querying process is the con-
cept of buffer k-d trees, which we describe next.

3.1. Buffer k-d Trees

A buffer k-d tree is composed of four parts: (1) a top tree,
(2) a leaf structure, (3) a set of buffers (one buffer per leaf
of the top tree), and (4) two input queues, see Figure 1.

The top tree consists of the first & levels of a standard
k-d tree (i.e., its median values), laid out in memory in a
pointer-less manner (the root is stored at index 0 and the
children of a node v with index ¢ are stored at indices 2¢
and 2¢ + 1, respectively). During the construction of the
top tree, all patterns are ordered in-place w.r.t. the median
values such that all points of a leaf are stored consecutively
in memory.”> The leaf structure consists of blocks and stores
all rearranged patterns. The blocks are in a one-to-one cor-
respondence with the leaves of the top tree. Again, no
pointers are needed to link the blocks with their associated
leaves (the block of leaf i is stored at index 7 — (2" — 1)).
In addition to the rearranged patterns, two integer variables

2We keep track of the original order (needed for reporting the
nearest neighbors) by using an additional array of original indices
that is sorted simultaneously in each step.

Algorithm 1 LAZYPARALLELNN

Require: A chunk Q = {qi,...,qm} C R? of query points.
Ensure: The k£ > 1 nearest neighbors for each query point.
1: Construct buffer k-d tree 7 for P = {x,...,x,} C R%
2: Initialize queue input with all m query indices.
3: while either input or reinsert is non-empty do
4 Fetch M indices i1, ...,in from reinsert and input.
5: ri,...,7a = FINDLEAFBATCH(?1, ..., %0:)
6: forj=1,...,M do
7
8

if r; # —1 then
: Insert index ¢; in buffer associated with leaf ;.
9: end if
10: end for
11: if at least one buffer is half-full (or queues empty) then

12: l1,...,ln = PROCESSALLBUFFERS()
13: Insertly,...,lN into reinsert.
14: endif

15: end while
16: return list of k nearest neighbors for each query point.

are stored in each block to indicate the leaf/block bounds.

The third component consists of buffers, one buffer for each
leaf of the top tree. These buffers will be used to store query
indices and can accommodate a predefined number B > 1
of integers each. In addition, a variable that determines
the filling status is stored for each buffer. Finally, we allo-
cate space for two (first-in-first-out) queues of size m. The
height of the buffer k-d tree is given by the height of its top
tree (h = 0,1,...) and B denotes its buffer size.

Proposition 1. A buffer k-d tree of height h for a set
P = {x,...,x,} C R? of reference and a chunk Q =
{dq,...,am} C R? of query points uses O(2"*1) addi-
tional floats and O(n + m + 2" B) additional integers. It
can be constructed in O(hn) C O(nlogn) time.

Since the height of the buffer k-d tree will be reasonably
small (e.g., h = 8), the space overhead is negligible
(and mainly dominated by the space for the buffers, which
can further be reduced via dynamic memory allocation).
Buffer k-d trees can be adapted to support the insertion and
deletion of reference patterns (as k-d trees by, e.g., reserv-
ing more space as initially needed for the leaf structure).

3.2. Lazy Parallel Nearest Neighbor Search

We are now ready to describe the reformulation of the tree-
based search: The main idea is to “delay” the querying
process by performing several iterations. In each iteration,
query indices are propagated through the top tree and are
stored in the corresponding buffers. As soon as the buffers
get full, all collected nearest neighbor queries are processed
at a single blow. This essentially leads to a separation of
the two main phases of the classical k-d tree-based search:
(1) finding the leaf that needs to be processed next and (2)
updating the nearest neighbors. The first phase cannot be
parallelized easily on GPUS. However, the second one is

Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs

Algorithm 2 FINDLEAFBATCH

Algorithm 3 PROCESSALLBUFFERS

Require: A sequence i1, ...,im € {1,...,m} of query indices.
Ensure: A sequence 1, . .., 7 of leaf indices.
1: forall i1, ..., iy process k-d tree in parallel
2: Initialize stack for ¢; (that stems from the previous call)
3: Find next leaf index 7; for ¢; (-1 if root is reached twice).
4: end for
5: returnri, ..., "M

much more amenable to such devices—and constitutes by
far the most significant part of the overall runtime.

3.2.1. WORKFLOW: LAZY QUERYING

The modified workflow is shown in Algorithm 1: In the
preprocessing phase, a buffer k-d tree T is constructed for
the set P of reference points (Step 1). After initializing
the queue input with all query indices (Step 2), the itera-
tive process is started. In the first phase of each iteration, a
large (user-defined) number M of indices is removed from
both queues, where indices are only removed from input
if reinsert is empty (Step 4). Afterwards, one invokes
the procedure FINDLEAFBATCH (Algorithm 2) to obtain,
for each of these query indices, the corresponding leaf that
needs to be processed next (Step 5). This procedure es-
sentially simulates the (original) recursive tree traversal by
keeping explicitly track of a recursion stack for each query
index.? In case such an associated tree traversal has reached
the root (and both subtrees have been visited), the query
index has been processed completely and can be removed
from the overall process. All other indices are moved into
the appropriate buffers (Steps 6-10).

In the second phase, all buffers are processed. In case one
of the buffers has reached a certain filling status (e.g., half-
full), the procedure PROCESSALLBUFFERS (Algorithm 3)
is invoked, which empties all buffers and updates, for each
query index being removed, the associated list of nearest
neighbors found so far (Step 12). This is accomplished in
a brute-force manner by comparing the query with all ref-
erence patterns of the associated block of the leaf structure.
Afterwards, all indices [q,...,Iy taken from the buffers
are inserted into reinsert (Step 13). The overall pro-
cess stops as soon as no indices are left in both queues and
the buffers (in practice, a brute-force step is applied as soon
as the total number of remaining indices is small enough).

3.2.2. PROCESSING TIME

To sum up, we do not process all queries separately, but
split the search process into two phases each handling large
chunks of indices. Keeping track of the current “tree traver-
sals” is achieved by explicitly managing the induced recur-

3A stack of size h is associated with each query index and is
maintained for the duration of that index being alive.

Ensure: A sequence i, ...
1 1=0
2: forj=1,...,2" do

,in € {1,...,m} of query indices.

3: Remove all query indices i1, ..., iy ;) from buffer b;.

4: forallii, ..., ing,;) doin parallel

5: Update nearest neighbors w.r.t. all points in the leaf
associated with the buffer b;.

6: end for

7. I=1&14,... VN (b)) (concatenate indices)

8: end for

9: return

sion stacks. Note that exactly the same leaves are visited
for each query index as for the classical k-d tree traversal.

Proposition 2. Processing qi,...,q, € R? queries via
Algorithm 1 takes the same (asymptotic) runtime as the
original k-d tree-based search (given same tree heights).

Thus, except for a small overhead caused by keeping track
of the query indices, the runtime is the same as for the orig-
inal k-d tree traversal. However, the order of the query in-
dices is changed, i.e., indices belonging to the same leaf are
now processed in chunks, providing data locality.

3.3. GPGPU Implementation

We now sketch our GPGPU implementation and describe,
in detail, the kernel implementation for the procedure PRO-
CESSALLBUFFERS, which usually takes more than 99% of
the total sequential runtime (see Section 4).

3.3.1. MEMORY LAYOUT AND FINDING LEAVES

The buffer k-d tree is built on the host system (CPU),
since the construction time is negligible for processing
huge query sets, and all relevant information is copied to
the GPU. Other than this, the host system is only used (1)
to ensure the flow of query indices between leaf buffers
and the queues input and reinsert, (2) to spawn the
GPU kernels, and (3) to transfer arrays of indices to the
GPU that associate a given query to the training patterns of
its corresponding leaf. It has to be stressed that only indices
are moved between the host and the GPU during the iter-
ative process (the d-dimensional training and test patterns
need to be copied only once). This leads to a negligible
overall cost for memory transfer, see Section 4.

The procedure FINDLEAFBATCH operates on the top tree
to determine, for each query index, the next leaf that may
contain closer neighbors (if such a leaf is found, then the
leaf index is returned, otherwise —1 to signal that the stack
traversal has reached the root twice). Executing the tree
traversal on the GPU exhibits massive flow divergence and
irregular, hence expensive, accesses to memory. To mini-
mize these inefficiencies, we use a relatively small top tree

Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs

Algorithm 4 L.eafNearestNeighbor

Require: float tests([d,N], float trains[n,d],
int 1lbs[N], int ubs[N]

Ensure: float nn_dists[k,N], float nn_inds [k, N]

1: int tid=get_global_id(0);

2: float test_patt[d];

3: float nnds[k]={inf};int nnis[k]={0};

4: int LB=lbs[tid]; int UB=ubs[tid];

5: for i=0...d-1do

6.

7

8

9

: test_patt[i]=tests[i,tid];
: end for
: for t=1LB...UBdo
: float dist=0.0;
10: for j=0...d-1do
11: dist+=(trains([t, j]l-test_patt[jl);
12: end for
13: updateNearestNeighb (dist, t, nnds,nnis);
14: end for
15: for i=0...k-1 do
16: nn_dists[i,tid]l=nnds[i];
17: nn_inds[i,tid]=nnis[i];

18: end for

(e.g., h = 8), which results in a suboptimal but still signif-
icant speed-up over the sequential execution.

3.3.2. CACHED PROCESSING OF BUFFERS

The efficient execution of PROCESSALLBUFFERS is cru-
cial for our approach and implemented via three kernels:

(1) The first kernel (TestSubset) takes the query in-
dices from the buffers to fill (on the GPU) an array
(tests) of consecutive test patterns. The buffers en-
sure that the tests array is inherently sorted w.r.t.
the queries’ associated leaves.* In addition, arrays that
associate each query to the lower and upper indices of
the corresponding leaf training patterns are computed
(named 1bs and ubs). The query indices and these
bounds can be loaded in a coalesced way.

(2) The second kernel (LeafNearestNeighbor)
computes, for each query index, the local k nearest
neighbors within its associated leaf. This kernel ac-
counts for more than 90% of the total runtime of PRO-
CESSALLBUFFERS and is examined in detail below.

(3) The third kernel (Update) merges, for each query
index, the local with the previously known nearest
neighbors (coalesced global memory accesses).

The implementation for the LeafNearestNeighbor
kernel is sketched in Algorithm 4: The arrays tests and
trains hold the test and training patterns in global mem-
ory arrays, respectively. Further, the arrays nn_dists and
nn_inds will be filled with the distances and indices of the
k nearest neighbors for all test indices. Note that tests,
nn_inds, and nn_dists are maintained in transposed

“The alternative would be explicit (bitonic) sorting.

form to achieve coalesced access. Finally, the global arrays
1bs and ubs associate the queries with the leaves (i.e.,
query tid € {0,..., N — 1} has to be compared with the
training patterns from 1bs [tid] to ubs [tid]).

In Steps 5-7, the test pattern is loaded from global to pri-
vate memory. This access is coalesced since the last index
is the global thread id, hence, consecutive threads neces-
sarily access consecutive memory locations. Further uses
of test_patt, stored in private thread memory, exhibit
efficient access. Steps 8—14 compute the distances between
all training patterns and the test pattern, and, if necessary,
update the nearest neighbors. Finally, Steps 15-18 com-
mit the computed nearest neighbors to global memory and
exhibit coalesced accesses.

The accessto trains [t, j] in Step 11 provides the main
motivation for buffer k-d trees: First, the SIMD execution
ensures that threads within a warp have the same value for
j and t. Second, since many consecutive threads operate
on the same leaf, all such threads access nearby memory
locations. Hence, this access pattern exhibits both within-
warp and within-block data locality (Jia et al., 2012) yield-
ing latencies comparable to those of constant memory.’

4. Experiments

Our method speeds up nearest neighbor search in scenarios
with a large amount of training and a huge amount of test
patterns, given input spaces with moderate dimensionality.
This is precisely the setting faced in astronomy, which we
use to demonstrate the applicability of our approach.

4.1. Data Mining in Astronomy

Current projects such as the Sloan Digital Sky Sur-
vey (SDSS) (Ahn et al., 2013) have gathered terabytes of
data for hundreds of million astronomical objects. Upcom-
ing projects will produce these amounts per night (Ivezic
et al., 2011), with final data volumes in the petabyte
range. Machine learning techniques have been identified
as “increasingly essential in the era of data-intensive as-
tronomy” (Borne, 2008) and already led to new discov-
eries (Mortlock et al., 2011). In astronomy, one is often
given a huge amount of patterns (e.g., two billion) in a low-
dimensional feature space (e.g., R'°). For this reason, near-
est neighbor models (Polsterer et al., 2013; Stensbo-Smidt
et al., 2013) are often among the state-of-the-art models.

4.1.1. LARGE-SCALE PHOTOMETRIC CATALOGS

The two most common types of data are photometric and

spectroscopic data (Ahn et al., 2013): The former one es-

*Demand-fetched caches have been recently introduced by
several GPU vendors (e.g., Nvidia GeForce GTX 770).

Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs

sentially corresponds to images obtained at different wave-
length ranges. For a small subset of potentially “interest-
ing” objects (say, a thousandth), time-consuming follow-up
observations in terms of spectra are made. One of the main
challenges is to identify promising photometric targets for
such follow-up observations (needed to verify an object’s
nature). In a typical application, almost all of the spectro-
scopically confirmed data are used to build models, which
are then applied to all remaining objects.® Furthermore,
computing exact answers is important since minor differ-
ences w.r.t. the features are crucial to capture the charac-
teristics of astronomical objects.

While spatial search techniques are well-suited for this
task, the application of the final model can still easily take
hours (or even days) on today’s multi-core desktop ma-
chines. In contrast, scanning large amounts of query pat-
terns (i.e., transferring them between disk and main mem-
ory) can be done efficiently due to the data being stored
consecutively (e.g., in minutes only). Thus, reducing the
testing to scanning time is desirable for today’s catalogs,
and will play a crucial role for upcoming catalogs.

4.1.2. FEATURE SPACE DIMENSIONALITY

Given photometric data, one usually extracts a small set
of expressive features, called magnitudes. The basis for
the extraction are five grayscale images obtained through
five filters (u,g,r,1,z) for each observed region (SDSS).
The most established extraction schemes are the point-
spread-function (pst), the Model (model), and the Pet-
rosian (pet) approaches (Ahn et al., 2013), and the in-
duced features often form the basis for data mining mod-
els. Typical features are the colors, which are differences
of magnitudes. Below, we consider various combinations
of features, see Table 1 (a1l denotes psf, model, pet).

4.2. Experimental Setup

All experiments were conducted on a standard PC with an
Intel (R) Core(TM) 1i7-3770 CPU at 3.40GHz (4
cores, 8 hardware threads), 16GB RAM, and a GeForce
GTX 770 GPU with 1536 shader units (4GB RAM). The
operating system was Ubuntu 12.04 (64 Bit). We re-
port runtimes for the query phase (all tree construction
times are very small and irrelevant in the above scenario).

All algorithms were implemented in C and OpenCL com-
piled using Swig with gcc-4.6.3 and —fopenmp as
additional compiler option; Python was used to set up the
experiments.” For a buffer k-d tree of height h, we fixed

SFor the SDSS (DR 9), this amounts to building models based
on about two million objects, which have then to be applied to all
remaining objects in the catalog (about one billion).

"The code is made publicly available on the authors’ websites.

Table 1. Astronomical Data Sets

DATA SET d FEATURES
psf_colors 4 psffu-g,g-r,r-i,i-z}
psf.mag 5 psf{u,g,r,1i,z}
psfmodel.mag 10 psf,model {u,qg,r,1i,z}
all_mag 15 all{u,g,r,i,z}
all_colors 12 all{u-g,9-r,r-i,i-z}
all 27 allmag,all colors

B = 2227h_ In each iteration of Algorithm 1, M = 5B
indices were fetched from input and reinsert.® We
compared the following implementations:

(1) bufferkdtree (gpu): our approach with FIND-
LEAFBATCH and PROCESSALLBUFFERS on GPU.

(2) bufferkdtree (cpu): acorresponding sequential
CPU variant that only operates on the host system.

(3) kdtree (cpu, i): a multi-core implementation of
a k-d tree-based search, running ¢ threads in parallel
(each handling a single query).

(4) kdtree (gpu): a naive GPU implementation,
which traverses an appropriately built k-d tree in par-
allel (one thread per query).

(5) bruteforce (gpu): a brute-force GPU imple-
mentation that processes all test queries in parallel.

The main baselines are bruteforce (gpu) and
kdtree (cpu, 1) . Both approaches have been evaluated
extensively in the literature, which allows to place the
runtimes reported in a broader context.

4.3. Results
4.3.1. TREE-RELATED EXPERIMENTS

If not stated otherwise, we used psf_colors and
psf.model mag as input data sets and searched for k =
10 nearest neighbors given n = 10° training patterns.

Influence of Tree Heights. For all k-d tree-based ap-
proaches, the height h can significantly influence the run-
ning time. In Figure 2, the runtime behaviors for vary-
ing tree heights are given. For bufferkdtree (gpu),
a smaller tree height was favorable (to be explained be-
low), whereas larger assignments for h led to better run-
times for the other schemes. For classical k-d trees, this
is a well-known behavior since h determines the trade-off
between pruning capability and the overhead for visiting
too many leaves (i.e., many leaf visits vs. the overhead for

8The particular assignment for both parameters did not have a
significant influence as long as reasonable values were chosen. In
rare cases, too many indices are assigned to a single buffer (and
must be reinserted into reinsert without any processing).

Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs

traversing the tree); the naive many-core implementation
kdtree (gpu) exhibited a similar behavior. For the fol-
lowing experiments, we fixed the optimal tree height for
each method.

200 - 500
kdtree(cpu,1) -~y kdtree(cpu,1) ~-x-
kdtree(gpu) --m 400 kdtree(gpu) --m
| bufferkdtree (gpu) —5— _ yfbufferkdtree (gpu) —8—
< 300 >
5, -

...

200

e) o A 100 £ g
0 . - i/i L L S !/!!/EI{

. 0
6 7 & 9 10 11 12 13 14 15 16 6 7 & 9 10 11 12 13 14 15 16
h h

(a) (b)

Figure 2. Influence of the tree height h on the runtime for (a)
psf_colors and (b) psf_model mag (n,m = 10%, k = 10).

runtime

Buffering — Caching. The main benefit of the delayed
querying via a buffer k-d tree is the induced locality of the
test and training patterns on the GPU. Note that a simi-
lar “delayed” traversal can also be achieved without any
buffers (by processing M indices in each step being stored
in the same order as they enter the top tree). However, this
way, the data locality is lost, i.e., two consecutive query
indices will, in general, belong to different leaves. This,
in turn, leads to arbitrary global memory accesses for the
training patterns (i.e., no caching).

To investigate the importance of buffering, we compared
the runtimes obtained with and without buffering, see Fig-
ure 3 (a). Obviously, buffering plays a crucial role in this
context: Given arbitrary accesses to global memory of the
GPU led to a significant drop in performance.

200 5
kdtree no_buffers(gpu) o PROCESSALLBUFFERS X

_ bufferkdtree(gpu) —8— 4 || LeafNearestNeighbor ...m
150 TestSubset —8—
) o 23 Update o
£ 100 © g
£ 22
. o g

N 1

0t— _ o 0
2.10° 4-10° 6-10° 8-10° 10-10° 2.10° 4.10°
m

(@ (b)

Figure 3. The importance of buffering test queries is shown in (a).
The runtimes for the different phases of PROCESSALLBUFFERS
are given in (b) (psfmodel mag,n = 105, k = 10, h = 8).

G-10° 8-10° 10-10°
m

Overhead & Speed-Ups. The use of buffer k-d trees
provides a separation of the overall workflow into two
phases: (1) finding the leaves that need to be processed
next and (2) updating the nearest neighbor candidates. In
Figure 4, a comparison between bufferkdtree (cpu)
and bufferkdtree (gpu) is given. Most of the run-
time of bufferkdtree (cpu) was spent for processing
the buffers (>99%), and buf ferkdtree (gpu) yielded
a significant speed-up (about 130) over its CPU analog.

The speed-up was even larger for the PROCESSALL-
BUFFERS phase (about 150), which demonstrates the ef-
ficiency of the corresponding kernel implementation. A
deeper insight into the runtimes for this phase is provided
in Figure 3 (b). It can be seen that the nearest neighbor
search (Algorithm 4) took most of the time; all remaining
steps (e.g., rearranging the test patterns in global memory,
see Section 3.3.2) consumed less than 10% of the time (in
particular, all memory operations between the host and the
GPU took less than 1% of the overall execution).

1000 5

total i total i
800 || PROCESSALLBUFFERS —&— |_| 4 || PROCESSALLBUFFERS —8—
- FINDLEAFBATCH -..@--- FINDLEAFBATCH ---m
z 600 overhead @ L overhead o |
£ 400 2]
3 E/g/ﬁ/‘r R s
200 g =
) iz —s —8- _—. :) . @ R
210> 4-10° 6-10° 8-10° 10-10° 2.10° 4-10° 6-10° 8-10° 10-10°
m m
(@) (b)

Figure 4. Runtimes needed in the different processing phases for
(a) bufferkdtree (cpu) and (b) bufferkdtree (gpu)
given psf_model mag (n = 10%, k = 10, h = 8).

4.3.2. PROBLEM-DEPENDENT PARAMETERS: k & n

Figure 5 shows runtimes for different k£ values: Increasing
k led to more leaf visits/larger runtimes for all tree-based
schemes; the decrease of performance, however, was sim-
ilar (optimal tree heights were selected). The performance
of bruteforce (gpu) was not significantly affected.

100 400

kdtree(cpu,1) -y 350 kdtree(cpu,1) -y
0 kdtree(gpu) ---m 29 kdtree(gpu) --m
© bruteforce(gpu) o 300 bruteforce(gpu) o
60 bufferkdtree(gpu) —8— Z 950 bufferkdtree (gpu) —8—

0 12 14 16 18 20
k

(a) (b)

Figure 5. Runtimes given varying k for (a) psf_colors and (b)
psf.model_mag (n, m = 10°, optimal tree heights k).

10 12 14 16 18 20
k

In Figure 6, runtime results for varying training set sizes n
are shown. To compensate the increase of training patterns,
we adapted the tree heights dynamically.” The performance
of the brute-force scheme decreased significantly for in-
creasing n, whereas all tree-based methods could compen-
sate the increase of n much better.

4.3.3. COMPETITION: MULTI-CORE VS. GPU

A detailed runtime comparison is given in Table 2 for m =

107 test patterns (for all, two chunks of size 5 - 10 were

Given n = 2° patterns, we used h = 2°"12 and h = 2°6 for
bufferkdtree (gpu) and the other schemes, respectively.

Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs

Table 2. Runtime comparison (in seconds) given n = 2 - 10° training and m = 107 test patterns (k = 10; a — indicates that the runtime
was larger than 12 hours; the speed-up of buf ferkdtree (gpu) over its competitors is given in brackets). For all tree-based methods,
the optimal tree heights h were chosen in a preprocessing phase. The highlighted columns indicate feature space dimensions for which
our approach has been developed (for d < 5 specialized solutions exist, and for d >> 20, the tree-based approaches break down).

psf_colors psfmag psfmodel_mag all mag all colors all

d=4) (d=5) (d =10) (d = 15) (d=12) (d=27)
kdtree (cpu, 1) 338 (x24) 259 (x22) 1965 (x55) 12459 (x59) 42314 (x89) -
kdtree (cpu, 2) 173 (x12) 130 (x11) 1012 (x28) 6478 (x31) 22108 (x46) -
kdtree (cpu, 3) 117 (x 8) 91 (x 8) 707 (x20) 5059 (x24) 17724 (x37) -
kdtree (cpu, 4) 92 (x 17) 70 (x 6) 584 (x16) 4639 (x22) 16770 (x35) -
kdtree (cpu, 8) 71 (x 5) 57 (x 5) 527 (x15) 4616 (x22) 16394 (x34) -
bruteforce (gpu) 552 (x39) 664 (x55) 1160 (x32) 1595 (x 8) 1586 (x 3) 3047 (x2)
kdtree (gpu) 73 (x 5) 67 (x 6) 445 (x12) 3050 (x15) 10373 (x22) -
bufferkdtree (gpu) 14 12 36 210 478 1717

100 250
kdtree(cpu,1) -
30 kdtree}()gpu)]
bruteforce(gpu) o
bufferkdtree(gpu) —8—

kdtree(cpu,1) -y
kdtreel;()gpu) n

bruteforce(gpu) o e
bufferkdtree(gpu) —8— |

runtime (s)

(a) (b)
Figure 6. Increasing the number n of training patterns for (a)
psf_colors and (b) psfmodel_mag (m = 105, k = 10).

processed). Two main observations can be made: First,
our bufferkdtree (gpu) scheme yielded a valuable
speed-up for all data sets. This was in particular the case
for psf model mag and all_mag. Here, speed-ups be-
tween 15 and 22 could be obtained compared to the corre-
sponding multi-core implementation (kdtree (cpu, 8)).
Second, our approach was always superior to the (known
to be a strong) bruteforce (gpu) scheme. Even
in higher dimensional feature spaces, our approach
still yielded practical benefits (where all other tree-
based approaches did not yield any performance gain).
Hence, our bufferkdtree (gpu) implementation al-
ways yielded significant performance gains over the multi-
core k-d tree scheme and still provided benefits over
bruteforce (gpu) for feature spaces up to d = 27.

4.3.4. LARGE-SCALE APPLICATION

Our framework can basically handle an arbitrary amount
of test patterns by processing chunks of queries.'® As a fi-
nal experiment, we applied a nearest neighbor model with

10 Another way is to fill the input queue “on the fly” with new
queries (potentially leading to even better runtimes at the cost of
increased latency for certain queries). In this case, completely
processed query patterns need to be removed from the GPU’s
global memory to release sufficient resources.

n = 2 - 10° training patterns to the whole SDSS catalog
(DR 9) with a total amount of m ~ 1178 million test pat-
terns (using psf_model _mag and k£ = 10). One core of
the CPU was used to parse the data, while a second one and
the GPU were used for buf ferkdtree (gpu) . The test
patterns were processed in chunks of size 107. The over-
all runtime needed to apply the model was 4639 seconds
(about 39 seconds per chunk on average), which is in line
with the results reported in Table 2. The memory consump-
tion was dominated by the space needed to accommodate
the training and test patterns as well as to keep track of the
nearest neighbors (distances and indices). On the GPU, a
maximum amount of 3GB was allocated during the execu-
tion of each chunk for this experiment (all resources were
released after the completion of a single chunk).

5. Conclusions

We proposed the concept of a buffer k-d tree for efficient
k-d tree-based nearest neighbor search on GPUS. The
method is designed for processing huge amounts of queries
in R? with d larger than 4 and up to ~ 25. The key idea
is to reorganize the querying process such that queries be-
longing to the same leaf are processed in batches. As both
the training and the query patterns reside consecutively in
memory, the processing is much more amenable to an ef-
ficient GPU implementation. The principle of achieving
“data locality” can be found in other fields such as memory-
centric or I/O-efficient algorithms, but is new for GPU-
based nearest neighbor search and may be also useful for
other tree structures. The experimental results obtained on
various astronomical data sets clearly demonstrate a signif-
icant performance gain over competing methods.

Acknowledgements. FG acknowledges support from the
German Academic Exchange Service and CI from The
Danish Council for Independent Research (SkyML project).

Buffer k-d Trees: Processing Massive Nearest Neighbor Queries on GPUs

References

Aggarwal, A. and Vitter, J. S. The input/output complexity of
sorting and related problems. Communications of the ACM, 31
(9):1116-1127, 1988.

Ahn, C. P. et al. The tenth data release of the Sloan Dig-
ital Sky Survey: First spectroscopic data from the SDSS-
IIT Apache Point Observatory galactic evolution experiment.
eprint arXiv:1307.7735, 2013.

Aly, M., Munich, M., and Perona, P. Distributed kd-trees for re-
trieval from very large image collections. In Proceedings of the
22nd British Machine Vision Conference. BMVA Press, 2011.

Andoni, A. and Indyk, P. Near-optimal hashing algorithms for
approximate nearest neighbor in high dimensions. Communi-
cations of the ACM, 51(1):117-122, 2008.

Bentley, J. L. Multidimensional binary search trees used for as-
sociative searching. Communications of the ACM, 18(9):509—
517, 1975.

Beygelzimer, A., Kakade, S., and Langford, J. Cover trees for
nearest neighbor. In Proceedings of the 23rd International
Conference on Machine Learning, pp. 97-104. ACM, 2006.

Borne, K. D. Scientific data mining in astronomy. In Next Gen-
eration of Data Mining, pp. 91-114. Chapman and Hall/CRC,
2008.

Brodal, G. S. and Fagerberg, R. Cache oblivious distribution
sweeping. In Proceedings of the 29th International Collo-
quium on Automata, Languages and Programming, pp. 426—
438. Springer, 2002.

Bustos, B., Deussen, O., Hiller, S., and Keim, D. A graphics
hardware accelerated algorithm for nearest neighbor search. In
Computational Science — ICCS 2006, volume 3994 of Lecture
Notes in Computer Science, pp. 196—199. Springer, 2006.

Cayton, L. Accelerating nearest neighbor search on manycore
systems. In Proceedings of the 2012 IEEE 26th International
Parallel and Distributed Processing Symposium, pp. 402—413.
IEEE, 2012.

Friedman, J. H., Bentley, J. L., and Finkel, R. A. An algorithm
for finding best matches in logarithmic expected time. ACM
Transactions on Mathematical Software, 3(3):209-226, 1977.

Garcia, V., Debreuve, E., Nielsen, F., and Barlaud, M. K-nearest
neighbor search: Fast GPU-based implementations and appli-
cation to high-dimensional feature matching. In Proceedings of
the 17th IEEE International Conference on Image Processing,
pp. 3757-3760. IEEE, 2010.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Sta-
tistical Learning. Springer, 2 edition, 20009.

Heinermann, J., Kramer, O., Polsterer, K. L., and Gieseke, F. On
GPU-based nearest neighbor queries for large-scale photomet-
ric catalogs in astronomy. In K1 2013: Advances in Artificial
Intelligence, volume 8077 of Lecture Notes in Computer Sci-
ence, pp. 86-97. Springer, 2013.

Horn, D. R., Sugerman, J., Houston, M., and Hanrahan, P. In-
teractive k-d tree GPU raytracing. In Proceedings of the Sym-
posium on Interactive 3D Graphics and Games, pp. 167-174.
ACM, 2007.

Indyk, P. and Motwani, R. Approximate nearest neighbors: To-
wards removing the curse of dimensionality. In Proceedings
of the 30th Annual ACM Symposium on Theory of Computing,
pp. 604-613. ACM, 1998.

Ivezic, Z. et al. LSST: From science drivers to reference design
and anticipated data products. eprint arXiv:0805.2366, 2011.

Jia, W., Shaw, K. A., and Martonosi, M. Characterizing and im-
proving the use of demand-fetched caches in GPUs. In Pro-
ceedings of the 26th ACM International Conference on Super-
computing, pp. 15-24. ACM, 2012.

Mortlock, D. J. et al. A luminous quasar at a redshift of z = 7.085.
Nature, 474(7353):616-619, 2011.

Nakasato, N. Implementation of a parallel tree method on a GPU.
Journal of Computational Science, 3(3):132-141, 2012.

Oancea, C. E., Mycroft, A., and Watt, S. M. A new approach
to parallelising tracing algorithms. In Proceedings of the 2009
International Symposium on Memory Management, pp. 10-19.
ACM, 2009.

Pan, J. and Manocha, D. Fast GPU-based locality sensitive hash-
ing for k-nearest neighbor computation. In Proceedings of the
19th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, pp. 211-220. ACM, 2011.

Polsterer, K. L., Zinn, P. C., and Gieseke, F. Finding new high-
redshift quasars by asking the neighbours. Monthly Notices of
the Royal Astronomical Society, 428(1):226-235, 2013.

Popov, S., Giinther, J., Seidel, H.-P., and Slusallek, P. Stackless
kd-tree traversal for high performance GPU ray tracing. Com-
puter Graphics Forum, 26(3):415-424, 2007.

Qiu, D., May, S., and Niichter, A. GPU-accelerated nearest neigh-
bor search for 3D registration. In Proceedings of the 7th In-
ternational Conference on Computer Vision Systems, pp. 194—
203. Springer, 2009.

Shuf, Y., Gupta, M., Franke, H., Appel, A., and Singh, J. Pal. Cre-
ating and preserving locality of Java applications at allocation
and garbage collection times. In Proceedings of the 17th ACM
SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications, pp. 13-25. ACM, 2002.

Sismanis, N., Pitsianis, N., and Sun, X. Parallel search of k-
nearest neighbors with synchronous operations. In /EEE Con-
ference on High Performance Extreme Computing, pp. 1-6.
IEEE, 2012.

Stensbo-Smidt, K., Igel, C., Zirm, A., and Steenstrup Pedersen,
K. Nearest neighbour regression outperforms model-based pre-
diction of specific star formation rate. In IEEE International
Conference on Big Data 2013, pp. 141-144. IEEE, 2013.

Wald, I. and Havran, V. On building fast kd-trees for ray trac-
ing, and on doing that in O(N log N). In IEEE Symposium on
Interactive Ray Tracing, pp. 61-69. IEEE, 2006.

Wang, W. and Cao, L. Parallel k-nearest neighbor search on
graphics hardware. In Proceedings of the 2010 3rd Interna-
tional Symposium on Parallel Architectures, Algorithms and
Programming, pp. 291-294. 1EEE, 2010.

Zhou, K., Hou, Q., Wang, R., and Guo, B. Real-time kd-tree con-
struction on graphics hardware. ACM Transactions on Graph-
ics, 27(5):126:1-126:11, 2008.

