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Abstract

Algorithmically, many machine learning tasks
boil down to solving parameterized optimization
problems. The choice of the parameter values
in these problems can have a significant influ-
ence on the statistical performance of the cor-
responding methods. Thus, algorithmic support
for choosing good parameter values has received
quite some attention recently, especially algo-
rithms for computing the whole solution path of
a parameterized optimization problem. These al-
gorithms can be used, for instance, to track the
solution of a regularized learning problem along
the regularization parameter path, or for tracking
the solution of kernelized problems along a ker-
nel hyperparameter path. Since exact path fol-
lowing algorithms can be numerically unstable,
robust and efficient approximate path tracking al-
gorithms have gained in popularity for regular-
ized learning problems. By now algorithms with
optimal path complexity in terms of a guaranteed
approximation error are known for many regular-
ized learning problems. That is not the case for
kernel hyperparameter path tracking algorithms,
where the exact path tracking algorithms can also
suffer from numerical problems. Here we ad-
dress this problem by devising a robust and effi-
cient path tracking algorithm that can also handle
kernel hyperparameter paths. The algorithm has
asymptotically optimal complexity. We use this
algorithm to compute approximate kernel hyper-
paramter solution paths for support vector ma-
chines and robust kernel regression. Experimen-
tal results for these problems applied to various
data sets confirm the theoretical complexity anal-
ysis.
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1. Introduction
Parameterized optimization problems of the form

min
x∈Ft

ft(x)

are abundant in machine learning. Here t ∈ R is a param-
eter, ft : Rd → R is some function depending on t, and
Ft ⊆ Rd is the feasible region of the optimization problem
at parameter value t.

The solution path problem is to compute an optimal or ap-
proximate solution xt ∈ Ft of the parameterized problem
along some parameter interval I ⊆ R. From the solution
path a good parameter value t and a corresponding solu-
tion xt can be chosen by some optimization criterion that
should not be confused with the objective of the parameter-
ized optimization problem. In a machine learning context
the parameter t is typically optimized using some measure
for the generalization error on test data while xt is com-
puted from training data.

An important example of the abstract parameterized opti-
mization problem is

ft(x) = r(x) + t · l(x),

where l : Rd → R is a loss function and r : Rd → R
is some regularizer, e.g. Euclidean regularization r(x) =
‖x‖22 that enables the so-called kernel trick, or r(x) = ‖x‖1
that encourages sparse solutions. This case, namely effi-
ciently computing robust regularization paths, has received
considerable attention and can be considered solved for the
relevant problems in machine learning even when optimiz-
ing over positive-semidefinite matrices. Another important
example that has received less attention is when ft is given
as a function f : Rd → R that is parameterized by a posi-
tive kernel function

kt : Ω× Ω→ R

that itself is parameterized by t ∈ R on some set Ω.

Here we study a fairly general class of parameterized con-
vex optimization problems that contains most of the regu-
larization path and kernel hyperparameter path problems.
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We consider problems of the form

min
x∈Rd

ft(x) (1)

s.t. ct(x) ≤ 0,

where ft : Rd → R is convex and ct : Rd → Rn is convex
in every component

cit : Rd → R, i = 1, . . . ,m

for all values of t. We assume that ft(x) and ct(x) are
Lipschitz continuous in t at any feasible point x, but we do
not require convexity (or concavity) of these functions in t.
The feasible region at t is given as

Ft =
{
x ∈ Rd | ct(x) ≤ 0

}
,

with componentwise inequalities. Our goal in this paper
is to devise a robust and efficient algorithm for comput-
ing an ε-approximate solution path for Problem (1), i.e.,
in contrast to the exact solution path problem we only aim
for an ε-approximate solution along the parameter interval
instead of an exact solution. Turning to approximate so-
lutions leads to much more efficient and robust algorithms
than the known exact solution paths algorithms.

Related work and contributions. Regularized optimiza-
tion methods are in widespread use throughout machine
learning. Thus, computing regularization paths has re-
ceived considerable attention over the last years. The
work on regularization paths started with the seminal work
by (Efron et al., 2004) who observed that the regularization
path of the LASSO is piecewise linear. In (Rosset & Zhu,
2007) a fairly general theory of piecewise linear regular-
ization paths has been developed and exact path following
algorithm have been devised. Important special cases are
support vector machines whose regularization paths have
been studied in (Zhu et al., 2003; Hastie et al., 2004), sup-
port vector regression (Wang et al., 2006b), where also the
loss-sensitivity parameter can be tracked, and the general-
ized LASSO (Tibshirani & Taylor, 2011). From the begin-
ning it was known, see for example (Allgower & Georg,
1993; Hastie et al., 2004; Bach et al., 2004), that exact reg-
ularization path following algorithms suffer from numeri-
cal instabilities as they repeatedly need to invert a matrix
whose condition number can be poor, especially when us-
ing kernels. It also turned out (Gärtner et al., 2012; Mairal
& Yu, 2012) that the combinatorial (and thus also com-
putational) complexity of exact regularization paths can
be exponential in the number of data points. This trig-
gered the interest in approximate path algorithms (Rosset,
2004; Friedman et al., 2007). By now numerically robust,
approximate regularization path following algorithms are
known for many problems including support vector ma-
chines (Giesen et al., 2012b;c), the LASSO (Mairal & Yu,

2012), and regularized matrix factorization and completion
problems (Giesen et al., 2012a;c). These algorithms com-
pute a piecewise constant approximation with O

(
1/
√
ε
)

segments, where ε > 0 is the guaranteed approximation
error. Notably, the complexity is independent of the num-
ber of data points and even matching lower bounds are
known (Giesen et al., 2012c).

The situation is still different for kernel hyperparame-
ter path tracking. Exact kernel path tracking algorithms
are known for kernelized support vector machines (Wang
et al., 2007b), the kernelized LASSO (Wang et al.,
2007a), and Laplacian-regularized semi-supervised clas-
sification (Wang et al., 2006a; 2012). The exact kernel
path tracking algorithms are even more prone to numeri-
cal problems than regularization path tracking algorithms
since they repeatedly need to invert a kernel matrix whose
condition number tends to be poor (large), see Figure 1.
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Figure 1. The condition number of the Gaussian kernel matrix(
kt(xi, xj)

)
=
(
exp(−t‖xi − xj‖22)

)
of 100 data points drawn

uniformly at random from [0, 1]10 and for various values of t.

Here we address this problem by devising a numerically
stable approximate solution path algorithm for parameter-
ized problems of the Form (1). The algorithm can be used
to compute approximate regularization paths as well as ap-
proximate kernel hyperparameter paths. We prove that the
resulting path complexity is in O(1/ε), where ε > 0 is
again the guaranteed approximation error. This complexity
might look disappointing considering that ε-approximation
paths with complexity in O

(
1/
√
ε
)

are known for many
regularization path problems. Still, this is best possible.
A matching lower bound of Ω(1/ε) has been first proved
in (Giesen et al., 2010) for the class of Problems (1). This
problem class includes problems, for instance kernel hyper-
parameter path problems, whose exact solution path is not
piecewise linear as it is the case for the regularization path
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problems that exhibit a better approximation path complex-
ity. We observed the Θ(1/ε) complexity bound also in ex-
periments on various data sets for support vector machines
and robust kernel regression that have been kernelized with
a Gaussian kernel.

2. Duality and approximate solution paths
Since our approximate solution path algorithm is based on
duality we review here some basic facts of duality theory
for parameterized optimization problems. We also intro-
duce our notation and define approximate solution paths
for parameterized optimization problems and bound their
complexity.

Lagrangian duality. The Lagrangian of the parameter-
ized convex optimization problem (1) is the following func-
tion

`t : Rd × Rn≥0 → R, (x, α) 7→ ft(x) + αT ct(x).

From the Lagrangian we can derive a dual optimization
problem as

max
α∈Rn

min
x∈Rd

`t(x, α)

s.t. α ≥ 0

We call

ϕ̂t : Rn → R, α 7→ min
x∈Rd

`t(x, α).

the dual objective function. From the Lagrangian we can
also derive an alternative expression for the primal objec-
tive function, namely

ϕt : Rd → R, x 7→ max
α≥0

`t(x, α)

Note that

ft(x) = ϕt(x) for all x ∈ Ft
since αT ct(x) ≤ 0 and thus maxα≥0 α

T ct(x) = 0 (which
can always be achieved by setting α = 0) for all x ∈ Ft.

Weak and strong duality. At a fixed parameter value t
we have the following well known weak duality property

ϕ̂t(α) ≤ ϕt(x)

for any x ∈ Rd and any α ∈ R≥0. To see this note that

min
x′∈Rd

`t(x′, α) ≤ `t(x, α)

for all x ∈ Rd and all α ∈ Rn≥0. Thus,

max
α′≥0

min
x′∈Rd

`t(x′, α′) ≤ max
α′≥0

`t(x, α′)

for all x ∈ Rd, and finally

max
α′≥0

min
x′∈Rd

`t(x′, α) ≤ min
x′∈Rd

max
α′≥0

`t(x′, α′),

which implies

ϕ̂t(α) ≤ max
α′≥0

ϕ̂t(α′)

= max
α′≥0

min
x′∈Rd

`t(x′, α′)

≤ min
x′∈Rd

max
α′≥0

`t(x′, α′)

= min
x′∈Rd

ϕt(x′)

≤ ϕt(x).

In particular, we have ϕ̂t(α∗t ) ≤ ϕ(x∗t ), where

α∗t = argmaxα≥0 ϕ̂t(α) and x∗t = argminx∈Ft
ϕt(x)

are the dual and primal optimal solutions, respectively. We
say that strong duality holds if ϕ̂t(α∗t ) = ϕt(x∗t ).

Duality gap and approximate solution. At parameter
value t we call

gt(x, α) = ϕt(x)− ϕ̂t(α)

the duality gap at (x, α) ∈ Ft × Rn≥0. For ε > 0, we
call x ∈ Ft an ε-approximate solution of the parameterized
optimization problem (1) at parameter value t, if

ft(x)− ft(x∗t ) ≤ ε.
Assume that gt(x, α) ≤ ε, then we have

ft(x)− ft(x∗t ) = ϕt(x)− ϕt(x∗t )
= ϕt(x)− ϕ̂t(α) + ϕ̂t(α)− ϕt(x∗t )
= gt(x, α)− (ϕt(x∗t )− ϕ̂t(α)

)
≤ gt(x, α) ≤ ε

Approximate solution path. Let [tmin, tmax] ⊂ R be a
compact parameter interval and ε > 0. We call a function

x : [tmin, tmax]→ Rd, t 7→ xt

an ε-approximate solution path of the parameterized opti-
mization problem (1), if for all t ∈ [tmin, tmax]

1. xt ∈ Ft and

2. ft(xt)− ft(x∗t ) ≤ ε.

We say that the path x : [tmin, tmax] → Rd has complexity
k ∈ N, if x can be computed from k primal-dual optimal
pairs (x∗ti , α

∗
ti) with ti ∈ [tmin, tmax), i = 1, . . . , k.

We can bound the complexity of approximate solution
paths as follows.



Robust and Efficient Kernel Hyperparameter Paths with Guarantees

Theorem 1. Given a parameterized convex optimization
problem (1), a parameter interval [tmin, tmax], and ε > 0.
If the following conditions

1. the feasible region Ft has a nonempty interior, and

2. the problem has an optimal solution x∗t ∈ Ft, and

3. ϕ̂t(α) is Lipschitz continuous in t for any α ≥ 0, and

4. there exists a function

x̃t : [tmin, tmax]→ Rd

such that x̃t(τ) is feasible at parameter value τ , and

‖x̃t(τ)− x∗t ‖2 ≤ L|τ − t|

for some constant L > 0,

are satisfied for all t ∈ [tmin, tmax], then there exists an
ε-approximate solution path for the interval [tmin, tmax]
whose complexity is in O(1/ε). The constants in the big-O
notation depend only on the functions ft and ct and on the
interval [tmin, tmax].

Proof. Let
r = max

t∈[tmin,tmax]
‖x∗t ‖2.

Note that r <∞ since x∗t exists for all t in the compact in-
terval [tmin, tmax]. Thus we can impose the additional con-
straint ‖x‖2 ≤ r in the parameterized convex optimization
problem (1) without changing its solutions. Since the func-
tion ft is convex on Rd it is also Lipschitz continuous with
respect to it argument x for some constant L′ > 0 on the
set {x ∈ Ft | ‖x‖2 ≤ r}.
By our assumptions both ft(x) and ϕ̂t(α) are Lipschitz
continuous with respect to t for any feasible x and α ≥ 0,
respectively, i.e., there exists a constant M > 0 such that

|ft(x)− fτ (x)| ≤ M |t− τ |

and
|ϕ̂t(α)− ϕ̂τ (α)| ≤ M |t− τ |

for all t, τ ∈ [tmin, tmax].

Note that x̃t(τ) is a feasible solution for the primal prob-
lem at τ and α∗t is a feasible solution for the dual prob-
lem at τ , because the feasible region of the dual problem
does not depend on the parameter t. By Slater’s Condition,
see for example (Boyd & Vandenberghe, 2004), strong du-
ality holds since Ft has a nonempty interior, and ft and
the components of ct are convex functions, i.e., we have
gt(x∗t , α

∗
t ) = 0 for the duality gap.

Combining these properties we obtain a bound for the fol-
lowing duality gap

gτ (x̃t(τ), α∗t )
= fτ (x̃t(τ))− ϕ̂τ (α∗t )
≤ fτ (x∗t ) + L′‖x̃t(τ)− x∗t ‖ − ϕ̂τ (α∗t )
≤ fτ (x∗t ) + L · L′|τ − t| − ϕ̂τ (α∗t )
≤ ft(x∗t )− ϕ̂t(α∗t ) + 2M |t− τ |+ L · L′|t− τ |
= gt(x∗t , α

∗
t ) + (2M + L · L′)|t− τ |

= (2M + L · L′)|t− τ |,
where the first inequality follows from the Lipschitz con-
tinuity of fτ with respect to x, the second inequality fol-
lows from the Lipschitz continuity of the function x̃t with
respect to τ , and the third inequality follows from the Lip-
schitz continuity of ft(x) and ϕ̂t(α) with respect to t for
any feasible x and α ≥ 0, respectively. Hence, a primal-
dual solution pair (x̃t(τ), α∗t ) is a feasible primal-dual ε-
approximate solution pair for all τ with

|t− τ | ≤ ε

2M + L · L′ .

It follows that there exists an ε-approximate solution path
whose complexity can be bounded by

2M + L · L′
ε

(tmax − tmin) ∈ O(1/ε).

The problem dependent constant in Theorem 1,

(2M + L · L′)(tmax − tmin),

might look huge at a first glance, but note that for an in-
terval with tmin = 2−10 and tmax = 210 it turns out that
the value of this constant is at most 20 on the data sets that
we have tried in our experiments for kernelized SVMs, see
Section 6.

Lower bound The parameterized optimization problems
in the lower bound construction in (Giesen et al., 2010) sat-
isfy the conditions of Theorem 1. This gives us a lower
bound in Ω(1/ε) on the path complexity for the class of
Problems (1) and shows that the complexity analysis in
Theorem 1 is asymptotically tight.

3. Approximate path tracking algorithm
In the following we assume that strong duality holds for
all parameter values in the interval [tmin, tmax] ⊂ R. The
simple idea for computing an ε-approximate solution path
makes use of duality and works as follows:

1. Compute the primal-dual pair (x∗t , α
∗
t ) for t = tmin.
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2. Determine x̃t : [tmin, tmax] → Rd and t′ ∈
[tmin, tmax] such that

gτ (x̃t(τ), α∗t ) ≤ ε.

for all τ ∈ [t, t′].

3. At t′ compute a new optimal primal-dual pair
(x∗t′ , α

∗
t′) and iterate Steps 2 and 3 until the whole in-

terval [tmin, tmax] has been covered.

Let tmin = t1, . . . , tk be the points in [tmin, tmax) at which
an optimal primal-dual pair is computed (Step 3 of the al-
gorithm). The path

x : [tmin, tmax]→ Rd, t 7→
k∑
i=1

1[t1,ti+1)(t) x̃ti(t),

where tk+1 = tmax and

1[t1,ti+1)(t) =
{

1, if t ∈ [t1, ti+1)
0, if t /∈ [t1, ti+1)

is an ε-approximate solution path of complexity k.

4. Application: Kernelized SVM
Here we specialize Theorem 1 and the approximate path al-
gorithm to the standard hinge loss support vector machine
(SVM) that has been kernelized with a Gaussian kernel ma-
trix

Kt =
(
kt(x, x′)

)
=
(

exp(−t‖x− x′‖22)
)

with bandwidth parameter t > 0. That is, we need to make
sure that this SVM meets the necessary conditions of The-
orem 1. The primal SVM problem is given as

min
w∈Rd,b∈R,ξ∈Rd

1
2
wTKtw + c · ‖ξ‖1

s.t. y � (Ktw + b) ≥ 1− ξ
ξ ≥ 0,

where c is a regularization parameter, y ∈ Rd is a label
vector with entries in {−1,+1}, and� is the element-wise
multiplication.

The dual SVM problem can be written as

max
α∈∆c

−1
2
αT
(
Kt � yyT

)
α+ ‖α‖1

(
= ϕ̂(α)

)
,

where

∆c =
{
α ∈ Rd | 0 ≤ α ≤ c, αT y = 0

}
.

It is straightforward to see that Assumptions 1.-3. of The-
orem 1 are satisfied for the SVM problem. It remains to
ensure that also Assumption 4. holds true.

To ensure Assumption 4. we need to find a function as re-
quired in this assumption. Here we discuss two functions
that satisfy the requirements. In the first function the bias b
is fixed and in the second function it depends on the band-
width parameter t′. We call the first case the fixed bias
update rule and the second the dynamic bias update rule.

1. Fixed bias updates. For an optimal primal solution
(w∗t , b

∗
t , ξ
∗
t ) at parameter value t we need to derive

a solution (w̃t, b̃t, ξ̃t)(t′) that is feasible at parameter
value t′. Setting(

w̃t, b̃t, ξ̃t

)
(t′)

=
(
w∗t , b

∗
t ,max{1− y � (Kt′w

∗
t + b∗t ), 0}

)
satisfies Assumption 4, i.e., the values of this function
are by construction feasible for the primal SVM at any
admissible value for t′ and it is Lipschitz continuous
in t′ since the dependence of Kt′ on t′ is differen-
tiable. Note that b̃t(t′) = b∗t , which justifies the name
fixed bias update rule.

2. Dynamic bias updates. We can also adapt the bias b
for each t′ instead of only adapting ξ. This can be
done by setting b̃t(t′) to the median (for robustness
reasons) of the expressions (y−Kt′w

∗
t )i, i ∈ I , where

the index set

I = {i | 0 < eTi α
∗
t < c},

with ei the i-th standard basis vector of Rd, is the set
of all support vectors that are exactly on the margin
for the optimal dual SVM solution α∗t at parameter
value t. As for the fixed bias update rule, the entries
of ξ̃t(t′) are chosen such that all inequality constraints
of the primal SVM problem are satisfied, i.e.,(
w̃t, b̃t, ξ̃t

)
(t′)

=
(
w∗t , b̃t(t

′),max{1− y � (Kt′w
∗
t + b̃t(t′)), 0}

)
.

Obviously, the dynamic bias update rule improves the
primal objective function value over the fixed bias up-
date rule and hence Theorem 1 applies here as well.

Asymptotically the complexity of the SVM kernel path is
in O(1/ε) in both cases since Theorem 1 applies. In prac-
tice, however, it makes a difference which of the two update
rules is used, see Section 6. Although the asymptotic be-
havior is the same, the constants are much smaller for the
dynamic bias update rule than for the fixed bias update rule.

5. Application: Robust Kernel Regression
Robust regression is an alternative to least squares regres-
sion that uses an `1-loss function instead of an `2-loss func-
tion to become more robust against outliers. Robust kernel
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Table 1. Number of updates (complexity) of ε-approximate hyperparamter kernel path for some data sets and various values for ε for the
fixed bias update rule (on the left) and the dynamic bias update rule (on the right).

FIXED BIAS UPDATES DYNAMIC BIAS UPDATES

DATA SET SIZE ε = 4 2 1 0.5 0.25 0.125 4 2 1 0.5 0.25 0.125

A1A 1605 4 8 15 26 47 89 2 5 9 17 32 61
A2A 2265 5 9 16 29 51 95 3 6 10 19 35 65
A3A 3185 6 11 19 33 59 108 4 7 13 22 40 74
A4A 4781 8 14 24 40 71 126 6 11 18 30 52 79
DIABETES 768 11 18 28 43 64 95 3 5 8 11 19 29
HEART 270 1 2 6 10 16 25 1 2 3 5 8 11
IONOSPHERE 351 10 18 31 49 81 132 2 3 7 12 20 33

regression is an extension of robust regression that accom-
modates the use of kernels for nonlinear regression. Here
we even consider sparse robust kernel regression by adding
an additional `1-regularizer that favors sparse solutions.

The sparse robust kernel regression problem is given as the
following minimization problem

min
β∈Rd

‖y −Ktβ‖1 + λ · ‖β‖1,

where y ∈ Rd is the output vector, and Kt ∈ Rd×d is
the kernel matrix that is determined by the parameterized
Gaussian kernel function kt and d data points x1, . . . , xd.
The regression function is then given as

f(x) =
d∑
i=1

βikt(xi, x).

The dual problem of the sparse robust kernel regression
problem is the following maximization problem

max
u∈Rd

− yTu
s.t. ‖u‖∞ ≤ 1

‖KT
t u‖∞ ≤ λ.

To apply Theorem 1 we interchange the role of the primal
and the dual problem, i.e., we consider

min
u∈Rd

yTu

s.t. ‖u‖∞ ≤ 1

‖KT
t u‖∞ ≤ λ

as the primal problem, whose dual is given as

max
β∈Rd

− ‖y −Ktβ‖1 − λ · ‖β‖1.

Obviously, all four conditions of Theorem 1 are met, since
the primal problem has a nonempty interior, the problem

is bounded (and hence a primal optimum exists), the dual
function is Lipschitz continuous with respect to t, and for
any optimal dual solution u∗t we can find a feasible solution
ũt(τ) by projecting u∗t onto the feasible region at parame-
ter value τ . Since Kt is differentiable in t (for a Gaussian
kernel matrix) the projection itself is Lipschitz continuous.
Hence, we can apply Theorem 1 that guarantees the exis-
tence of an ε-approximate hyperparameter solution path of
complexity O(1/ε).

6. Experiments
To validate our theoretical finding, in particular the depen-
dence of the path complexity on the guaranteed approxima-
tion error ε, we have conducted experiments for the kernel-
ized SVM and also for the robust kernel regression.

6.1. Kernelized SVM

We have implemented the approximate path tracking al-
gorithm for the kernelized SVM. LIBSVM Version 3.17,
whose implementation is described in (Fan et al., 2005),
has been used to compute primal-dual optimal pairs. LIB-
SVM actually solves the dual problem. If α∗t is the optimal
dual solution at parameter value t, then the optimal primal
solution can be reconstructed by setting w∗t = y � α∗t and
b∗t to the median of the expressions

(y −Ktw
∗
t )i, i ∈ {j | 0 < eTj α

∗
t < c}.

It remains to describe the implementation of the second
step of the algorithm. Since we can compute the value of
the primal objective function for every value of t′, see Sec-
tion 4, we can also compute the duality gap

gτ

((
w̃t, b̃t, ξ̃t

)
(τ), α∗t

)
.

The largest t′ > t for which the duality gap gt′ is still at
most ε can be simply found by binary search.

As test environment we used MATLAB, and all data sets
that have been used in our experiments were retrieved from



Robust and Efficient Kernel Hyperparameter Paths with Guarantees

16

18

20

22

24

26

ob
je

ct
iv

e
va

lu
e

exact path
+ε
−ε

upper bound
lower bound

2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210

0

0.5

1

kernel parameter t

ga
p gap

ε=1

16

18

20

22

24

26

ob
je

ct
iv

e
va

lu
e

exact path
+ε
−ε

upper bound
lower bound

2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210

0

0.5

1

kernel parameter t

ga
p gap

ε=1

65

70

75

80

ob
je

ct
iv

e
va

lu
e

exact path
+ε
−ε

upper bound
lower bound

2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210

0

0.5

1

kernel parameter t

ga
p gap

ε=1

65

70

75

80

ob
je

ct
iv

e
va

lu
e

exact path
+ε
−ε

upper bound
lower bound

2−10 2−8 2−6 2−4 2−2 20 22 24 26 28 210

0

0.5

1

kernel parameter t

ga
p gap

ε=1

Figure 2. The kernel hyperparameter path for the IONOSPHERE data set with fixed bias updates (top, left) and dynamic bias updates (top,
right), and the kernel hyperparameter path for the A1A data set with fixed bias updates (bottom, left) and dynamic bias updates (bottom,
right).

the LIBSVM Website, see (Lin). The data sets and results
are summarized in Table 1. The regularization parameter c
was set to 0.1 in all the experiments.

Dependence on ε Our theoretical finding that O(1/ε)
optimal primal-dual pairs are sufficient to approximate the
whole kernel hyperparameter solution path was confirmed
in our experiments. Figure 3 indicates that the number of
optimal primal-dual pairs computed by the algorithm de-
pends linearly on 1/ε.

Choice of bias update rule The experiments also show
that the choice of the bias update rule has a significant in-
fluence on the approximation path complexity. As expected
the dynamic bias update rule leads to a lower path com-
plexity than the fixed bias update rule, since it improves
the value of the primal objective function over the fixed
bias update rule and thus needs fewer updates to maintain
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Figure 4. Synthetic data set for regression sampled with noise and outliers (on the left), and the mean absolute error (MAE) for the test
data set (on the right).

the approximation guarantee. Figure 2 directly compares
the two update rules and shows that indeed the dynamic
bias update rule performs better. The main difference is
that the upper bound, i.e., the approximation of the primal
optimum, is much better for the dynamic bias update rule.

Figure 2 also shows that our path tracking algorithm, in
contrast to a simple grid search, adapts well to regions of
interest (especially for the dynamic bias update rule), i.e.,
the solution is only updated frequently in these regions.

6.2. Robust Kernel Regression

We have also implemented the approximate path tracking
algorithm for robust kernel regression. The optimal primal-
dual pairs at a fixed parameter value t have been computed
using the SeDuMi solver (Sturm, 1999). The implementa-
tion of the second step of the algorithm is analogous to the
implementation for the kernelized SVM since also here we
can compute the value of the primal objective function for
every value of t′ and thus the duality gap gτ

(
ũt(τ), β∗t

)
.

The largest t′ > t for which the duality gap gt′ is still at
most ε can be found by binary search.

As test environment we used again MATLAB and follow-
ing the example of (Wang et al., 2007a) we generated a
synthetic data set by randomly sampling 100 points from
the following target function

f(x) =
sin(πx)
πx

in the interval [−4, 4] and by adding Gaussian noise. Ad-
ditionally, we also added 10% outliers to the data set. The
data set, i.e., the sample points, and the target function are
shown in Figure 4 (on the left). In this figure we also show
that, as expected, robust regression performs better in the
presence of outliers than for instance the LASSO (Tibshi-
rani, 1994). The regularization parameter λ was set to 0.1
in the experiments.

It is well known that the choice of the bandwidth parameter
in the Gaussian kernel has a significant influence on the per-
formance of kernel regression methods. This can be seen
also in Figure 4 (on the right), where we show the mean
absolute error (MAE) on a set of test data points tracked
along the kernel hyperparameter path (i.e., the bandwidth
path). Note that the test error path in Figure 4 (on the right)
has many local minima which is typical for this type of
problems.

7. Conclusions
We have presented an algorithmic framework for tracking
approximate solutions for a large class of parameterized
optimization problems. In particular, the framework allows
to track kernel hyperparameter paths and even has the op-
timal path complexity of O(1/ε) in terms of the prescribed
approximation error ε for this type of problems, for which
no efficient approximation schemes had been devised be-
fore. The framework also allows to compute approximate
regularization paths, but it is not optimal for this easier
class of problems (whose exact solution path is piecewise
linear which is not true for hyperparameter paths).

We have instantiated the algorithmic framework for com-
puting approximate kernel hyperparameter paths for SVMs
and the robust kernel regression problem, both with Gaus-
sian kernel. Our experiments for these applications, in con-
trast to exact path algorithms, did not suffer from numerical
problems, and confirmed our optimal theoretical complex-
ity bounds.
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ularization Paths with Guarantees for Convex Semidefi-
nite Optimization. In International Conference on Artifi-
cial Intelligence and Statistics (AISTATS), pp. 432–439,
2012a.

Giesen, Joachim, Jaggi, Martin, and Laue, Sören. Approx-
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