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Abstract

This paper proposes a suite of models for cluster-
ing high-dimensional data on a unit sphere based
on von Mises-Fisher (vMF) distribution and for
discovering more intuitive clusters than existing
approaches. The proposed models include a) A
Bayesian formulation of vMF mixture that en-
ables information sharing among clusters, b) a
Hierarchical vMF mixture that provides multi-
scale shrinkage and tree structured view of the
data and c) a Temporal vMF mixture that cap-
tures evolution of clusters in temporal data. For
posterior inference, we develop fast variational
methods as well as collapsed Gibbs sampling
techniques for all three models. Our experiments
on six datasets provide strong empirical support
in favour of vMF based clustering models over
other popular tools such as K-means, Multino-
mial Mixtures and Latent Dirichlet Allocation.

1. Introduction

With the advent of large amounts of unlabeled data, cluster-
ing has emerged as an important tool for the end user to ob-
tain a structured view of the data. Probabilistic clustering
algorithms such as K-means (Gaussian mixtures), Multi-
nomial Mixtures, Latent Dirichlet allocation (Blei et al.,
2003) have emerged as the defacto standard for discovering
the latent structures and relations in the data. Such proba-
bilistic models define a generative model for the data by as-
suming some rigid instance representation, for e.g. Multi-
nomial Mixtures assumes that each instance is represented
as discrete feature-counts and is drawn from one of many
Multinomial distributions.

However, it is questionable whether such representation of
data is appropriate for all domains. For example, in text-
mining (classification, retrieval, collaborative filtering etc)
documents have typically been represented using a term
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frequency-Inverse Document frequency Normalized form
(Tf-Idf normalization) (Salton & McGill, 1986), where
each document is represented as a point on a unit-sphere
using a combination of both within-document frequencies
and inverse corpus-frequences. Tf-Idf normalization has
always shown better performance than feature-counts rep-
resentation based on several supervised tasks such as clas-
sification (Joachims, 2002), retrieval (Robertson, 2004) etc.
Similarly, in Image-modeling, unit normalized spatial pyra-
mid vectors is a common representation (Yang et al., 2009).
Normalization is often an important step in data analysis
because it removes the ‘magnitude’ of the instances from
the picture and places more importance on the directional
distribution; in other words, we do not want unduly long
documents or big images to distort our inferences, hence
we represent the instances as relative contributions of indi-
vidual features.

Despite the practical successes of normalized data repre-
sentation, they have not been well studied by Bayesian
Graphical models. Since the data lies on a unit-sphere man-
ifolds, popular clustering assumptions such as Gaussian
(O’Hagan et al., 2004) or Multinomial (Blei et al., 2003;
2004; Blei & Lafferty, 2006a;b) are not appropriate. On
one hand we have empirical success of such normalized
representation and on the other hand we have a wide vari-
ety of graphical models that model data using a different
representation. Can we get the best of both worlds? Can
we develop models that are particularly suited to such unit-
sphere manifolds but at the same time maintain flexibility
like other graphical models? In this paper, we propose a
suite of models using von Mises-Fisher (vMF) distributions
which have been primarily used to model such directional
data. vMF models have been long studied in the directional
statistics community (Fisher, 1953; Jupp & Mardia, 1989)
and are naturally suited in such scenarios as they model
distances between instances using the angle of separation
i.e. cosine similarity. Works in vMF have typically fo-
cused on low-dimensional problems (2D or 3D spaces) to
maintain tractability and relying on Gibbs sampling for in-
ference which is generally difficult to scale in higher di-
mensions (Hasnat et al., 2013) (Mardia & El-Atoum, 1976)
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(Guttorp & Lockhart, 1988) (Bangert et al., 2010). More
popular works include text clustering work by (Banerjee
et al., 2006) (Banerjee et al., 2003) where an EM-based
algorithm without Bayesian inference was used, and spher-
ical topic models by (Reisinger et al., 2010) which mimic
LDA with a Bayesian inference for learning the mean pa-
rameters in vVMF, but leave the crucial concentration param-
eters (the variance parts) of the models to be set manually.
In this paper, using the vMF distribution as the building
block, we propose three increasingly powerful models for
cluster analysis

1. The Bayesian vMF Mixture Model (B-vMFmix): A
fully Bayesian formulation of mixture of vMF distribu-
tions where each instance represented as a point on a unit-
sphere is assumed to be drawn from one of many vMF dis-
tributions. The parameters of the clusters are themselves
drawn from a common prior which helps the clusters to
share information among each other.

2. The Hierarchical vMF Mixture Model (H-vMFmix):
When the data we want to analyze is huge, one of the effi-
cient means of browsing is by means of a hierarchy (Cut-
ting et al., 1992). We extend B-vMFmix to H-vMFmix, to
enable partitioning the data into increasing levels of speci-
ficity as defined by a given input hierarchy. To our knowl-
edge, this is the first hierarchical Bayesian model for vMF-
based clustering.

3. The Temporal vMF Mixture Model (T-vMFmix): For
temporal data streams, analyzing how the latent clusters in
the data evolve over time is naturally desirable. We aug-
ment B-vMFmix to the first temporal vMF-based model
that accommodates changes in cluster parameters between
adjacent time-points. For example, in a corpus of docu-
ments, this could reflect the changing vocabulary within a
cluster of documents.

We develop fast variational inference schemes for all the
methods and equally fast collapsed Gibbs sampling tech-
niques for the simpler models. Our empirical comparison
on several datasets conclusively establishes that vMF distri-
butions are better alternatives to standard Gaussian, Multi-
nomial Mixtures and can be successfully used for cluster
analysis. To our knowledge, this is the first work that pro-
vides a thorough treatment of vMF distribution in the con-
text of a wide variety of graphical models for data analysis.

2. Related Background

The von Mises-Fisher (vMF) distribution defines a proba-
bility density over points on a unit-sphere. It is parameter-
ized by mean parameter x4 and concentration parameter -
the former defines the direction of the mean and the latter
determines the spread of the probability mass around the
mean. The density function for z € R”,|jz|| = 1, ||u| =

1,k > 0 is given by,
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f(@|pu, k) = Cp(k)exp(rp' ); Cp(k) = (@) 5P Tap_1(%)
where I, (a) is the modified bessel function of first kind
with order v and argument a. Note that p' « is the cosine
similarity between x and mean p and that s plays the role
of the inverse of variance.

The simplest VMF mixture model (Banerjee et al., 20006)
assumes that each instance is drawn from one of the K
vMF distributions with a mixing distribution =, where K
is a known constant, and the parameters of the vMF distri-
butions correspond to the underlying themes (clusters) in
the data. The cluster assignment variable for instance z; is
denoted by z; € {1,2,..K} in the probabilistic generative
model given below,

z; ~ Categorical(.|r)
Tq ~ VMF('lMZi ) "{)

i=1,2.N
i=1,2.N

The k’th cluster is defined by mean parameter p, and con-
centration parameter . The parameters P = {u, k, 7} are
treated as fixed unknown constants and Z = {z;}, are
treated as a latent variables. To train the model, we can use
the familiar EM algorithm, to efficiently iterate between
calculating the E[Z] in the E-step and optimizing P to max-
imize the likelihood in the M-step. The update equations
are, !
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3. Proposed Bayesian vMF models

We improve upon the basic VMF mixture model in the
above section by adding bayesian components in three sig-
nificant ways a) the fully Bayesian vMF mixture model (B-
vMFmix) b) A hierarchical extension of B-vMFmix and c)
A temporal extension of B-vMFmix.

3.1. Bayesian vMF mixtures (B-vMFmix)

The bayesian vMF mixture model is the fundamental build-
ing block for the hierarchical and temporal vMF mixtures.
This model enables sharing of information between the
clusters by shrinking the cluster parameters towards each

other using a prior. The generative model for given data
! The supplementary material thoroughly describes all the infer-
ence schemes (EM, variational, collapsed gibbs sampling) as well
as complete set results only a part of which is presented in the

paper
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D = {x;}}*, and a fixed number of clusters K is given by,

7 ~ Dirichlet(.|«)

ur ~ VMF(.|po,Co)  k=1,2,.K

ki ~ logNormal(.|m,c?) k=1,2,. K
z; ~ Categorical(.|r) i=12..N

x; ~ VMF(.|pz,, 52,) 1= 1,2,.N

The prior parameters are {a, yi0, Co,m,0°}. The cluster
mean parameters g = {5, are commonly drawn from a
prior vMF distribution with parameters {0, Co}. The clus-
ter concentration parameters k = {ry}~_; are commonly
drawn from a log-normal prior with mean m and variance
o%. The mixing distribution 7 is drawn from a symmetric
dirichlet with parameter «. This bayesian model improves
over the simple vMF mixture in multiple ways; firstly we
share statistical strength by shrinking the cluster mean pa-
rameters towards a common po, secondly there is flexibility
to learn cluster-specific concentration parameters «j with-
out the risk of overfitting if the priors are appropriately set,
thirdly the posterior distribution over the parameters gives
a measure of uncertainty of the parameters unlike point es-
timates in simple vMF mixtures. These advantages are ev-
ident in our experimental section (in section 4).

The likelihood of the data and the posterior of the parame-
ter is given by,

P(Z,p,k,7|.) x PX|Z, p, k, 7)P(Z, s, k, 7|, 2, o, Co, o)

Since the posterior distribution of the parameters cannot
be calculated in closed form, we need to resort to approxi-
mate inference using variational methods or sampling tech-
niques.

3.1.1. VARIATIONAL INFERENCE

Using variational inference, we try to find a distribution
that is closest in KL-divergence to the true posterior. We
assume the following factored form for the approximate
posterior.

q(m) ~ Dirichlet(.|p)

q(z;) ~ Categorical(.|\;) i =1,2.N
For the concentration parameters, the inference is not
straight-forward because of the presence of log-bessel
function. We present two different ways of estimating the
posterior of the concentration parameters - (a) Sampling

scheme and (b) Bounding scheme. Each scheme assumes a
different form for the posterior distribution of x’s.

q(kxr) = No-specific form k& =1,2..K [Sampling]
q(kk) ~ logNormal(.|ax,br) k=1,2..K [Bounding]

We develop a variational algorithm where the posterior pa-
rameters - p, 1, ~, A are iteratively optimized to maximize

the variational lower bound (VLB)' .
VLB = E,[log P(D,Z, p, k, w|m, o>, po, Co, a)] — H(q)

The closed form updates for posterior parameters for uy
and z;;, are given by,

Ry
Y=oy e = Rl
(| Rl
N
where Ry, = Eq [Hk] Z Eq [zlk]ml + COMO
=1

Aik < exp(Eq[log VMF(zi|ur, ki)] + Eqllog(m)])
log VMF (2 |k, i) = Eq[log Cp (k)] + Eqli]z; Eqlux]

Next we present the posterior estimation of the concentra-
tion parameters.

Sampling: In the sampling scheme, we rely on estimating
ki’s (and related quantities such as log Cp(kx)) by draw-
ing samples from the posterior distribution. Sampling re-
quires the computation of the conditional distribution for
xr. However, variational inference (for the other parame-
ters) does not maintain samples but instead maintains only
posterior distributions. To overcome this issue, we rewrite
the conditional distribution for x in terms of the expecta-
tion of posterior parameters rather than samples. Using the
VLB and Jensen’s inequality on the conditional of x,

P(ki|X, m, o, o, Co, @) P(/fk,X|m,(72,uo, Co, )
~ Eq [P(Hk,x,Z,ﬂ,l@ik,TF'm,O'Q,/,LO,CO,Of)]

> exp (B, [log P(si, X, Z, ™" |m, 0%, 1o, Co, )] )

o< exp (Z Eq[zi]log Cp (ki) + ki Yy Bqglzi]e B, [/Me])

i=1 i=1

x logNormal( |m, o*) (1)

Having identified the proportionality of the conditional dis-
tribution, we can use MCMC sampling with a suitable pro-
posal distribution to draw samples. We used a log-normal
distribution around the current iterate as the proposal dis-
tribution.

The MCMC sampling step for the posterior of « introduces
flexibility into the model as the samples are now from the
true posterior (given the rest of the parameters). The down-
side is that the variational bound is no longer guaranteed
to be a valid lower-bound since E,[log Cp (k)] and Eq[k]
are estimated through the samples. However, we observed
that the posterior distribution of the x;’s was highly con-
centrated around the mode and the estimates from samples
gave good empirical performance in terms of predictive
power.

This partial MCMC sampling does not increase computa-
tional costs much since there are only K variables to be es-
timated and the major computational bottleneck is only in
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updating A. Another alternative to repeated sampling is to
use grid search, where we break down the continuous pos-
terior distribution of «y, across a finite set of points, and use
this discrete distribution to estimate the expectation of vari-
ous quantities.Refer the last part of supplementary material
for a thorough discussion of the computational issues.
Note that the same model with an unnormalized prior for s
was used in . However since « is not a natural parameter of
the vMF distribution, it is not clear whether the unnormal-
ized prior results in a valid posterior distribution.
Bounding: The core problem in doing full varia-
tional inference for the model is the computation of the
E,[log Cp (k)] in the VLB. We are not aware of any dis-
tribution ¢(x«) for which is there is a closed form expres-
sion for Fg[log Cp (k)] (due to the presence of the log
bessel function in Cp(xx)). To overcome this issue, we
first upper-bound the log bessel function using a Turan type
inequality (Baricz et al., 2011), followed by an approxima-
tion using the delta method. More specifically, the growth
of the modified bessel function of first kind with order v
and argument v i.e. I,,(u) can be lower-bounded by (Baricz
etal., 2011),

I,(u)’ I,(u) v2
u————= < I, (u = <3y /1+ -
VuZ +02 T (u) Iy(u) —

Integrating over u > 0,

log(Iv(u)) < vVu? +v2 — vlog(u)

—vlog (v v2 4+ u? + %) —|—v2) —Vu? +v?

Eqllog I (w)] < Eq[Vu? 4 v?] — vEq[log(u)]

— vE,[log(vyv/v? +u? +v*) +v%)] — E,[Vu? +v2] (2)
Since all the expectations on the RHS of eq (2) are twice
differentiable, we can use the delta approximation method.

The expectation of a function g over a distribution ¢ is given
by

Varg|z]
2

Eqlg(x)] = g(Eqlz]) + g" (Eqlx]) 3)
Applying the equations (2), (3) to the VLB, we can estimate
the posterior parameters ay, b, by optimizing VLB using
gradient descent' . Although it is tempting to directly ap-
ply the delta method to calculate E,[log I, (u)], this leads
to expressions that are not computable directly as well as
numerically unstable.

3.1.2. COLLAPSED GIBBS SAMPLING

We can develop efficient sampling techniques for the model
by using the fact that vMF distributions are conjugate w.r.t
each other. This enables us to completely integrate out
{ur}2~; and 7 and update the model only by maintaining
the cluster assignment variables {z;}*, and the concentra-
tion parameters {x;}f_ ;. The conditional distributions '

are given by,

Pz =k|Z7",.) < (a4 Y I(z =k))Cp(kx)

=gt
Co(llkr > xj + Copoll)
j;ﬁi,z]:k
Cop(llke - x5+ Copoll)
Jizj=k
Co(Co)Cnm) T
P(rp|e ™", .. D\C0)Cplkk) 7 x
skl ™) < Gl 5>y + Corol)
j:zj:k

logNormal(k|m, o%)

The conditional distribution of k; is again not of a stan-
dard form and as before, we use a step of MCMC sampling
(with log-normal proposal distribution around the current
iterate) to sample .. The advantage of sampling is that
the distribution of samples eventually converge to the true
posterior, however, the downside is that it is not clear how
many samples must be drawn.

3.1.3. EMPIRICAL BAYES

When the user does not have enough information to set
the prior parameters, it is useful to be able to learn
them directly from the data. The prior parameters
{a, o, Co,m,a*} are estimated by maximizing the vari-
ational lower-bound (which acts as a proxy to the true
marginal likelihood). The details are discussed in the sup-
plementary material.

3.2. Hierarchical vMF Mixtures (H-vMFmix)

Often the data that the user wants to analyze is large and
manually inspecting a flat layer of several clusters is harder
than hierarchically browsing the data (Cutting et al., 1992).
For such cases, we develop a hierarchical vMF mixture
model that enables a hierarchically nested organization of
the data.

We assume that the user wants to organize the data into a
given fixed hierarchy of nodes A. The hierarchy is defined
by the parent function pa(z) : N' — N which denotes the
parent of the node z in the hierarchy. The generative model
for the H-vMFmix is given by,

m ~ Dirichlet(.|«)

fn ~ VMFE( | tipa(r)s Kpary) m € N

kn ~ 1gNorm(.|m, %) n € N/

z; ~ Categorical(.|r), z; € {Leaf nodes of hierarchy }
z; ~ VMF( |z, , 62,) 1=1,2.N

The user specified parameters are {uo, Co} - parameter of
the root-node and {m, 0%, a}. Each node n is equipped with
a vMF distribution with parameters un,, x,. The mean pa-
rameters of the siblings nodes are drawn from a common
prior defined by their parent vMF distribution. The concen-
tration parameters for all the nodes are commonly drawn
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Table 1. Dataset Statistics

Dataset #Instances  #Training #Testing  #True Clusters  #Features
TDT4 622 311 311 34 8895
TDTS 6366 3183 3183 126 20733
CNAE 1079 539 540 9 1079
K9 2340 1170 1170 20 21839
NEWS20 18744 11269 7505 20 53975
NIPS 2483 1241 1242 - 14036

from a log-normal distribution with mean m and variance
o2, The instance x; is drawn from the one of the leaf-nodes
z; (Note that the data X resides on the leaf-nodes). One can
also formulate slightly different models for e.g. by letting
all the sibling nodes share the same concentration parame-
ter; or by forming a hierarchy of concentration parameters
etc - we leave such models for future research. By drawing
the parameters of siblings from a common parent node, we
are enforcing the constraint that nodes which are closer to
each other in the hierarchy share similar parameters. Our
hope is that this would enable data to be organized into the
appropriate levels of granularity as defined by the hierar-
chy. For inference, we can develop a similar variational
inference methods with Empirical Bayes step to estimate
the prior parameters. The details are presented in the sup-
plementary material.

3.3. Temporal vMF mixtures (T-vMFmix)

Sometimes, a data collection can evolve over time. In such
cases, it will be useful to develop models that can capture
the evolution of clusters over time. We present Temporal
vMF mixture (T-vMFmix), a state-space model based on
the vMF distribution where the parameters of a cluster at a
given time point have evolved from the previous time point.
Given data across T time-points, X = {{z;}*,}{—, and a
fixed number of clusters K, the generative model is given
by,

m ~ Dirichlet(.|«),
p1,e ~ VMFE(pu-1,Co) k=1,2,3.K

wee ~ VMF(|pi—1,6,Co) t=2..T, k=1,2,3.K
zeg ~Mult(7m) t=1,2.T;i=1,2,..Ng,

Tii o VME( |z, 1 kn ) E=1,2.T; i=1,2,..N,

kr ~ logNormal(.|m,o?) k=1,2.K

The prior parameters are {y—1, Co, a,m,*}. The cluster-
specific concentration parameters x;’s are commonly
drawn from a log-Normal distribution with mean m and
variance 0. The mean parameters of the clusters at time
t are drawn from a vMF distribution centered around the
previous time ¢ — 1 with a concentration Co. This time-
evolution of the cluster parameters introduces a layer of
flexibility and enables T-vMFmix to accommodate changes
in the mean parameter within a given cluster. The Cj
parameter controls the sharpness of time-evolution; hav-
ing a large value of Cy ensures that cluster parameters are

more or less the same over time whereas a low value of
Cy enables the cluster parameter to fluctuate wildly be-
tween adjacent time points. Note that it is also possible
to incorporate time-evolution of the mixing distribution i.e.
Dirichlet(.|«) (similar to (Blei & Lafferty, 2006a))

K

ne~ N (ne-1, 271,

m¢ ~ Dirichlet(.|a)

k= exp(nk)/ Y exp(i,;)

j=1

For inference, we develop a mean-field variational ap-
proach with Empirical Bayes step for estimating the prior
parameters' . The prior parameter Cy in some sense acts
as a regularization term forcing the parameters of the next
time-step to be similar to the previous one. We recom-
mend setting the parameter manually than directly learning
it from data' .

4. Empirical Evaluation

Throughout our experiments we used several popular
benchmark datasets (Table 1) - TDT-{4,5} (Allan et al.,
1998) , CNAE ? , K9 *, NEWS20 * , and NIPS (Glober-
son et al., 2007). All datasets (except NIPS) have associ-
ated class-labels and are single-labeled i.e. each instance
is assigned to exactly one class-label. For TDT-{4,5}, we
used only those subset of documents for which relevance
judgements were available.

4.1. Metrics and Baselines

First and the most natural question that we would like
to answer is ‘are VMF mixtures any better than standard
Gaussian or Multinomial mixtures?’. Generally, compar-
ing two clustering models is in itself a hard problem.
Conclusive comparisons often involve detailed user-studies
(Boyd-Graber et al., 2009) which are time-consuming and
not always feasible. Therefore likelihood based compar-
isons have been commonly used as an alternative (Blei
& Lafferty, 2006a),(Blei & Lafferty, 2006b),(Teh et al.,
2006). Likelihood measures the predictive power of the
model on unseen data i.e. the generalization ability of the
model - a metric widely used for model selection.

However, since the support of the models are different
- VMF models are defined on unit-spheres, Multinomial

2 http://archive.ics.uci.edu/ml/datasets/ CNAE-9
3 http://www-users.cs.umn.edu/boley/ftp/PDDPdata/
* http://people.csail.mit.edu/jrennie/20Newsgroups/
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Table 2. Comparison of vMFmix vs other clustering models models with 30 clusters using NMI and ARI metrics'. Each result is
averaged over 10 different starting values for the algorithms. Bold face numbers indicate best performing method.
The results of the significance tests against B-vMFmix are denoted by a * for significance at 5% level, T for significance at 1% level.

Dataset TDT4 TDT5 CNAE K9 NEWS20

Method/Metric NMI | ARI | NMI | ARI | NMI | ARI | NMI | ARI | NMI | ARI
B-vMFmix 900 | 799 | .860 | .710 | .748 | .669 | .551 | .352 | .567 | .397
vMFmix 8807 | 7297 | 851 | 676" | .6507 | 4267 | 543* | 350 | .565 | .386'
K-means 842t | 6757 | 8271 | 591t | 605" | 311T | 4871 | 264t | 4927 | 2171
Gaussian Mixtures 857" | 693" | 833" | 617t | 6207 | 3577 | 482F | 2937 | 5187 | 2671
Multinomial Mixtures | 720" | 467t | 796" | 5807 | 726" | 528" | 487" | 3217 | .454% | 2001

Table 3. Average Likelihood on held-out test-set of B-vMFmix and vMFmix with 20, 30 clusters '. Each result is averaged over 10
different starting values for the algorithms. Bold face numbers indicate best performing method.

Dataset TDT4 TDT5 CNAE K9 NEWS20 NIPS
#Clusters Method
20 B-vMFmix | 8628821.5 | 235115133.1 | 942719.5 | 91683824.8 | 1637772501.4 | 58811701.0
vMFmix | 8387289.5 | 232542058.5 | 936675.9 | 91476580.9 | 1637630340.0 | 58671832.3
30 B-vMFmix | 8638797.7 | 235145615.9 | 944888.3 | 91694902.0 | 1638015418.8 | 58825835.7
vMFmix | 8300513.7 | 231946214.7 | 939730.9 | 91376189.0 | 1637866392.5 | 58600285.2

models are defined for non-negative integers etc, we can-
not use likelihood on held-out test set to compare vMF and
other non-vMF models (numerically, the likelihood of the
vMF models is around 5 orders of magnitude larger than
Multinomial or Gaussian mixtures). To address this issue,
we compare VMF and non-vMF clustering models based on
how well they are able to recover the ground-truth clusters
- the human assigned class-labels are assumed to be the
true ground truth clusters. We use six widely used eval-
uation metrics for this comparison - Normalized Mutual
Information (NMI) , Mutual Information (MI) , Rand In-
dex (RI) , Adjusted Rand Index (ARI) , Purity and Macro-
F1 (ma-F1). The definitions of the metrics can be found
in (Banerjee et al., 2006), (Steinley, 2004) and (Manning
et al., 2008). We compare the following 5 clustering meth-
ods,

e B-vMFmix: Our proposed Bayesian vMF mixture
model that extracts flat clusters.

e vMFmix: A mixture of vMF distributions described in

Section 2. Note that this is similar to the model developed
in (Banerjee et al., 2000), except that all clusters share the
same «. Using the same & for all clusters performed sig-
nificantly better than allowing cluster-specific x’s - this
may be due to the absence of Bayesian prior.

o K-means (KM): The standard k-means with euclidean
distance and hard-assignments.

o Gaussian Mixtures (GM): A mixture of Gaussian dis-
tributions with the means commonly drawn from a Nor-
mal prior and a single variance parameter for all clusters
- using cluster specific variances performed worse (even
with an Inverse gamma prior).

e Multinomial Mixture (MM): A graphical model
where each instance is represented as a vector of feature
counts, drawn from a mixture of X Multinomial distribu-
tions.

We used the Tf-Idf normalized data representation for
vMFmix, KM and GM, and feature counts representation
(without normalization) for MM. For all the methods, ev-
ery instance is assigned to the cluster with largest probabil-
ity before evaluation. Also, for the sake of a fair compar-
ison, we set the same random initial values of the cluster-
assignment variables in all the algorithms; the results of
each method is averaged over 10 different starting values.

4.2. Results

Table 2 summarizes the main results of B-vMFmix,
vMFmix, KM, GM and MM in the ground-truth based eval-
uation on five data sets. Due to the lack space we only
include the results for 30 clusters and two metrics NMI
and ARI °. Note that no separate test set is needed for this
type of evaluation. The parameters of all the probabilistic
models are estimated using MAP Inference. Among the six
methods, B-vMFmix achieves the best performance on all
the datasets. In fact, both B-vMFmix as well as vMFmix
show a consistently strong performance against other meth-
ods, suggesting that the clusters generated by vMF models
are indeed better aligned with the ground truth than the
non-vMF methods. To further validate our findings, we
conducted two-sided significance tests using paired t-test
between every method and B-vMFmix for both the metrics.
The results of the 10 different runs are considered as ob-

5 The complete set of results for varying number of clusters and
metrics is given in the supplementary material
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Figure 1. Relative improvement in likelihood of T-vMFmix, B-vMFmix models over vMFmix across time (with 30 clusters) - NIPS

dataset (left), NYTC-elections dataset (right)
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Figure 2. Average Likelihood of H-vMFmix, B-vMFmix and vMFmix for different input hierarchies. The number of clusters for B-
vMFmix, vMFmix is set to number of leaf nodes in the hierarchy - NEWS20 (left) , CNAE (right)

served samples. The null hypothesis is that there is no sig-
nificant difference between the methods. Our experiments
almost all the observed results are statistically significant.
Table 3 compares the performance of the basic vVMF mix-
ture (vMFmix) and the fully Bayesian vMF mixture model
(B-vMFmix) on six data sets. Since the support of both
models are the same, i.e. points on a unit-sphere, we can
directly compare them by looking at the predictive power
on a held out test-set. The B-vMFmix is trained through
variational inference (using Sampling method for the con-
centration parameters) and vMFmix is trained through the
EM algorithm. In our experiments, the sampling method
performed better than the bounding method with an in-
significant difference in running time, we therefore report
all results using the sampling based method. Due to lack
space we only include the results for K = 20,30 clusters
(refer supplementary material for full results). The results
show that B-vMFmix is able to assign a higher likelihood
for unseen data for all six datasets.

Figure 2 compares the performance of the hierarchical vMF
mixture model (H-vMFmix) with vMFmix and B-vMFmix.
We test H-vMFmix on 5 different hierarchies with vary-

ing depth of hierarchy and branch factor (branch factor
is the #children under each node). For example (height
h=3,branching factor b=4) is a hierarchy 3 levels deep
where each internal node in the hierarchy has 4 children
each. We also plot the performance of the corresponding
vMFmix and B-vMFmix; the number of clusters was set
equal to the number of leaf nodes in the hierarchy. Due to
the lack of space we plot the results for only two datasets -
NEWS20 and CNAE (refer supplementary material for full
results). The superior performance of H-vMFmix in terms
of predictive power strongly supports the rationale for hier-
archically shrinking the model parameters.

Finally, we compare the predictive power of T-vMFmix
with vMFmix and B-vMFmix on the following datasets
which are temporal in nature,

1. NIPS: This dataset outlined in table 1 has 2483 re-
search papers spread over a span of 17 years. The col-
lection was divided into 17 time-points based on year
of publication of each paper.

2. NYTC-elections: This is a collection of New York
Times news articles from the period 1996-2007 which
have been tagged ‘elections’. The collection was di-
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Figure 3. The change in vocabulary over the years for one of the topics from the NIPS dataset

Table 4. Comparison of different data representations using vMFmix and K-means using 30 clusters. Bold face numbers indicate best

performing data representation.

Dataset NEWS20 TDT5
Method | Representation/Metric | NMI | ARI NMI | ARI
vMFmix Tf-1df normalization | .565 .386 851 676
Tf normalization | .084 .027 .827 .657
K-means Tf-1df normalization | .492 213 827 | 591
Tf normalization | .089 | .0284 | .7993 | .551

vided into 11 time-points based on year of news re-
lease.

We test the models by predicting the likelihood of data in
the next time-point given all the articles from the beginning
to the current time-point, similar to the setup used in (Blei
& Lafferty, 2006a). For simplicity, we fix the number of
clusters to 30. For ease of visualization, we plot the rela-
tive improvement in log-likelihood of the B-vMFmix and
T-vMFmix models over the simple vMFmix model (this
is because the log-likelihood between adjacent time-points
are not comparable and fluctuate wildly). The results are
plotted in Fig 1 (the supplementary material contains the
results for 2 additional datasets). The results suggest that
T-vMFmix by taking the temporal nature into account, is
able to always assign a higher likelihood to the next time-
point than B-vMFmix and vMFmix. To visualize the the
cluster evolutionion over time, Fig 3 shows the progress of
the mean parameter for one the the clusters in NIPS. The
six words with largest weights in the mean parameter are
shown over time.

4.2.1. EFFECT OF TF-IDF NORMALIZATION

In order to fully understand the benefits of data representa-
tion using Tf-Idf normalization, we performed controlled
experiments on the two largest datasets - NEWS20 and
TDTS. We compared the performance of representing the
data using plain Tf normalization against Tf-Idf normaliza-
tion with ‘ltc’ ® based term weighting. The results of exper-
iments using vVMFmix and K-means (as reported in Table
4) show that on both the datasets, representing the data us-
ing Tf-Idf normalization gives significant performance ben-
efits.

® http://nlp.stanford.edu/IR-book/html/htmledition/
document-and-query-weighting-schemes-1.html

4.3. Experimental Settings

All our experiments were run on 48 core AMD opteron
6168 @ 1.92Ghz with 66GB RAM with full parallelization
wherever possible. The main computational bottleneck in
all our variational inference algorithm is the computation
of X and u. The updates for both these parameters can
be rewritten in terms of matrix products which can be ef-
ficiently computed using state-of-art parallel matrix multi-
plication tools. Refer section 10 of the supplementary ma-
terial for a thorough discussion of the computational issues.

5. Conclusion

In this paper we proposed a suite of powerful Bayesian
vMF models on unit-sphere manifolds as an alternative
to the popular approaches based on multinomial or Gaus-
sian distributions. Our models enable full Bayesian in-
ference with vMF models in flat, hierarchical and tem-
poral clustering. Our fast variational/sampling algorithms
make the methods scalable to reasonable data volumes with
high-dimensional feature spaces. The experiments provide
strong empirical support for the effectiveness of our ap-
proaches - all our models outperformed strong baselines
(k-means, Multinomial Mixtures and Latent Dirichlet Al-
location) by a large margin on most data sets. For future
work we would develop non-parametric versions of our
vMF models as well as handle multi-field information.
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