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Appendices for the paperThompson Sampling for Complex Online Problems —
Aditya Gopalan, Shie Mannor and Yishay Mansour

A. Proof of Theorem 1

Sampling from the posterior as proportional to exponentialweights: Let N;(a) be the number of times actianhas
been played up to (and including) timeAt any timet, the posterior distribution, over® is given by Bayes’ rule:

VSCO: m(S) = SZES / Wi (60 4)

with the weightiV;(9) of eachd being the likelihood of observing the history under
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where we sel,(a) == S°'_, 1{4; = a}. Let Z,(a, y) := ==t HA—elimv} andZy(a) = (Zi(a,y))yey € RV Thus

Z:(a) is the empirical distribution of the observations from pfegyactiona up to timet. The expression fol,(6) above
becomes
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Note that by definition|¥;(6*) = 1 at all timest — a fact that we use often in the analysis.

Instead of observiny; = f (X, A;) at each round, consider the following alternative probability spacetfoe stochastic
bandit in a time horizon, 2, . .. with probability measur@. First, for each actiom € .4 and each tim& = 1,2, ..., an
independent random variablg, (k) € ), is drawn withP [Q, (k) = y] = I(y;a,0*). Denote byQ = {Q.(k)}aca k>1
the|.A| x oo matrix of these independent random variables. Next, at eagidt = 1,2, .. ., playing actiond; = a yields
the observatioy; = Q,(N,(t) + 1). Thus, in this space,

J
Zt(a; y) = UNf,(a)(av y)a Wherer (aa y) = % Z 1{Qa(k) = y}

k=1

The following lemma shows that the distribution of sampléhpaeen by a bandit algorithrim both probability spaces
(i.e., associated with the measuiandP) is identical. This allows us to equivalently work in thetéatspace to make
statements about the regret of an algorithm.

Lemma 1. For any action-observation sequengs, v;), t = 1,...,T of a bandit algorithm,

P V1<t<T(A,Yy) = (an,y)] =PV1 <t <T (A, Ys) = (ag, )] -
Henceforth, we will drop the tilde of and always work in the latter probability space, involvihg tatrix@).
Lemma 2. For any suboptimal action # a*,

0, = min D(07||0,) > 0
9es!
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Let N/(a) (resp. N/ (a)) be the number of times that a parameter has been drawnSfofresp. S”'), so thatNV;(a) =
N/(a) + N/ (a).

The following self-normalized, uniform deviation boundntwls the empirical distribution of each ro@,(-) of the
random reward matrig). It is a version of a bound proved iAlbasi-Yadkori et al.2011).

Theorem 3. Leta € A,y € Y andd € (0, 1). Then, with probability at least — §v/2,

Vk
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1
Vk>1 |Uk(a,y) —U(y;a,07)] <4, log (

Putc := log %, andp(z) = pe(x) := 4y /c+ % for z > 0. It follows that the following “good data” event occurs
with probability at leasf1 — §+/2):

G=6(0) = {Yac A vy e YV 21 [Uilay) -t < D).

Lemma 3. Fix e € (0,1). There exisi\, n* > 0, not depending off’, so that the following is true. Forany < ©,a € A
andy € ), under the event,

1. Atall timest > 1,

ly;a,6%)

Ni(a)D(0;10a) + Ne(a) > (Zi(a,y) — 1(y; a,0%)) log 1(y: a,0)
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2. If Ny(a) > n*, then

(y;a,0%)

1(y;a,0) > (1 —€)Ni(a)D(0,][0a).
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Proof. Under@G, we have
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> Ny(a)D(0;1162) — Ne(a) Y | Zi(a,y) = (y;a,67)]
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For afixedd € ©, a € A, the expression above diverges+oo, viewed as a function aV,(a), asN,(a) — oo (except
whend, = 07, in which case the expression is identicdlly Hence, the expression achieves a finite minimuy , (not

depending o) over non-negative integers; (a) € Z*. Since there are only finitely many parametgérs ©, it follows

that if we set\ := maxgpce ac.4 Ao,q«, then the above expression is bounded below-Byuniformly acros®. This proves
the first part of the lemma.

To show the second part, notice again that for figed © anda € A, there exists:; , > 0 such that

@)va)_ flo

yey

' < exD(0;]|0.), = >ng,

sincep(z) = o(z). Settingn* := maxyce,aca 1y, then completes the proof of the second part. O



Thompson Sampling for Complex Online Problems

A.1. Regret due to sampling fromS?/
The result of Lemma& implies that under the event, and at all timeg > 1:

W(0)x(0F) (07

m(07) = Jo Wi(6)m(dg) — [ Wi(6)m(db)

Tr(a*) — w\  —
> f@ exp ()\|_A|)7T(d9) = 7T<9 )6 A

=p", say (7)

Also, under the eventt?, the posterior probability of € S/ at all timest can be bounded above using Lem8and the
basic bound in®):

Wi (0)m(6) Wi (0)m(6)
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In the above, the penultimate inequality is by Lem8mepplied to all actions # a*, and the final inequality follows in a

(0 Al

< W exp (—Nt(a*)D(HZ*wa*) —+ p(Nt(a)) Nt(a*) Z

yey

manner similar to®), for actiona*. Lettingd := % we have that under the evefit for a # o* andf € S”,
g U(y;a*,6%)
mi(0) < dr(0) exp | —Ni(a*)D(0;-10a+) + p(Ne(a))v/Nie(a®) Y [log === | . 8
7 Wysar,0)

Recall that by definition, ang € S/ with a # a* can be resolved apart frofif in the actiona™, i.e., D(607.]|0,) > &.
Moreover, the discrete prior assumption (Assumpfpmplies that¢ > 0. Using this, we can bound the right-hand side
of (8) further under the ever:

7:(0) < dr(6) exp (—5Nt< )+ 20(Vo(a)) v/ No(a) log ‘F) ©)

) (10)

We can now estimate, using the conditional version of Maskmequality, the number of times that parameters frgjn
are sampled under “good dat&"

Integrating @) overd € S/ and noticing thatr(S!) < 1 gives, unde(,

m(Sy) < dexp (—éNt( +2p(Ni(a))/ Ni(a log

< 'Y E{0, €8} |Gl =0t E[m(S)) | G]

t=1 t=1

P[Z1{9tesg}>n|c:

t=1

<n! i (1 ANE {dexp <—§Nt( + 2p(Ni¢(a))/ Ne(a log ) ‘ G}) , (12)
t=1

where the final inequality is bylQ) and the fact that; (S”) < 1.13

¢ A b denotes the minimum af andb.
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At each timet, if we let F; denote ther-algebra generated by the random variallgs, A;,Y;) : i < t}, then
E [N | G| =E[E [ | 7_1,6] | 6]
g [eenOg [T | 5] | ]
<E e Nir@E [0 | 7 6 | 6]
0 =0= A, =a*)

—E [e_EN“l(a*) (me(07)e ¢ + 1 —m(67)) | G}

<E[em ) (pret o1 -p) | G

= (et 1= p ) E e | gl

where, in the penultimate step, we us€0*) > p* - 1 from (7). lterating this estimate and using it ihl) together with

the trivial bound,/N;(a*) < v/t gives
)

Sincep*e™¢ + 1 — p* < 1 andp(t)y/t = o(t), the sum above is dominated by a geometric series afterjimitanyt, and
is thus a finite quantityr < oo, say. (Note thatv does not depend dh.) Replacing’ by ﬁ and taking a union bound
over alla # a*, this proves

P Z 1{6, € S/} > n | G] <n! Z (1 Ad(pre ™t +1 —p*)texp <2p(t)\/1?10g

1—
r
t=1 t=1

Lemma 4. There existsx < oo such that

Plogera S 10 e sy > 0‘5“4'] <.
t=1

A.2. Regret due to sampling from.S’,

Forf € ©, a € A, defineby , : Rt — R by

bo.o(x) = —A, x<n*
0.0\ =0 (1= €a2D(0]160,), x> n*,

where\ andn* satisfy the assertion of Lemn®a Thus, by Lemm&, underG, and for alld € ©,

Wt(g) <e > acabo.a(Ni(a)) <e” 2aca be,a(]\fff(a))7

where the last inequality is becaudg(a) = N/(a) + N/ (a), and becausky , () is monotone non-decreasingan
Note: In what follows, we assume thdt > 0 is large enough such thiatg 7" > % holds.

We proceed to define the following sequence of non-decrgasapping times, and associated sets of actions, for tree tim
horizon1,2,...,T.

Letry :=1and Ay :=0. Foreachk =1,...,|A| — 1, let

Tk -— min Thk—1 StS T
st ap ¢ A1 U{a"},
k-1 (12)
: / % y N 1+¢
win 3 N, (@)D, [100,)+ Y N{@)DW@I10) > 1 logT.
k m=1 agAp_1

— €

In other words, for each, A; represents a set of “eliminated” suboptimal actionsis the first time after,,_{, when
some suboptimal action (which is not already eliminated3 géminated in the sense of satisfying the inequalitylig) (
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Essentially, the inequality checks whether the condition

> N/(a)D(8;]6a) ~ log T

a#a*
is met for all particle® < .5}, at timet, with a slight modification in that the play couiV (a) is “frozen” to N;,  (a,,) if
actiona has been ellmlnated at an earlier timg < ¢, and the introduction of the facte}rL to the right hand 5|de

In case more than one suboptimal action is eliminated foffiteetime atr,, we use a fixed tie-breaking rule i to
resolve the tie. We then put

A = A1 U {ak}.
Thus,/o <71 < ... < Tjaj-1 <T,andAy C A; C... QA‘A|,1 = A
For each actiom # a*, by definition, there exists a uniqug for which a is first eliminated aty, i.e., Ax \ Ax_1 = a.
Let7(a) := 7%.

The following lemma states that after an actiois eliminated, the algorithm does not sample fr8frmore than a constant
number of times.

Lemmab. If log T > M| A|, then

3 4
PIGVE Y 1{hes,}>-"5|<d
t=7r+1 (0 )

Proof. Observe that unde¥, wheneverl” > t > 1, everyf € S;k satisfies

W, (0 <exp( > bo.a(N )

acA
< exp (— > (1= eN{(a)D(6;]]6a) — A)) ( (1—€) Y N/(a)D(0;]16a) + AIA>
acA acA
gexp( lerN’ am)D (0} |l0a,)—(1—€) > N(a 0|6))+)\|A|>
m=1 a¢ A1

1+e¢
< —(1— ——
_exp< (1 e)l_elogT—FelogT) T
The second inequality above is because the definitidg gfz) implies thatve > 0 (1 — €)zD(0%]]0,) — bg.o(z) < A
The penultimate inequality above is due to the fact that fiyrra < k, we haver,,, < 7, < ¢, implying thatN/(a,,) >

N, (am). We now estimate

E[1{t > 7 }1{0, € S, } | G] =E [E[1{t > 7 }1{0, € S, } | G. 7] | G]

Js; Wi(0)m(df)
[1{t > g} (S | G] E [1{t > Tk}f—
S)
T N T-1
<E |:1{t > Tk}m | G_ < 71-(9*)’
which implies that
E| Y 1oes,} |G| =S E[{r>n}1{6es,}|d] < %
t=7r+1 i t=1

Thus,

T
1
1@[ > {6 €S} > 570 |G| <.

t=7r+1
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Replacing by ﬁf\‘ and taking a union bound ovér= 1,2, ... |A| — 1 proves the lemma. O

Now we bound the number of plays of suboptimal actions urfueetent

H:=G ﬂ{ﬂa#a*il{@ ES/’}<Q|AI}D{Vk i 1{0, € S, } < A }
| LSS

t=1 t=7+1

which, according to the results of Theor@nlLemma4 and Lemmab, occurs with probability at leadt — (6v/2 + 26).
Under the event/, we have

|A]-1
S Np@) = 3 Niar)
a#a* k=1
[A]-1 [A]-1
=S N+ S (Np(ar) — N (ag)
k=1 k=1
[A]-1 [Al-1
=Y N, @)+ > Z 1{6, € S}, }
k=1 k=1 t=7p+1
|Al-1

Z |A|2 .
m(0*)
Lemma 6. Under H, 32" NZ, (ay) < Cr, whereCy solves

lA]-1

C(logT') := max Z zr(ak)
k=1

stz e ZAT < {0} ar € A\ {0}, 1 <k < |A] -1,
2 = 2k, zilag) = zi(ag), i > k,

V1< gk < |A]—1: (13)

min  (zx, Dg) > +elogT,
—€

0es!,,

. 1+e€
i _ @ - -
orené?k (zr; — eV, Dy) < T log T
Proof. With regard to the definition of the, anday, in (12), if we take

Qap = Ak, 1§k§|A‘*1,

and

ala) = N;(a)(a), 7(a) < 7k,
k( ) { / (

N} (a), 7(a)> 7,
then it follows, from (2), that thez;, anda, satisfy all the constraints of the optimization problebh3)( We also have
P 2 (k) = ST N2 (ag). This proves the lemma, O

B. Proof of Corollary 1

The optimal action (in this case a subsetyis= {N — M + 1,..., N}. It can be checked that the assumptidr3are
verified, thus the boundJ applies and we will be done if we estimaiélog T').

The essence of the proof is to first partition the space ofgtiinal actions (subsets) according to the least-indexclzasi
that they contain, i.e., far=1,2,...,N — M, let

A;:={a C[N]:a# a",min{j € a} =i}
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be all the actions whose least-index (or “weakest”) ariinfs

Take any sequenciy 1", {ay})Y; " feasible for 8). Fix 1 < i < N — M and consider the SUR,., . 4, 2r(ax)-
We claim that this does not exceéd+ (ii) m log T If, on the contrary, it does, then piit:= max{k :

ar € A;}. Take any moded € S/, . We must haveD(u,-||0,-) = 0. Since the KL divergence due to observing a tuple
of M independent rewards is S|mply the sum of fheindividual (binary) KL divergences, we get thét = 1, for all

Jj = N—M+1. However, the optimal action féris a;, containing the basic arm Hence, we gettha##; > uny_ar41 > i,
which implies thatD (u;|0;) > D (il |n—nr+1)-

It now remains to estimate

A N
(2, — ™, Do) => (> zi(a) = ieay, D(1165))

> <Z zp(a) — 1) D(11i105)
> < z(a) — 1> D(pillpn—nrr+1)
a€A;

= ( Z zi(ak) — 1) D(pil|ppn—nr41)

kiap€A;
> log T,

by hypothesis. This violates the final inequality 8§ &nd yields the desired contradiction. Since the abovenaggti is
valid foranyl < ¢ < N — M, summing over all suchcompletes the proof.

C. Proof of Proposition 2 & Corollary 2

Lemma 7. Let T be large enough such thataxgeo o4 D(0%]]0,) < fji logT. Then, the optimization problen3)(
admits the following upper bound:

C(logT) < max ||z|]1
st zeRMIT {0},
a€ Aa+#a",

. 2(1+¢) (14)
Dy) < log T
S

1
<1+€)logT, Va e A a+a".
— €

2
< a) < —
O_Z(a)_(S

a

Proof. Take a feasible solutlopﬁzk,ak}l =1 for the optimization problem3). We will show thatz = z 4, and
a = ay 4)— satisfy the constraints.¢) above and yield the same objective function value in botimapation problems.

First,
A1 A1
Izl = > =(a) Z Za-1ar) = Y z(ar),
acA,a#a* k=1

asz4)—1(ar) > z(ax), forall k < |A| — 1, by (3). This shows that the objective functions of bo8) &nd (L4) are equal
at{z, a; };2" and(z, a) respectively.

This covers all ofA \ {a*} since every suboptimal set must contain a basic arm of index M or lesser.
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Next, for anyl < j < |A| — 1 and the unit vectoe/), we have

min (z,Dp) = min (2, Dp)

9es!, 0es;,
< mi —eW. D D(676,
< et Dob g POl
1 1 2(1
< +610gT+ +€logT:wlogT.
1—c¢ 1—e¢ 1—ce€

This shows that the penultimate constraintid)(is satisfied. For the final constraint ib4), fix 1 < j < |A4] — 1, so that
we have

) 2(1+¢)
Oa; - 2(aj) = 0q, - zj(aj) < Inin (zj,Dg) < . log T,
exactly as in the preceding derivation. This implies tht) < % (}fz) log T forall a # a*. O

Proposition 2. LetT be large enough such thataxpco oc 4 D(0]]0,) < }fz log T'. Suppose

A< mind, = min D(6]|0,).
< min dq e (021104)

Suppose also that € Z* is such that for every # o* andf € S,
[{a € A:a+a*,D(0:]6:) > A} > L,
i.e., at leastL coordinates ofDy (excluding the.A|-th coordinates*) are at leastA. Then,

logT.

Proof of Propositior2. Consider a solutiofz, a) to arelaxationof the optimization probleml() obtained by replacing;
with A and Dy with D), := min(Dy, A-1) < Dy 5. We claim thai|z||; = (1, 2) < ('A‘T*L) xwherey := 2059 Jog T
If not, lety = x (x.---, x,0), and observe that

<D/0’y - Z> - <Déay> - <D/9,Z>

1
>\ LA+ —x=x(L-1).

A
But then,
<13y - Z> = <17y> - <17'Z>
A=) XA - L) x(L—1)
A A A
_ (Dhy =)
- A
A1 y—

<BAITD ),

sinceD; < A -1 by definition andz < y by hypothesis. This is a contradiction. O

Playing Subsets with Max reward: Let 3 € (0,1), and suppose th& = {1 — g% 1 - gf=1 . 1-p% 1 B}V, for
positive integersk and N. Consider anV armed Bernoulli bandit with arm parameterss ©. The complex actions are
all size M subsets of théV basic arms)M < YL, Let fiyi, 1= mingea [1;, (1 — 11:)-

BHere1 represents an all-ones vector of dimensidnand the minimum is taken coordinatewise. Also, a solution exists since the
objective is continuous and the feasible region is compact.
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Proof of Corollary2. Since the reward from playing a subgets the maximum (equivalently, the Boolean OR) value,
the marginal KL divergence along actianis simply the Bernoulli KL divergence for the product of tharameters:

D(0;[|0a) = D(pallfa) = D (HiEa(l — )| HiEa(l - 92))
Let us estimate
A :=min{D(uu||0s) : 0 € ©,a € A, D(14]]0,) > 0}.

If u; =1 — p" andf; = 1 — 6% for integersr,;, s;,© = 1,2,..., N, then Pinsker’s inequality yields

D> 2 (T -0 - Tt - 2))

i€a i€a

2 2
YicaTi _ B2 a5i>
log 2 (ﬂ : fue

[\)

2
ﬂ221€a i (1 — ﬁZiEasi_Ziea’ri) .

log 2

D(uq||0,) > 0ifand only if | > — > ica il > 1. This implies, together with the above, that

zea

2 (]
A > 21u’min(1 ﬁ) )
- log 2
Next, we claim that for any, # 6 € ©, D(u4||f,) > 0 for at leastZ = (},_}) — 1 size M subsets/actions. This is

because if otherwise, thén,_, r; = >, ., s; foratleast(},) — L = (1) — (3 %) +1 = (V,;') + 1 subsets. However,
a combinatorial resultihlswede et a].2003 states that the maximum number of weiglitvertices of theV dimensional
hypercube (in our case, a sizé subset corresponds to a weightvertex) thatdo notspanN dimensions is(Nk}l). This
forcesr; = r; for all i € [IN] and hence: = 6, a contradiction.

Now, we can apply Propositiadwith A and L as above. This gives us that férlarge enough, the total number of arm
plays is bounded above, with probability at least ¢, by

sovtin) (129 [(5) - (31) ] s

= B3 + (log2) Gi’i) [(NA; 1) +1} m




