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A. Proof of Theorem 1

Sampling from the posterior as proportional to exponentialweights: LetNt(a) be the number of times actiona has
been played up to (and including) timet. At any timet, the posterior distributionπt overΘ is given by Bayes’ rule:

∀S ⊆ Θ : πt(S) =
Wt(S)

Wt(Θ)
, Wt(S) :=

∫

S

Wt(θ)π(dθ), (4)

with the weightWt(θ) of eachθ being the likelihood of observing the history underθ:

Wt(θ) :=
t
∏

i=1

[

l(Yi;Ai, θ)

l(Yi;Ai, θ∗)

]

=
∏

a∈A

∏

y∈Y

t
∏

i=1

[

l(y; a, θ)

l(y; a, θ∗)

]1{Ai=a,Yi=y}

= exp



−
∑

a∈A

∑

y∈Y

t
∑

i=1

1{Ai = a, Yi = y} log l(y; a, θ
∗)

l(y; a, θ)





= exp



−
∑

a∈A

Nt(a)
∑

y∈Y

∑t
i=1 1{Ai = a, Yi = y}

Nt(a)
log

l(y; a, θ∗)

l(y; a, θ)



 ,

where we setNt(a) :=
∑t

i=1 1{Ai = a}. LetZt(a, y) :=
∑t

i=1 1{Ai=a,Yi=y}

Nt(a)
, andZt(a) := (Zt(a, y))y∈Y ∈ R

|Y|. Thus
Zt(a) is the empirical distribution of the observations from playing actiona up to timet. The expression forWt(θ) above
becomes

Wt(θ) = exp



−
∑

a∈A

Nt(a)D(θ∗a||θa)−
∑

a∈A

Nt(a)
∑

y∈Y

(Zt(a, y)− l(y; a, θ∗)) log
l(y; a, θ∗)

l(y; a, θ)



 . (5)

Note that by definition,Wt(θ
∗) = 1 at all timest – a fact that we use often in the analysis.

Instead of observingYt = f(Xt, At) at each roundt, consider the following alternative probability space forthe stochastic
bandit in a time horizon1, 2, . . . with probability measurẽP. First, for each actiona ∈ A and each timek = 1, 2, . . ., an
independent random variableQa(k) ∈ Y, is drawn withP [Qa(k) = y] = l(y; a, θ∗). Denote byQ ≡ {Qa(k)}a∈A,k≥1

the|A| ×∞ matrix of these independent random variables. Next, at eachroundt = 1, 2, . . ., playing actionAt = a yields
the observationYt = Qa(Na(t) + 1). Thus, in this space,

Zt(a, y) = UNt(a)(a, y), whereUj(a, y) :=
1

j

j
∑

k=1

1{Qa(k) = y}.

The following lemma shows that the distribution of sample paths seen by a bandit algorithmin both probability spaces
(i.e., associated with the measuresP andP̃) is identical. This allows us to equivalently work in the latter space to make
statements about the regret of an algorithm.

Lemma 1. For any action-observation sequence(at, yt), t = 1, . . . , T of a bandit algorithm,

P̃ [∀1 ≤ t ≤ T (At, Yt) = (at, yt)] = P [∀1 ≤ t ≤ T (At, Yt) = (at, yt)] .

Henceforth, we will drop the tilde oñP and always work in the latter probability space, involving the matrixQ.

Lemma 2. For any suboptimal actiona 6= a∗,

δa = min
θ∈S′

a

D(θ∗a||θa) > 0.
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Let N ′
t(a) (resp.N ′′

t (a)) be the number of times that a parameter has been drawn fromS′
a (resp.S′′

a ), so thatNt(a) =
N ′

t(a) +N ′′
t (a).

The following self-normalized, uniform deviation bound controls the empirical distribution of each rowQa(·) of the
random reward matrixQ. It is a version of a bound proved in (Abbasi-Yadkori et al., 2011).

Theorem 3. Leta ∈ A, y ∈ Y andδ ∈ (0, 1). Then, with probability at least1− δ
√
2,

∀k ≥ 1 |Uk(a, y)− l(y; a, θ∗)| ≤ 4

√

√

√

√

1

k
log

(√
k

δ

)

.

Putc := log |Y||A|
δ , andρ(x) ≡ ρc(x) := 4

√

c+ log x
2 for x > 0. It follows that the following “good data” event occurs

with probability at least(1− δ
√
2):

G ≡ G(c) :=

{

∀a ∈ A ∀y ∈ Y ∀k ≥ 1 |Uk(a, y)− l(y; a, θ∗)| ≤ ρ(k)√
k

}

.

Lemma 3. Fix ǫ ∈ (0, 1). There existλ, n⋆ ≥ 0, not depending onT , so that the following is true. For anyθ ∈ Θ, a ∈ A
andy ∈ Y, under the eventG,

1. At all timest ≥ 1,

Nt(a)D(θ∗a||θa) +Nt(a)
∑

y∈Y

(Zt(a, y)− l(y; a, θ∗)) log
l(y; a, θ∗)

l(y; a, θ)
≥ −λ,

2. IfNt(a) ≥ n⋆, then

Nt(a)D(θ∗a||θa) +Nt(a)
∑

y∈Y

(Zt(a, y)− l(y; a, θ∗)) log
l(y; a, θ∗)

l(y; a, θ)
≥ (1− ǫ)Nt(a)D(θ∗a||θa).

Proof. UnderG, we have

Nt(a)D(θ∗a||θa) +Nt(a)
∑

y∈Y

(Zt(a, y)− l(y; a, θ∗)) log
l(y; a, θ∗)

l(y; a, θ)

≥ Nt(a)D(θ∗a||θa)−Nt(a)
∑

y∈Y

|Zt(a, y)− l(y; a, θ∗)|
∣

∣

∣

∣

log
l(y; a, θ∗)

l(y; a, θ)

∣

∣

∣

∣

≥ Nt(a)D(θ∗a||θa)− ρ(Nt(a))
√

Nt(a)
∑

y∈Y

∣

∣

∣

∣

log
l(y; a, θ∗)

l(y; a, θ)

∣

∣

∣

∣

. (6)

For a fixedθ ∈ Θ, a ∈ A, the expression above diverges to+∞, viewed as a function ofNt(a), asNt(a) → ∞ (except
whenθa = θ∗a, in which case the expression is identically0.) Hence, the expression achieves a finite minimum−λθ,a (not
depending onT ) over non-negative integersNt(a) ∈ Z

+. Since there are only finitely many parametersθ ∈ Θ, it follows
that if we setλ := maxθ∈Θ,a∈A λθ,a, then the above expression is bounded below by−λ, uniformly acrossΘ. This proves
the first part of the lemma.

To show the second part, notice again that for fixedθ ∈ Θ anda ∈ A, there existsn⋆θ,a ≥ 0 such that

ρ(x)
√
x
∑

y∈Y

∣

∣

∣

∣

log
l(y; a, θ∗)

l(y; a, θ)

∣

∣

∣

∣

≤ ǫxD(θ∗a||θa), x ≥ n⋆θ,a

sinceρ(x) = o(x). Settingn⋆ := maxθ∈Θ,a∈A n
⋆
θ,a then completes the proof of the second part.
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A.1. Regret due to sampling fromS′′
a

The result of Lemma3 implies that under the eventG, and at all timest ≥ 1:

πt(θ
∗) =

Wt(θ
∗)π(θ∗)

∫

Θ
Wt(θ)π(dθ)

=
π(θ∗)

∫

Θ
Wt(θ)π(dθ)

≥ π(θ∗)
∫

Θ
exp (λ|A|)π(dθ) = π(θ∗)e−λ|A| ≡ p∗, say. (7)

Also, under the eventG, the posterior probability ofθ ∈ S′′
a at all timest can be bounded above using Lemma3 and the

basic bound in (6):

πt(θ) =
Wt(θ)π(θ)

∫

Θ
Wt(ψ)π(dψ)

≤ Wt(θ)π(θ)

π(θ∗)

=
π(θ)

π(θ∗)
exp



−
∑

a∈A

Nt(a)D(θ∗a||θa)−
∑

a∈A

Nt(a)
∑

y∈Y

(Zt(a, y)− l(y; a, θ∗)) log
l(y; a, θ∗)

l(y; a, θ)





≤ π(θ)eλ|A|

π(θ∗)
exp



−Nt(a
∗)D(θ∗a∗ ||θa∗)−Nt(a

∗)
∑

y∈Y

(Zt(a
∗, y)− l(y; a∗, θ∗)) log

l(y; a∗, θ∗)

l(y; a∗, θ)





≤ π(θ)eλ|A|

π(θ∗)
exp



−Nt(a
∗)D(θ∗a∗ ||θa∗) + ρ(Nt(a))

√

Nt(a∗)
∑

y∈Y

∣

∣

∣

∣

log
l(y; a∗, θ∗)

l(y; a∗, θ)

∣

∣

∣

∣



 .

In the above, the penultimate inequality is by Lemma3 applied to all actionsa 6= a∗, and the final inequality follows in a
manner similar to (6), for actiona∗. Lettingd := eλ|A|

π(θ∗) , we have that under the eventG, for a 6= a∗ andθ ∈ S′′
a ,

πt(θ) ≤ dπ(θ) exp



−Nt(a
∗)D(θ∗a∗ ||θa∗) + ρ(Nt(a))

√

Nt(a∗)
∑

y∈Y

∣

∣

∣

∣

log
l(y; a∗, θ∗)

l(y; a∗, θ)

∣

∣

∣

∣



 . (8)

Recall that by definition, anyθ ∈ S′′
a with a 6= a∗ can be resolved apart fromθ∗ in the actiona∗, i.e.,D(θ∗a∗ ||θa∗) ≥ ξ.

Moreover, the discrete prior assumption (Assumption2) implies thatξ > 0. Using this, we can bound the right-hand side
of (8) further under the eventG:

πt(θ) ≤ dπ(θ) exp

(

−ξNt(a
∗) + 2ρ(Nt(a))

√

Nt(a∗) log
1− Γ

Γ

)

. (9)

Integrating (9) overθ ∈ S′′
a and noticing thatπ(S′′

a ) ≤ 1 gives, underG,

πt(S
′′
a ) ≤ d exp

(

−ξNt(a
∗) + 2ρ(Nt(a))

√

Nt(a∗) log
1− Γ

Γ

)

. (10)

We can now estimate, using the conditional version of Markov’s inequality, the number of times that parameters fromS′′
a

are sampled under “good data”G:

P

[

∞
∑

t=1

1{θt ∈ S′′
a} > η

∣

∣ G

]

≤ η−1
∞
∑

t=1

E
[

1{θt ∈ S′′
a}
∣

∣ G
]

= η−1
∞
∑

t=1

E
[

πt(S
′′
a )
∣

∣ G
]

≤ η−1
∞
∑

t=1

(

1 ∧ E

[

d exp

(

−ξNt(a
∗) + 2ρ(Nt(a))

√

Nt(a∗) log
1− Γ

Γ

)

∣

∣ G

])

, (11)

where the final inequality is by (10) and the fact thatπt(S′′
a ) ≤ 1.13

13a ∧ b denotes the minimum ofa andb.
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At each timet, if we letFt denote theσ-algebra generated by the random variables{(θi, Ai, Yi) : i ≤ t}, then

E

[

e−ξNt(a
∗)
∣

∣ G
]

= E

[

E

[

e−ξNt(a
∗)
∣

∣ Ft−1, G
]

∣

∣ G
]

= E

[

e−ξNt−1(a
∗)
E

[

e−ξ1{At=a∗}
∣

∣ Ft−1, G
]

∣

∣ G
]

≤ E

[

e−ξNt−1(a
∗)
E

[

e−ξ1{θt=θ∗}
∣

∣ Ft−1, G
]

∣

∣ G
]

(θt = θ ⇒ At = a∗)

= E

[

e−ξNt−1(a
∗)
(

πt(θ
∗)e−ξ + 1− πt(θ

∗)
) ∣

∣ G
]

≤ E

[

e−ξNt−1(a
∗)
(

p∗e−ξ + 1− p∗
) ∣

∣ G
]

=
(

p∗e−ξ + 1− p∗
)

E

[

e−ξNt−1(a
∗)
∣

∣ G
]

,

where, in the penultimate step, we useπt(θ∗) ≥ p∗ · 1G from (7). Iterating this estimate and using it in (11) together with
the trivial bound

√

Nt(a∗) ≤
√
t gives

P

[

∞
∑

t=1

1{θt ∈ S′′
a} > η

∣

∣ G

]

≤ η−1
∞
∑

t=1

(

1 ∧ d
(

p∗e−ξ + 1− p∗
)t
exp

(

2ρ(t)
√
t log

1− Γ

Γ

))

.

Sincep∗e−ξ + 1− p∗ < 1 andρ(t)
√
t = o(t), the sum above is dominated by a geometric series after finitely manyt, and

is thus a finite quantityα < ∞, say. (Note thatα does not depend onT .) Replacingδ by δ
|A| and taking a union bound

over alla 6= a∗, this proves

Lemma 4. There existsα <∞ such that

P

[

G, ∃a 6= a∗
∞
∑

t=1

1{θt ∈ S′′
a} >

α|A|
δ

]

≤ δ.

A.2. Regret due to sampling fromS′
a

Forθ ∈ Θ, a ∈ A, definebθ,a : R+ → R by

bθ,a(x) :=

{

−λ, x < n⋆

(1− ǫ)xD(θ∗a||θa), x ≥ n⋆,

whereλ andn⋆ satisfy the assertion of Lemma3. Thus, by Lemma3, underG, and for allθ ∈ Θ,

Wt(θ) ≤ e−
∑

a∈A bθ,a(Nt(a)) ≤ e−
∑

a∈A bθ,a(N
′
t(a)),

where the last inequality is becauseNt(a) = N ′
t(a) +N ′′

t (a), and becausebθ,a(x) is monotone non-decreasing inx.

Note: In what follows, we assume thatT > 0 is large enough such thatlog T ≥ λ|A|
ǫ holds.

We proceed to define the following sequence of non-decreasing stopping times, and associated sets of actions, for the time
horizon1, 2, . . . , T .

Let τ0 := 1 andA0 := ∅. For eachk = 1, . . . , |A| − 1, let

τk := min τk−1 ≤ t ≤ T

s.t. ak /∈ Ak−1 ∪ {a∗},

min
θ∈S′

ak

k−1
∑

m=1

N ′
τm(am)D(θ∗am

||θam
) +

∑

a/∈Ak−1

N ′
t(a)D(θ∗a||θa) ≥

1 + ǫ

1− ǫ
log T.

(12)

In other words, for eachk, Ak represents a set of “eliminated” suboptimal actions.τk is the first time afterτk−1, when
some suboptimal action (which is not already eliminated) gets eliminated in the sense of satisfying the inequality in (12).
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Essentially, the inequality checks whether the condition
∑

a 6=a∗

N ′
t(a)D(θ∗a||θa) ≈ log T

is met for all particlesθ ∈ S′
ak

at timet, with a slight modification in that the play countN ′
t(a) is “frozen” toNτm(am) if

actiona has been eliminated at an earlier timeτm ≤ t, and the introduction of the factor1+ǫ
1−ǫ to the right hand side.

In case more than one suboptimal action is eliminated for thefirst time atτk, we use a fixed tie-breaking rule inA to
resolve the tie. We then put

Ak := Ak−1 ∪ {ak}.
Thus,τ0 ≤ τ1 ≤ . . . ≤ τ|A|−1 ≤ T , andA0 ⊆ A1 ⊆ . . . ⊆ A|A|−1 = A.

For each actiona 6= a∗, by definition, there exists a uniqueτk for which a is first eliminated atτk, i.e.,Ak \ Ak−1 = a.
Let τ(a) := τk.

The following lemma states that after an actiona is eliminated, the algorithm does not sample fromS′
a more than a constant

number of times.

Lemma 5. If log T ≥ λ|A|, then

P

[

G, ∀k
T
∑

t=τk+1

1{θt ∈ S′
ak
} > |A|

δπ(θ∗)

]

≤ δ.

Proof. Observe that underG, wheneverT ≥ t > τk, everyθ ∈ S′
ak

satisfies

Wt(θ) ≤ exp

(

−
∑

a∈A

bθ,a(N
′
t(a))

)

≤ exp

(

−
∑

a∈A

((1− ǫ)N ′
t(a)D(θ∗a||θa)− λ)

)

= exp

(

−(1− ǫ)
∑

a∈A

N ′
t(a)D(θ∗a||θa) + λ|A|

)

≤ exp



−(1− ǫ)

k−1
∑

m=1

N ′
τm(am)D(θ∗am

||θam
)− (1− ǫ)

∑

a/∈Ak−1

N ′
t(a)D(θ∗a||θa) + λ|A|





≤ exp

(

−(1− ǫ)
1 + ǫ

1− ǫ
log T + ǫ log T

)

=
1

T
.

The second inequality above is because the definition ofbθ,a(x) implies that∀x ≥ 0 (1 − ǫ)xD(θ∗a||θa) − bθ,a(x) ≤ λ.
The penultimate inequality above is due to the fact that for anym ≤ k, we haveτm ≤ τk ≤ t, implying thatN ′

t(am) ≥
N ′

τm(am). We now estimate

E
[

1{t > τk}1{θt ∈ S′
ak
}
∣

∣ G
]

= E
[

E
[

1{t > τk}1{θt ∈ S′
ak
}
∣

∣ G,Ft

] ∣

∣ G
]

= E
[

1{t > τk}πt(S′
ak
)
∣

∣ G
]

= E



1{t > τk}
∫

S′
ak

Wt(θ)π(dθ)
∫

Θ
Wt(θ)π(dθ)

∣

∣ G





≤ E

[

1{t > τk}
T−1

π(θ∗)

∣

∣ G

]

≤ T−1

π(θ∗)
,

which implies that

E

[

T
∑

t=τk+1

1{θt ∈ S′
ak
}
∣

∣ G

]

=

T
∑

t=1

E
[

1{t > τk}1{θt ∈ S′
ak
}
∣

∣ G
]

≤ 1

π(θ∗)
.

Thus,

P

[

T
∑

t=τk+1

1{θt ∈ S′
ak
} > 1

δπ(θ∗)

∣

∣ G

]

≤ δ.
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Replacingδ by δ
|A| and taking a union bound overk = 1, 2, . . . , |A| − 1 proves the lemma.

Now we bound the number of plays of suboptimal actions under the event

H := G
⋂

{

∃a 6= a∗
∞
∑

t=1

1{θt ∈ S′′
a} ≤ α|A|

δ

}

⋂

{

∀k
T
∑

t=τk+1

1{θt ∈ S′
ak
} ≤ |A|

δπ(θ∗)

}

,

which, according to the results of Theorem3, Lemma4 and Lemma5, occurs with probability at least1 − (δ
√
2 + 2δ).

Under the eventH, we have

∑

a 6=a∗

N ′
T (a) =

|A|−1
∑

k=1

N ′
T (ak)

=

|A|−1
∑

k=1

N ′
τk
(ak) +

|A|−1
∑

k=1

(N ′
T (ak)−N ′

τk
(ak))

=

|A|−1
∑

k=1

N ′
τk
(ak) +

|A|−1
∑

k=1

T
∑

t=τk+1

1{θt ∈ S′
ak
}

≤
|A|−1
∑

k=1

N ′
τk
(ak) +

|A|2
δπ(θ∗)

.

Lemma 6. UnderH,
∑|A|−1

k=1 N ′
τk
(ak) ≤ CT , whereCT solves

C(log T ) := max

|A|−1
∑

k=1

zk(ak)

s.t. zk ∈ Z
|A|−1
+ × {0}, ak ∈ A \ {a∗}, 1 ≤ k ≤ |A| − 1,

zi � zk, zi(ak) = zk(ak), i ≥ k,

∀1 ≤ j, k ≤ |A| − 1 :

min
θ∈S′

ak

〈zk, Dθ〉 ≥
1 + ǫ

1− ǫ
log T,

min
θ∈S′

ak

〈zk − e(j), Dθ〉 <
1 + ǫ

1− ǫ
log T.

(13)

Proof. With regard to the definition of theτk andak in (12), if we take

ak = ak, 1 ≤ k ≤ |A| − 1,

and

zk(a) =

{

N ′
τ(a)(a), τ(a) ≤ τk,

N ′
τk
(a), τ(a) > τk,

then it follows, from (12), that thezk andak satisfy all the constraints of the optimization problem (13). We also have
∑|A|−1

k=1 zk(k) =
∑|A|−1

k=1 N ′
τk
(ak). This proves the lemma.

B. Proof of Corollary 1

The optimal action (in this case a subset) isa∗ = {N −M + 1, . . . , N}. It can be checked that the assumptions1-3 are
verified, thus the bound (3) applies and we will be done if we estimateC(log T ).

The essence of the proof is to first partition the space of suboptimal actions (subsets) according to the least-index basic arm
that they contain, i.e., fori = 1, 2, . . . , N −M , let

Ai := {a ⊂ [N ] : a 6= a∗,min{j ∈ a} = i}
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be all the actions whose least-index (or “weakest”) arm isi 14.

Take any sequence{zk}|A|−1
k=1 , {ak}|A|−1

k=1 feasible for (3). Fix 1 ≤ i ≤ N −M and consider the sum
∑

k:ak∈Ai
zk(ak).

We claim that this does not exceed1 +
(

1+ǫ
1−ǫ

)

1
D(µi||µN−M+1)

log T . If, on the contrary, it does, then putk̂ := max{k :

ak ∈ Ai}. Take any modelθ ∈ S′
a
k̂
. We must haveD(µa∗ ||θa∗) = 0. Since the KL divergence due to observing a tuple

of M independent rewards is simply the sum of theM individual (binary) KL divergences, we get thatθj = µj for all
j ≥ N−M+1. However, the optimal action forθ isak̂ containing the basic armi. Hence, we get thatθi ≥ µN−M+1 ≥ µi,
which implies thatD(µi||θi) ≥ D(µi||µN−M+1).

It now remains to estimate

〈zk̂ − e(k̂), Dθ〉 =
N
∑

j=1

〈
∑

a:j∈a

zk̂(a)− δj∈a
k̂
, D(µj ||θj)〉

≥
(

∑

a:i∈a

zk̂(a)− 1

)

D(µi||θi)

≥
(

∑

a∈Ai

zk̂(a)− 1

)

D(µi||µN−M+1)

=

(

∑

k:ak∈Ai

zk(ak)− 1

)

D(µi||µN−M+1)

> log T,

by hypothesis. This violates the final inequality of (3) and yields the desired contradiction. Since the above argument is
valid for any1 ≤ i ≤ N −M , summing over all suchi completes the proof.

C. Proof of Proposition 2 & Corollary 2

Lemma 7. Let T be large enough such thatmaxθ∈Θ,a∈AD(θ∗a||θa) ≤ 1+ǫ
1−ǫ log T . Then, the optimization problem (3)

admits the following upper bound:

C(log T ) ≤ max ||z||1
s.t. z ∈ R

|A|−1 × {0},
a ∈ A, a 6= a∗,

min
θ∈S′

a

〈z,Dθ〉 ≤
2(1 + ǫ)

1− ǫ
log T,

0 ≤ z(â) ≤ 2

δâ

(

1 + ǫ

1− ǫ

)

log T, ∀â ∈ A, â 6= a∗.

(14)

Proof. Take a feasible solution{zk, ak}|A|−1
k=1 for the optimization problem (3). We will show thatz = z|A|−1 and

a = a|A|−1 satisfy the constraints (14) above and yield the same objective function value in both optimization problems.

First,

||z||1 =
∑

â∈A,â 6=a∗

z(â) =

|A|−1
∑

k=1

z|A|−1(ak) =

|A|−1
∑

k=1

zk(ak),

asz|A|−1(ak) ≥ zk(ak), for all k ≤ |A| − 1, by (3). This shows that the objective functions of both (3) and (14) are equal

at{zk, ak}|A|−1
k=1 and(z, a) respectively.

14This covers all ofA \ {a∗} since every suboptimal set must contain a basic arm of indexN −M or lesser.
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Next, for any1 ≤ j ≤ |A| − 1 and the unit vectore(j), we have

min
θ∈S′

a

〈z,Dθ〉 = min
θ∈S′

ak

〈zk, Dθ〉

≤ min
θ∈S′

ak

〈zk − e(j), Dθ〉+ max
θ∈Θ,a∈A

D(θ∗a||θa)

≤ 1 + ǫ

1− ǫ
log T +

1 + ǫ

1− ǫ
log T =

2(1 + ǫ)

1− ǫ
log T.

This shows that the penultimate constraint in (14) is satisfied. For the final constraint in (14), fix 1 ≤ j ≤ |A| − 1, so that
we have

δaj
· z(aj) = δaj

· zj(aj) ≤ min
θ∈S′

a

〈zj , Dθ〉 ≤
2(1 + ǫ)

1− ǫ
log T,

exactly as in the preceding derivation. This implies thatz(â) ≤ 2
δâ

(

1+ǫ
1−ǫ

)

log T for all â 6= a∗.

Proposition 2. LetT be large enough such thatmaxθ∈Θ,a∈AD(θ∗a||θa) ≤ 1+ǫ
1−ǫ log T . Suppose

∆ ≤ min
a 6=a∗

δa = min
a 6=a∗,θ∈S′

a

D(θ∗a||θa).

Suppose also thatL ∈ Z
+ is such that for everya 6= a∗ andθ ∈ S′

a,

|{â ∈ A : â 6= a∗, D(θ∗â||θâ) ≥ ∆}| ≥ L,

i.e., at leastL coordinates ofDθ (excluding the|A|-th coordinatea∗) are at least∆. Then,

C(log T ) ≤
( |A| − L

∆

)

2(1 + ǫ)

1− ǫ
log T.

Proof of Proposition2. Consider a solution(z, a) to arelaxationof the optimization problem (14) obtained by replacingδâ
with ∆ andDθ withD′

θ := min(Dθ,∆ ·1) � Dθ
15. We claim that||z||1 ≡ 〈1, z〉 ≤

(

|A|−L
∆

)

χwhereχ := 2(1+ǫ)
1−ǫ log T .

If not, let y = χ
(

1
∆ , . . . ,

1
∆ , 0

)

, and observe that

〈D′
θ, y − z〉 = 〈D′

θ, y〉 − 〈D′
θ, z〉

≥ χ · L ·∆ · 1

∆
− χ = χ(L− 1).

But then,

〈1, y − z〉 = 〈1, y〉 − 〈1, z〉

<
χ(|A| − 1)

∆
− χ(|A| − L)

∆
=
χ(L− 1)

∆

≤ 〈D′
θ, y − z〉
∆

≤ 〈∆ · 1, y − z〉
∆

= 〈1, y − z〉,

sinceD′
θ � ∆ · 1 by definition andz � y by hypothesis. This is a contradiction.

Playing Subsets with Max reward:Let β ∈ (0, 1), and suppose thatΘ = {1− βR, 1− βR−1, . . . , 1− β2, 1− β}N , for
positive integersR andN . Consider anN armed Bernoulli bandit with arm parametersµ ∈ Θ. The complex actions are
all sizeM subsets of theN basic arms,M ≤ N−1

2 . Letµmin := mina∈A

∏

i∈a(1− µi).

15Here1 represents an all-ones vector of dimensionA, and the minimum is taken coordinatewise. Also, a solution exists since the
objective is continuous and the feasible region is compact.
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Proof of Corollary2. Since the reward from playing a subseta is the maximum (equivalently, the Boolean OR) value,
the marginal KL divergence along actiona is simply the Bernoulli KL divergence for the product of the parameters:
D(θ∗a||θa) = D(µa||θa) = D

(
∏

i∈a(1− µi)||
∏

i∈a(1− θi)
)

.

Let us estimate

∆ := min{D(µa||θa) : θ ∈ Θ, a ∈ A, D(µa||θa) > 0}.

If µi = 1− βri andθi = 1− θsi for integersri, si, i = 1, 2, . . . , N , then Pinsker’s inequality yields

D(µa||θa) ≥
2

log 2

(

∏

i∈a

(1− µi)−
∏

i∈a

(1− θi)

)2

=
2

log 2

(

β
∑

i∈a ri − β
∑

i∈a si
)2

=
2

log 2
β2

∑
i∈a ri

(

1− β
∑

i∈a si−
∑

i∈a ri
)2

.

D(µa||θa) > 0 if and only if |∑i∈a si −
∑

i∈a ri| ≥ 1. This implies, together with the above, that

∆ ≥ 2µ2
min(1− β)

log 2
.

Next, we claim that for anyµ 6= θ ∈ Θ, D(µa||θa) > 0 for at leastL =
(

N−1
M−1

)

− 1 sizeM subsets/actionsa. This is

because if otherwise, then
∑

i∈a ri =
∑

i∈a si for at least
(

N
M

)

−L =
(

N
M

)

−
(

N−1
M−1

)

+1 =
(

N−1
M

)

+1 subsetsa. However,
a combinatorial result (Ahlswede et al., 2003) states that the maximum number of weightM vertices of theN dimensional
hypercube (in our case, a sizeM subset corresponds to a weightM vertex) thatdo notspanN dimensions is

(

N−1
M

)

. This
forcesri = ri for all i ∈ [N ] and henceµ = θ, a contradiction.

Now, we can apply Proposition2 with ∆ andL as above. This gives us that forT large enough, the total number of arm
plays is bounded above, with probability at least1− δ, by

B3+(log 2)

(

1 + ǫ

1− ǫ

)[(

N

M

)

−
(

N − 1

M − 1

)

+ 1

]

log T

µ2
min(1− β)

= B3 + (log 2)

(

1 + ǫ

1− ǫ

)[(

N − 1

M

)

+ 1

]

log T

µ2
min(1− β)

.


