Sample Efficient Reinforcement Learning with Gaussian Processes

Robert C. Grande
Thomas J. Walsh
Jonathan P. How

RGRANDE @MIT.EDU
THOMASJWALSH @ GMAIL.COM
JHOW @MIT.EDU

Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 USA

Abstract

This paper derives sample complexity results for
using Gaussian Processes (GPs) in both model-
based and model-free reinforcement learning
(RL). We show that GPs are KWIK learnable,
proving for the first time that a model-based RL
approach using GPs, GP-Rmax, is sample effi-
cient (PAC-MDP). However, we then show that
previous approaches to model-free RL using GPs
take an exponential number of steps to find an
optimal policy, and are therefore not sample ef-
ficient. The third and main contribution is the
introduction of a model-free RL algorithm us-
ing GPs, DGPQ, which is sample efficient and,
in contrast to model-based algorithms, capable
of acting in real time, as demonstrated on a five-
dimensional aircraft simulator.

1. Introduction

In Reinforcement Learning (RL) (Sutton & Barto, 1998),
several new algorithms for efficient exploration in continu-
ous state spaces have been proposed, including GP-Rmax
(Jung & Stone, 2010) and C-PACE (Pazis & Parr, 2013).
In particular, C-PACE was shown to be PAC-MDP, an im-
portant class of RL algorithms that obtain an optimal pol-
icy in a polynomial number of exploration steps. However,
these approaches require a costly fixed-point computation
on each experience, making them ill-suited for real-time
control of physical systems, such as aircraft. This paper
presents a series of sample complexity (PAC-MDP) results
for algorithms that use Gaussian Processes (GPs) (Ras-
mussen & Williams, 2006) in RL, culminating with the
introduction of a PAC-MDP model-free algorithm which
does not require this fixed-point computation and is better
suited for real-time learning and control.

Proceedings of the 31°" International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

First, using the KWIK learning framework (Li et al., 2011),
we provide the first-ever sample complexity analysis of GP
learning under the conditions necessary for RL. The re-
sult of this analysis actually proves that the previously de-
scribed model-based GP-Rmax is indeed PAC-MDP. How-
ever, it still cannot be used in real time, as mentioned above.
Our second contribution is in model-free RL, in which a
GP is used to directly model the Q-function. We show that
existing model-free algorithms (Engel et al., 2005; Chung
et al., 2013) that use a single GP may require an exponen-
tial (in the discount factor) number of samples to reach a
near-optimal policy.

The third, and primary, contribution of this work is the in-
troduction of the first model-free continuous state space
PAC-MDP algorithm using GPs: Delayed-GPQ (DGPQ).
DGPQ represents the current value function as a GP, and
updates a separately stored value function only when suffi-
cient outlier data has been detected. This operation “over-
writes” a portion of the stored value function and resets the
GP confidence bounds, avoiding the slowed convergence
rate of the naive model-free approach.

The underlying analogy is that while GP-Rmax and C-
PACE are generalizations of model-based Rmax (Brafman
& Tennenholtz, 2002), DGPQ is a generalization of model-
free Delayed Q-learning (DQL) (Strehl et al., 2006; 2009)
to general continuous spaces. That is, while early PAC-
MDP RL algorithms were model-based and ran a planner
after each experience (Li et al., 2011), DQL is a PAC-MDP
algorithm that performs at most a single Bellman backup
on each step. In DGPQ, the delayed updates of DQL are
adapted to continuous state spaces using a GP.

We prove that DGPQ is PAC-MDP, and show that using a
sparse online GP implementation (Csaté & Opper, 2002)
DGPQ can perform in real-time. Our empirical results, in-
cluding those on an F-16 simulator, show DGPQ is both
sample efficient and orders of magnitude faster in per-
sample computation than other PAC-MDP continuous-state
learners.

Sample Efficient Reinforcement Learning with Gaussian Processes

2. Background

We now describe background material on Reinforcement
Learning (RL) and Gaussian Processes (GPs).

2.1. Reinforcement Learning

‘We model the RL environment as a Markov Decision Pro-
cess (Puterman, 1994) M = (S, A, R, T, ~) with a poten-
tially infinite set of states .S, finite actions A, and 0 <
v < 1. Each step elicits a reward R(s,a) — [0, Rmax]
and a stochastic transition to state s’ ~ T'(s,a). Every
MDP has an optimal value function Q*(s,a) = R(s,a) +
v [, T(s,a,s")V*(s") where V*(s) = max, Q*(s,a) and
corresponding optimal policy 7* : § +— A. Note the
bounded reward function means V* € [0, Vipax]-

In RL, an agent is given S, A, and and then acts in M with
the goal of enacting 7*. For value-based methods (as op-
posed to policy search (Kalyanakrishnan & Stone, 2009)),
there are roughly two classes of RL algorithms: model-
based and model-free. Model-based algorithms, such as
KWIK-Rmax (Li et al., 2011), build models of T" and R
and then use a planner to find @*. Many model-based ap-
proaches have sample efficiency guarantees, that is bounds
on the amount of exploration they perform. We use the
PAC-MDP definition of sample complexity (Strehl et al.,
2009). The definition uses definitions of the covering num-
ber of a set (adapted from (Pazis & Parr, 2013)).

Definition 1 The Covering Number Ay (r) of a compact
domain U C R" is the cardinality of the minimal set C' =
{¢ciy...,en,} st Vo € U, Je; € C st d(z,¢5) <7,
where d(-, -) is some distance metric.

Definition 2 Algorithm A (non-stationary policy A;) with
accuracy parameters € and § in an MDP of size Nga(r)
is said to be Probably Approximately Correct for MDPs
(PAC-MDP) if, with probability 1 — 4, it takes no more than
a polynomial (in (Nga(r), ﬁ, 1.1)) number of steps
where VAt (s;) < V*(s¢) — .

By contrast, model-free methods such as Q-Learning
(Watkins, 1992) build Q* directly from experience without
explicitly representing 7" and R. Generally model-based
methods are more sample efficient but require more com-
putation time for the planner. Model-free methods are gen-
erally computationally light and can be applied without a
planner, but need (sometimes exponentially) more samples,
and are usually not PAC-MDP. There are also methods that
are not easily classified in these categories, such as C-PACE
(Pazis & Parr, 2013), which does not explicitly model T
and R but performs a fixed-point operation for planning.

2.2. Gaussian Processes

This paper uses GPs as function approximators both in
model-based RL (where GPs represent 7' and R) and
model-free RL (where GPs represent Q*), while showing
how to maintain PAC-MDP sample efficiency in both cases.
A GP is defined as a collection of random variables, any fi-
nite subset of which has a joint Gaussian distribution (Ras-
mussen & Williams, 2006) with prior mean p(x) and co-
variance kernel k(z,z’). In this paper, we use the radial

basis function (RBF), k(z, 2') = exp(,%).

The elements of the GP kernel matrix K (X, X) are defined
as K; j = k(x;,x;), and k(X,z’) denotes the kernel vec-
tor. The conditional probability distribution of the GP at
new data point, ', can then be calculated as a normal vari-
able (Rasmussen & Williams, 2006) with mean ji(z’') =
k(X,2")T[K(X,X) + w21~ 'y, and covariance X(z') =
k(z',2") — k(X,2)T[K(X,X) +w2I]71k(X,2'), where
y is the set of observations, X is the set of observation in-
put locations, and wfl is the measurement noise variance.
For computational and memory efficiency, we employ an
online sparse GP approximation (Csaté & Opper, 2002) in
the experiments.

2.3. Related Work

GPs have been used for both model-free and model-based
RL. In model-free RL, GP-Sarsa (Engel et al., 2005) has
been used to model a value function and extended to off-
policy learning (Chowdhary et al., 2014), and for (heuristi-
cally) better exploration in iGP-Sarsa (Chung et al., 2013).
However, we prove in Section 4.1 that these algorithms
may require an exponential (in ﬁ) number of samples
to reach optimal behavior since they only use a single GP
to model the value function.

In model-based RL, the PILCO algorithm trained GPs to
represent 7', and then derived policies using policy search
(Deisenroth & Rasmussen, 2011). However, PILCO does
not include a provably efficient (PAC-MDP) exploration
strategy. GP-Rmax (Jung & Stone, 2010) does include
an exploration strategy, specifically replacing areas of low
confidence in the (7" and R) GPs with high valued states,
but no theoretical results are given in that paper. In Section
3, we show that GP-Rmax actually is PAC-MDP, but the al-
gorithm’s planning phase (comparable to the C-PACE plan-
ning in our experiments) after each update makes it com-
putationally infeasible for real-time control.

REKWIRE (Li & Littman, 2010) uses KWIK linear re-
gression for a model-free PAC-MDP algorithm. However,
REKWIRE needs H separate approximators for finite hori-
zon H, and assumes () can be modeled as a linear function,
in contrast to the general continuous functions considered
in our work. The C-PACE algorithm (Pazis & Parr, 2013)

Sample Efficient Reinforcement Learning with Gaussian Processes

has already been shown to be PAC-MDP in the continu-
ous setting, though it does not use a GP representation.
C-PACE stores data points that do not have close-enough
neighbors to be considered “known”. When it adds a new
data point, the (Q-values of each point are calculated by
a value-iteration like operation. The computation for this
operation grows with the number of datapoints and so (as
shown in our experiments) the algorithm may not be able
to act in real time.

3. GPs for Model-Based RL

In model-based RL (MBRL), models of 1" and R are cre-
ated from data and a planner derives 7*. Here we review
the KWIK-Rmax MBRL architecture, which is PAC-MDP.
We then show that GPs are a KWIK-learnable representa-
tion of 7" and R, thereby proving that GP-Rmax (Jung &
Stone, 2010) is PAC-MDP given an exact planner.

3.1. KWIK Learning and Exploration

The “Knows What it Knows” (KWIK) framework (Li et al.,
2011) is a supervised learning framework for measuring the
number of times a learner will admit uncertainty. A KWIK
learning agent is given a hypothesis class H : X — Y
for inputs X and outputs Y and parameters ¢ and §. With
probability 1 — § over a run, when given an adversari-
ally chosen input z;, the agent must, either (1) predict
if |lyr — 9¢]| < e where y; is the true expected output
(E[h*(x)] = yr) or (2) admit “I don’t know” (denoted _L).
A representation is KWIK learnable if an agent can KWIK
learn any h* € H with only a polynomial (in (|H|, %, $))
number of L predictions. In RL, the KWIK-Rmax algo-
rithm (Li et al., 2011), uses KWIK learners to model 7" and
R and replaces the value of any Q*(s,a) where T'(s, a) or
R(s,a) is L with a value of Vi = b;‘%awx. If T and R
are KWIK-learnable, then the resulting KWIK-Rmax RL
algorithm will be PAC-MDP under Definition 2. We now
show that a GP is KWIK learnable.

3.2. KWIK Learning a GP

First, we derive a metric for determining if a GP’s mean
prediction at input x is e-accurate with high probability,
based on the variance estimate at x.

Lemma 1 Consider a GP trained on samples § =
[y1,-..,y:] which are drawn from p(y | «) at input lo-
cations X = [z1,...,x4], with E[y | 2] = f(x) and
yi € [0, V,,]. If the predictive variance of the GP at x; € X
is

2w?e?

2 2
Vm log(o1)
then the prediction error at x; is bounded in probability:
Pr{|i(z;) — f(z:)| = e1} < b1

(D

0'2($i) < U?ol =

Proof sketch Here we ignore the effect of the GP-prior,
which is considered in depth in the Supplementary ma-
terial. Using McDiarmid’s inequality we have that

Pr{ju(x) — fi(x)] > e} < 2exp (—22:;;), where ¢; is
the maximum amount that y; can alter the [;rediction value
wu(x). Using algebraic manipulation, Bayes law, and not-
ing that the max singular value & (K (X, X)(K (X, X) +
w?I)71) < 1, it can be shown that 3" ¢? < 02(;)V;2 Jw?.
Substituting o2(x;) to McDiarmid’s inequality and rear-
ranging yields (1). See supplemental material.

Lemma 1 gives a sufficient condition to ensure that, with
high probability, the mean of the GP is within €; of
E[h*(z)]. A KWIK agent can now be constructed that pre-
dicts L if the variance is greater than o2, and otherwise
predicts §; = p(x), the mean prediction of the GP. The-
orem | bounds the number of L predictions by such an
agent, and when §; = Wm, establishes the KWIK
learnability of GPs. For ease of exposition, we define the
equivalent distance as follows:

Definition 3 The equivalent distance r(c;,;) is the max-
imal distance s.t. Vz,c € U, if d(z,c) < r(€tor),
then the linear independence test y(z,c¢) = k(z,z) —
k(z,c)?/k(c,c) < €.

Theorem 1 Consider a GP model trained over a compact
domain U C R" with covering number Ny (r(307,,)). Let
the observations ¥ = [y1, ..., yn] be drawn from p(y | x),
with E[y |] = f(x), and = drawn adversarially. Then, the

worst case bound on the number of samples for which
Pr{li(z) — f(x)| Zz e} <0 Vz eU)

and the GP is forced to return _L is at most

4V?2 2 1
m= (e (7)) ((38))

Furthermore, N; (r (307,;)) grows polynomially with -
and V,,, for the RBF kernel.

Proof sketch If 02(z) < o2, Vo € U, then (2) fol-
lows from Lemma 1. By partitioning the domain into
the Voronoi regions around the covering set C, it can
be shown using the covariance equation (see supplemen-
tal material), that given ny samples in a Voronoi region

1.2 2
. 2 Ny 505, +w
¢i € C,0%x) < e

. 2, .
Solving for ny, we find that ny > 3‘; is sufficient to
tol
drive 0%(z) < o2,. Plugging in ny into (1), we have
Ve

that ny = (3 log ((52—1)) points reduce the variance at
1

everywhere in the region.

c; below 02, Therefore, the total number of points we can
sample anywhere in U before reducing the variance below

Sample Efficient Reinforcement Learning with Gaussian Processes

o?, everywhere is equal to the sum of points ny over all
regions, Ny. The total probability of an incorrect predic-
tion is given by the union bound of an incorrect prediction
in any region, >, 1 = 61Ny = J. See supplemental ma-
terial for proof that Ny grows polynomially with é and
V.-

Intuitively, the KWIK learnability of GPs can be explained
as follows. By knowing the value at a certain point within
some tolerance g, the Lipschitz smoothness assumption
means there is a nonempty region around this point where
values are known within a larger tolerance €. Therefore,
given sufficient observations in a neighborhood, a GP is
able to generalize its learned values to other nearby points.
Lemma 1 relates the error at any of these points to the pre-
dictive variance of the GP, so a KWIK agent using a GP
can use the variance prediction to choose whether to predict
1 or not. As a function becomes less smooth, the size of
these neighborhoods shrinks, increasing the covering num-
ber, and the number of points required to learn over the
entire input space increases.

Theorem 1, combined with the KWIK-Rmax Theorem
(Theorem 3 of (Li et al., 2011)) establishes that the previ-
ously proposed GP-Rmax algorithm (Jung & Stone, 2010),
which learns GP representations of 7" and R and replaces
uncertainty with V. values, is indeed PAC-MDP. GP-
Rmax was empirically validated in many domains in this
previous work but the PAC-MDP property was not formally
proven. However, GP-Rmax relies on a planner that can de-
rive @* from the learned 7" and R, which may be infeasible
in continuous domains, especially for real-time control.

4. GPs for Model-Free RL

Model-free RL algorithms, such as Q-learning (Watkins,
1992), are often used when planning is infeasible due to
time constraints or the size of the state space. These al-
gorithms do not store 7' and R but instead try to model
Q* directly through incremental updates of the form:
Qiv1(s,a) = (1 = a)Qu(s,a) + o (re + YV (5¢41)). Un-
fortunately, most Q-learning variants have provably expo-
nential sample complexity, including optimistic/greedy Q-
learning with a linearly decaying learning rate (Even-Dar
& Mansour, 2004), due to the incremental updates to ()
combined with the decaying « term.

However, the more recent Delayed Q-learning (DQL)
(Strehl et al., 2006) is PAC-MDP. This algorithm works by
initializing Q(s, a) to Viyax and then overwriting Q(s, a) =
w after m samples of that (s, a) pair have
been seen. In section 4.1, we show that using a single GP
results in exponential sample complexity, like Q-learning;
in section 4.2, we show that using a similar overwriting ap-
proach to DQL achieves sample efficiency.

4.1. Naive Model-free Learning using GPs

We now show that a naive use of a single GP to model
Q™ will result in exponentially slow convergence similar to
greedy Q-learning with a linearly decaying o. Consider the
following model-free algorithm using a GP to store values
of Q = @¢. A GP for each action (GF,) is initialized opti-
mistically using the prior. At each step, an action is chosen
greedily and G P, is updated with an input/output sample:
(x4, + ymaxy GPy(st41)). We analyze the worst-case
performance through a toy example and show that this ap-
proach requires an exponential number of samples to learn
Q@*. This slow convergence is intrinsic to GPs due to the
variance reduction rate and the non-stationarity of the Q
estimate (as opposed to 1" and R, whose sampled values
do not depend on the learner’s current estimates). So, any
model-free algorithm using a GP that does not reinitialize
the variance will have the same worst-case complexity as
in this toy example.

Consider an MDP with one state s and one action a that
transitions deterministically back to s with reward r = 0,
and discount factor y. The) function is initialized opti-
mistically to Qo(s) = 1 using the GP’s prior mean. Con-
sider the naive GP learning algorithm described above, ker-
nel k(s,s) = 1, and measurement noise w? to predict the
Q-function using the GP regression equations. We can an-
alyze the behavior of the algorithm using induction.

Consider the first iteration: Qo = 1, and the first measure-
ment is «. In this case, the GP prediction is equivalent to
the MAP estimate of a random variable with Gaussian prior
and linear measurements subject to Gaussian noise.

2 2

A w oh
- 4
@ od + w? U%—Hﬁ’y @)

~ 2 2 ~
: _ w g; 2 __
Recursively, Q; 411 = (m + W’y)Qi where 07 =
U.)ZO'S
w2+i08
and rearranging yields a recursion for the prediction of @;
at each iteration,

is the GP variance at iteration i. Substituting for o2

y Wt og(ity) s

From (Even-Dar & Mansour, 2004), we have that a series
of the form ;41 = %Qi will converge to € exponentially
slowly in terms of 1 and ﬁ However, for each term in
our series, we have

6
O i+l i+l ©
0

The modulus of contraction is always at least as large as
the RHS, so the series convergence to € (since the true

Sample Efficient Reinforcement Learning with Gaussian Processes

Action taken for 2 Action MDP

— Greedy GP
0 50 100 150 200 250 300

Action Chosen
-
(52

H e-Greedy GP ‘
05} : : :

50 100 150 200 250 300

! ‘ ‘ ‘ . |—peprq
0

50 100 150 200 250 300
Step

Figure 1. Single-state MDP results: DGPQ converges quickly to
the optimal policy while the naive GP implementations oscillate.

value is 0) is at least as slow as the example in (Even-Dar
& Mansour, 2004). Therefore, the naive GP implementa-
tion’s convergence to € is also exponentially slow, and, in
fact, has the same learning speed as ()-learning with a lin-
ear learning rate. This is because the variance of a GP de-
cays linearly with number of observed data points, and the
magnitude of GP updates is proportional to this variance.

Additionally, by adding a second action with reward r =
1 — ~, a greedy naive agent would oscillate between the
two actions for an exponential (in 1%) number of steps,
as shown in Figure 1 (blue line), meaning the algorithm is
not PAC-MDP, since the other action is not near optimal.
Randomness in the policy with e-greedy exploration (green
line) will not improve the slowness, which is due to the
non-stationarity of the Q-function and the decaying update
magnitudes of the GP. Many existing model-free GP algo-
rithms, including GP-Sarsa (Engel et al., 2005), iGP-Sarsa
(Chung et al., 2013), and (non-delayed) GPQ (Chowdhary
et al., 2014) perform exactly such GP updates without vari-
ance reinitialization, and therefore have the same worst-

case exponential sample complexity.

4.2. Delayed GPQ for model-free RL

We now propose a new algorithm, inspired by Delayed
Q-learning, that guarantees polynomial sample efficiency
by consistently reinitializing the variance of the GP when
many observations differ significantly from the current Q
estimate.

Delayed GPQ-Learning (DGPQ: Algorithm 1) maintains
two representations of the value function. The first is a set
of GPs, G P, for each action, that is updated after each step
but not used for action selection. The second representation
of the value function, which stores values from previously
converged GPs is denoted Q(s,a). Intuitively, the algo-
rithm uses Q as a “safe” version of the value function for
choosing actions and retrieving backup values for the GP

Algorithm 1 Delayed GPQ (DGPQ)

1: Input: GP kernel k(- -), Lipschitz Constant L¢, En-
vironment Env, Actions A, initial state sg, discount +y,
threshold Ufol, €1

2: fora € Ado

3 Q.=0

4GP, = GPinit(u = fma= k()
5: for each timestep ¢ do

6: a; = argmax, Qa(st) by Eq 7
7. (1, se41) = Env.takeAct(ay)
8: @ =1 +ymaxg Qa(si41)

9: 0? = GP,,.variance(s;)

10: ifof > o2, then

11: GP,, .update(s;, q;)

12: 03 = GP,,.variance(s;)

13: ifo} > 02, > 03 and
Qa,(5;) — GP,,.mean(s;) > 2¢; then
14: Qo .update(s;, GP,,.mean(s;) + €1)
15: Va € A,GP, = GPinit(y = Qq, k(-,))

updates, and only updates Q(s, a) when G P, converges to
a significantly different value at s.

The algorithm chooses actions greedily based on Q (line
6) and updates the corresponding G P, based on the ob-
served rewards and Q at next the state (line 8). Note, in
practice one creates a prior of Qa(st) (line 15) by updating
the GP with points z; = ¢; — Qa(st) (line 11), and adding
back Qq(s;) in the update on line 14. If the GP has just
crossed the convergence threshold at point s and learned
a value significantly lower (2¢;) than the current value of
Q (line 13), the representation of Q is partially overwritten
with this new value plus a bonus term using an operation
described below. Crucially, the GPs are then reset, with
all data erased. This reinitializes the variance of the GPs
so that updates will have a large magnitude, avoiding the
slowed convergence seen in the previous section. Guide-
lines for setting the sensitivity of the two tests (o2, and €)
are given in Section 5.

There are significant parallels between DGPQ and the
discrete-state DQL algorithm (Strehl et al., 2009), but the
advancements are non-trivial. First, both algorithms main-
tain two @ functions, one for choosing actions (Q), and
a temporary function that is updated on each step (GF,),
but in DGPQ we have chosen specific representations to
handle continuous states and still maintain optimism and
sample complexity guarantees. DQL’s counting of (up to
m) discrete state visits for each state cannot be used in
continuous spaces, so DGPQ instead checks the immediate
convergence of GP, at s; to determine if it should com-
pare Q(s;,a) and GP,(s;). Lastly, DQL’s discrete learn-
ing flags are not applicable in continuous spaces, so DGPQ
only compares the two functions as the GP variance crosses

Sample Efficient Reinforcement Learning with Gaussian Processes

a threshold, thereby partitioning the continuous MDP into
areas that are known (w.r.t. @) and unknown, a property
that will be vital for proving the algorithm’s convergence.

One might be tempted to use yet another GP to model
Q(s,a). However, it is difficult to guarantee the optimism
of Q(Q>Q*—e using a GP, which is a crucial property
of most sample-efficient algorithms. In particular, if one at-
tempts to update/overwrite the local prediction values of a
GP, unless the kernel has finite support (a point’s value only
influences a finite region), the overwrite will affect the val-
ues of all points in the GP and possibly cause a point that
was previously correct to fall below Q*(s,a) — e.

In order to address this issue, we use an alternative function
approximator for () which includes an optimism bonus as

used in C-PACE (Pazis & Parr, 2013). Specifically, Q(s, a)
is stored using a set of values that have been updated from
the set of GPs, ({s;,a;), fi;) and a Lipschitz constant L
that is used to find an optimistic upper bound for the 5
function for (s, a):

Q(s,0) :min{< min

i et Lad(5,0), (55,0), Vo)
We refer to the set (s;, a) as the set of basis vectors (BV).
Intuitively, the basis vectors store values from the previ-
ously learned GPs. Around these points, Q* cannot be
greater than ; + Lod((s,a), (s;,a)) by continuity. To
predict optimistically at points not in BV, we search over
BV for the point with the lowest prediction including the
weighted distance bonus. If no point in BV is sufficiently
close, then V,,,, is used instead. This representation is
also used in C-PACE (Pazis & Parr, 2013) but here it sim-
ply stores the optimistic Q-function; we do not perform a
fixed point operation. Note the GP still plays a crucial role
in Algorithm 1 because its confidence bounds, which are
not captured by Q. partition the space into known/unknown
areas that are critical for controlling updates to Q.

In order to perform an update (partial overwrite) of Q, we
add an element ((s;,a;), fi;) to the basis vector set. Re-
dundant constraints are eliminated by checking if the new
constraint results in a lower prediction value at other basis
vector locations. Thus, the pseudocode for updating Qs as
follows: add point {(s;, a;), fi;) to the basis vector set; if for
any j, pi+Lod((si; a), (s;,a)) < pj, delete ((s;, a;), fi;)
from the set.

Figure 1 shows the advantage of this technique over the
naive GP training discussed earlier. DGPQ learns the op-
timal action within 50 steps, while the naive implementa-
tion as well as an e-greedy variant both oscillate between
the two actions. This example illustrates that the targeted
exploration of DGPQ is of significant benefit compared to
untargeted approaches, including the e-greedy approach of
GP-SARSA.

5. The Sample Complexity of DGPQ

In order to prove that DGPQ is PAC-MDP we adopt a proof
structure similar to that of DQL (Strehl et al., 2009) and
refer throughout to corresponding theorems and lemmas.
First we extend the DQL definition of a “known state”
MDP Mk, , containing state/actions from Q that have low
Bellman residuals.

Definition 4 During timestep ¢ of DGPQ’s execution with
Q as specified and V (s) = max, Q(s, a), the set of known
states is given by K; = {(s,a)|Q(s,a) — (R(s,a) +
v [T(s'|s,a)V(s')ds') < 3e1}. M contains the same
MDP parameters as M for (s,a) € K and values of Vijax
for (s,a) ¢ K.

We now recap (from Theorem 10 of (Strehl et al., 2009))
three sufficient conditions for proving an algorithm with
greedy policy values V; is PAC-MDP. (1) Optimism:
Vi(s) > V*(s) — e for all timesteps . (2) Accuracy with
respect to M, ’s values: V;(s) — V]Q‘Kt (s) < e for all t.

(3) The number of updates to Q and the number of times
a state outside M is reached is bounded by a polynomial

function of (Ng(r), %, +, 1),

Yer o) 1—x

The proof structure is to develop lemmas that prove these
three properties. After defining relevant structures and
concepts, Lemmas 2 and 3 bound the number of possible
changes and possible attempts to change Q. We then de-
fine the “typical” behavior of the algorithm in Definition
6 and show this behavior occurs with high probability in
Lemma 4. These conditions help ensure property 2 above.
After that, Lemma 5 shows that the function stored in Q is
always optimistic, fulfilling property 1. Finally, property 3
is shown by combining Theorem 1 (number of steps before
the GP converges) with the number of updates to Q from
Lemma 2, as formalized in Lemma 7.

We now give the definition of an “update” (as well as “suc-
cessful update™) to (), which extends definitions from the
original DQL analysis.

Definition 5 An update (or successful update) of state-
action pair (s, a) is a timestep ¢ for which a change to Q (an
overwrite) occurs such that Q; (s, a) — Qi1 1(s,a) > €1. An
attempted update of state-action pair (s,a) is a timestep ¢
for which (s, a) is experienced and G P, ;. Var(s) > o2, >
GP, 1+1.Var(s). An attempted update that is not successful
(does not change Q) is an unsuccessful update.

We bound the total number of updates to Q by a polynomial
term ~ based on the concepts defined above.

Lemma 2 The total number of successful updates (over-
writes) during any execution of DGPQ with €; = %6(1 —)

Sample Efficient Reinforcement Learning with Gaussian Processes

is

e(l—7) 3Rmax
= |A|N
o= () (=
Proof The proof proceeds by showing that the bound on
the number of updates in the single-state case from Sec-

tion 4.1 is, (3Bmaz 1) based on driving the full func-

+ 1> ()

(1—7)%e
tion from Vi ax to Vinin. This quantity is then multiplied
by the covering number and the number of actions. See the
Supplementary Material.

The next lemma bounds the number of attempted updates.
The proof is similar to the DQL analysis and shown in the
Supplementary Material.

Lemma 3 The total number of attempted up-
dates (overwrites) during any execution of GPQ is

| AN (6“ !) (1+ k).

We now define the following event, called A2 to link back
to the DQL proof. A2 describes the situation where a
state/action that currently has an inaccurate value (high
Bellman residual) with respect to Q is observed m times
and this causes a successful update.

Definition 6 Define Event A2 to be the event that for all
timesteps ¢, if (s,a) ¢ K}, and an attempted update of
(s, a) occurs during timestep ¢, the update will be success-
ful, where k; < ko < ... < k,, = t are the timesteps
where GP,, .Var(s),) > o2, since the last update to () that
affected (s, a).

We can set an upper bound on m, the number of experi-
ences required to make GP,,.Var(s;) < o2, based on m
in Theorem 1 from earlier. In practice m will be much
smaller but unlike discrete DQL, DGPQ does not need to
be given m, since it uses the GP variance estimate to decide
if sufficient data has been collected. The following lemma
shows that with high probability, a failed update will not
occur under the conditions of event A2.

Lemma 4 By setting
2w2e?(1 —)t
OR2, ., log(SAIN (G722) (1+ 1)

©))

2
Otol =

we ensure that the probability of event A2 occurring is >
1-04/3.

Proof The maximum number of attempted updates is
|A|Ns (6(1_7)) (1 + k) from Lemma 3. Therefore, by
g e = 3¢(1 —~), and

setting §; =
& 3|ANg (M)(Hn)

Vi = Rl’j ‘if , we have from Lemma 1 that during each overwrite,

there is no greater than probability 1 =

s
3|A|Ng ((;1%(;)) (1+r)
of an incorrect update. Applying the union bound over all of the

possible attempted updates, we have the total probability of A2
not occuring is %.

The next lemma shows the optimism of Q for all timesteps
with high probability %. The proof structure is similar to
Lemma 3.10 of (Pazis & Parr, 2013). See supplemental
material.

Lemma 5 During execution of DGPQ, Q*(s,a) <
Qi(s,a) + 12_% holds for all (s, a) with probability g.

The next Lemma connects an unsuccessful update to a
state/action’s presence in the known MDP M.

Lemma 6 If event A2 occurs, then if an unsuccessful up-
date occurs at time ¢ and GP,.Var(s) < o7, at time ¢ + 1
then (s,a) € Kiy1.

Proof The proof is by contradiction and shows that an un-
successful update in this case implies a previously success-
ful update that would have left GP,.Var(s) > o2 . See the
Supplemental material.

The final lemma bounds the number of encounters with
state/actions not in K, which is intuitively the number of
points that make updates to the GP from Theorem 1 times
the number of changes to Q from Lemma 2. The proof is
in the Supplemental material.

Lemma7 Letn = Ng (6(1 ”)). If event A2 occurs and

Qi(s,a) > Q*(s,a) — 12_% holds for all ¢ and (s, a) then
the number of timesteps ¢ where (s, a;) ¢ K3 is at most

SRmaa:

¢ =m|Aln ((7)

+ 1) (10)

where

< 36R,..

= [—Rax 1
(1—7)te
Finally, we state the PAC-MDP result for DGPQ, which is

an instantiation of the General PAC-MDP Theorem (Theo-
rem 10) from (Strehl et al., 2009).

(Sl +0)) 14 ap

Theorem 2 Given real numbers 0 < € < ﬁ and 0 <

§ < 1 and a continuous MDP M there exist inputs o2,
(see (9)) and ¢; = %6(1 —) such that DGPQ executed on
M will be PAC-MDP by Definition 2 with only

A (P(ary) o

Sample Efficient Reinforcement Learning with Gaussian Processes

: M\WHMMMHM
bt tin 1]

—CPACE
B —DGPQ
0 10

0 100 200 300 0 1000 2000 3000 4000
Episode Step

Steps to goal

Figure 2. Average (10 runs) steps to the goal and computation
time for C-PACE and DGPQ on the square domain.

timesteps where Q¢ (s¢, ar) < V*(s¢) — €, where (is defined in
Equation (10).

The proof of the theorem is the same as Theorem 16 by
(Strehl et al., 2009), but with the updated lemmas from
above. The three crucial properties hold when A2 occurs,
which Lemma 4 guarantees with probability g Property
1 (optimism) holds from Lemma 5. Property 2 (accuracy)
holds from the Definition 4 and analysis of the Bellman
Equation as in Theorem 16 by (Strehl et al., 2009). Fi-
nally, property 3, the bounded number of updates and es-
cape events, is proven by Lemmas 2 and 7.

6. Empirical Results

Our first experiment is in a 2-dimensional square over
[0,1]% designed to show the computational disparity be-
tween C-PACE and DGPQ. The agent starts at [0, 0] with a
goal of reaching within a distance of 0.15 of [1, 1]. Move-
ments are 0.1 in the four compass directions with additive
uniform noise of £0.01. We used an £ distance metric,
Lg =9, and an RBF kernel with § = 0.05, w2 = 0.1
for the GP. Figure 2 shows the number of steps needed per
episode (capped at 200) and computational time per step
used by C-PACE and DGPQ. C-PACE reaches the optimal
policy in fewer episodes but requires orders of magnitude
more computation during steps with fixed point computa-
tions. Such planning times of over 10s are unacceptable in
time sensitive domains, while DGPQ only takes 0.003s per
step.

In the second domain, we use DGPQ to stabilize a sim-
ulator of the longitudinal dynamics of an unstable F16
with linearized dynamics, which motivates the need for a
real-time computable policy. The five dimensional state
space contains height, angle of attack, pitch angle, pitch
rate, and airspeed. Details of the simulator can be found
in (Stevens & Lewis., 2003). We used the reward r =
—|h — hq|/100ft — |h|/100ft/s — |d.|, with aircraft height
h, desired height hy and elevator angle (degrees) d.. The
control input was discretized as d. € {—1,0,1} and the
elevator was used to control the aircraft. The thrust input
to the engine was fixed as the reference thrust command at

Reward per Episode

o

-100f
—-200f
-300f
—-400

-500

Reward Averaged over 10 Trials

— L =5
600 LQ 10
L=
~700 . . . ‘
200 400 600 800 1000

Episode
Figure 3. Average (10 runs) reward on the F16 domain.

the (unstable) equilibrium. The simulation time step size
was 0.05s and at each step, the air speed was perturbed
with Gaussian noise A/(0,1) and the angle of attack was
perturbed with Gaussian noise A/(0,0.01%). A RBF kernel
with @ = 0.05, w? = 0.1 was used. The initial height was
hg, and if |h — hg| > 200, then the vertical velocity and
angle of attack were set to zero to act as boundaries.

DGPQ learns to stabilize the aircraft using less than 100
episodes for Lo = 5 and about 1000 episodes for Ly =
10. The disparity in learning speed is due to the curse of
dimensionality. As the Lipschitz constant doubles, N, in-
creases in each dimension by 2, resulting in a 2° increase in
N.. DGPQ requires on average 0.04s to compute its policy
at each step, which is within the 20Hz command frequency
required by the simulator. While the maximum computa-
tion time for DGPQ was 0.11s, the simulations were run in
MATLAB so further optimization should be possible. Fig-
ure 3 shows the average reward of DGPQ in this domain
using Lg = {5,10}. We also ran C-PACE in this domain
but its computation time reached over 60s per step in the
first episode, well beyond the desired 20 Hz command rate.

7. Conclusions

This paper provides sample efficiency results for using GPs
in RL. In section 3, GPs are proven to be usable in the
KWIK-Rmax MBRL architecture, establishing the previ-
ously proposed algorithm GP-Rmax as PAC-MDP. In sec-
tion 4.1, we prove that existing model-free algorithms using
a single GP have exponential sample complexity, connect-
ing to seemingly unrelated negative results on Q-learning
learning speeds. Finally, the development of DGPQ pro-
vides the first provably sample efficient model-free (with-
out a planner or fixed-point computation) RL algorithm for
general continuous spaces.

Acknowledgments

We thank Girish Chowdhary for helpful discussions, Has-
san Kingravi for his GP implementation, and Aerojet-
Rocketdyne and ONR #N000141110688 for funding.

Sample Efficient Reinforcement Learning with Gaussian Processes

References

Brafman, Ronen I. and Tennenholtz, Moshe. R-MAX - a
general polynomial time algorithm for near-optimal re-
inforcement learning. Journal of Machine Learning Re-
search, 3:213-231, 2002.

Chowdhary, Girish, Liu, Miao, Grande, Robert C., Walsh,
Thomas J., How, Jonathan P., and Carin, Lawrence. Off-
policy reinforcement learning with gaussian processes.
Acta Automatica Sinica, To appear, 2014.

Chung, Jen Jen, Lawrance, Nicholas R. J., and Sukkarieh,
Salah. Gaussian processes for informative exploration
in reinforcement learning. In Proceedings of the IEEE
International Conference on Robotics and Automation,
pp. 2633-2639, 2013.

Csatd, L. and Opper, M. Sparse on-line gaussian processes.
Neural Computation, 14(3):641-668, 2002.

Deisenroth, Marc Peter and Rasmussen, Carl Edward.
Pilco: A model-based and data-efficient approach to pol-
icy search. In Proceedings of the International Confer-
ence on Machine Learning (ICML), pp. 465—472, 2011.

Engel, Y., Mannor, S., and Meir, R. Reinforcement learning
with Gaussian processes. In Proceedings of the Interna-
tional Conference on Machine Learning (ICML), 2005.

Even-Dar, Eyal and Mansour, Yishay. Learning rates for
Q-learning. Journal of Machine Learning Research, 5:
1-25, 2004.

Jung, Tobias and Stone, Peter. Gaussian processes for sam-
ple efficient reinforcement learning with RMAX-like ex-
ploration. In Proceedings of the European Conference
on Machine Learning (ECML), 2010.

Kalyanakrishnan, Shivaram and Stone, Peter. An empirical
analysis of value function-based and policy search rein-
forcement learning. In Proceedings of the International
Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 749-756, 2009.

Li, Lihong and Littman, Miachael L. Reducing reinforce-
ment learning to KWIK online regression. Annals of
Mathematics and Artificial Intelligence, 58(3-4):217—
237,2010.

Li, Lihong, Littman, Michael L., Walsh, Thomas J., and
Strehl, Alexander L. Knows what it knows: a framework
for self-aware learning. Machine Learning, 82(3):399—
443,2011.

Pazis, Jason and Parr, Ronald. PAC optimal exploration in
continuous space markov decision processes. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 2013.

Puterman, Martin L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, New York,
1994.

Rasmussen, C. and Williams, C. Gaussian Processes for
Machine Learning. MIT Press, Cambridge, MA, 2006.

Stevens, Brian L. and Lewis, Frank L. Aircraft control and
simulation. Wiley-Interscience, 2003.

Strehl, Alexander L., Li, Lihong, Wiewiora, Eric, Lang-
ford, John, and Littman, Michael L. PAC model-free
reinforcement learning. In Proceedings of the Inter-
national Conference on Machine Learning (ICML), pp.
881-888, 2006.

Strehl, Alexander L., Li, Lihong, and Littman, Michael L.
Reinforcement learning in finite MDPs: PAC analysis.
Journal of Machine Learning Research, 10:2413-2444,
2009.

Sutton, R. and Barto, A. Reinforcement Learning, an In-
troduction. MIT Press, Cambridge, MA, 1998.

Watkins, C. J. Q-learning. Machine Learning, 8(3):279—
292, 1992.

