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Abstract
Kernel approximation using random feature
maps has recently gained a lot of interest. This is
mainly due to their applications in reducing train-
ing and testing times of kernel based learning al-
gorithms. In this work, we identify that previous
approaches for polynomial kernel approximation
create maps that can be rank deficient, and there-
fore may not utilize the capacity of the projected
feature space effectively. To address this chal-
lenge, we propose compact random feature maps
(CRAFTMaps) to approximate polynomial ker-
nels more concisely and accurately. We prove
the error bounds of CRAFTMaps demonstrat-
ing their superior kernel reconstruction perfor-
mance compared to the previous approxima-
tion schemes. We show how structured ran-
dom matrices can be used to efficiently gener-
ate CRAFTMaps, and present a single-pass al-
gorithm using CRAFTMaps to learn non-linear
multi-class classifiers. We present experiments
on multiple standard data-sets with performance
competitive with state-of-the-art results.

1. Introduction
Kernel methods allow implicitly learning non-linear func-
tions using explicit linear feature spaces (Schlkopf et al.,
1999). These spaces are typically high dimensional and
often pose what is called the curse of dimensionality. A so-
lution to this problem is the well-known kernel trick (Aiz-
erman et al., 1964), where instead of directly learning a
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classifier in Rd, a non-linear mapping Φ : Rd → H is con-
sidered, where ∀ x,y ∈ Rd, 〈Φ(x),Φ(y)〉H = K(x,y) for
a kernel K(x,y). A classifier H : x 7→ wTΦ(x) is then
learned for a w ∈ H.

It has been observed however that with increase in train-
ing data size, the support of the vector w can undergo un-
bounded growth, which can result in increased training as
well as testing time (Steinwart, 2003) (Bengio et al., 2006).
Previous approaches to address this curse of support have
mostly focused on embedding the non-linear feature space
H into a low dimensional Euclidean space while incur-
ring an arbitrarily small distortion in the inner product val-
ues (Rahimi & Recht, 2007) (Kar & Karnick, 2012) (Le
et al., 2013) (Pham & Pagh, 2013). One way to do this
is to construct a randomized feature map Z : Rd → RD

such that for all x,y ∈ Rd, 〈Z(x),Z(y)〉 ≈ K(x,y). Each
component of Z(x) can be computed by first projecting
x onto a set of randomly generated d dimensional vectors
sampled from a zero-mean distribution, followed by com-
puting the dot-products of the projections. While random-
ized feature maps can approximate the more general class
of dot-product kernels, in this work we focus on polyno-
mial kernels, where K(x,y) is of the form (〈x,y〉+q)r,
with q ∈ R+ and r ∈ N0.

In previous works, it has been shown that |〈Z(x),Z(y)〉 −
K(x,y)| reduces exponentially as a function of D (Kar &
Karnick, 2012) (Pham & Pagh, 2013). However in practice,
to approximate K(x,y) with sufficient accuracy, D can still
need to be increased to values that might not be amenable
to efficiently learn classifiers in RD. This is especially true
for higher values of r.

We also show that spaces constructed by random feature
maps can be rank deficient. This rank deficiency can re-
sult in the under-utilization of the projected feature space,
where the model parameters learned in RD can have signif-
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icant number of components close to zero.

This presents us with the dilemma between better approxi-
mation of exact kernel values and efficient classifier learn-
ing. To resolve this dilemma, we propose compact random
feature maps (CRAFTMaps) as a more concise representa-
tion of random feature maps that can approximate polyno-
mial kernels more accurately. We show that the informa-
tion content of Z : Rd → RD can be captured more com-
pactly by generating an alternate random feature map G :
RD → RE, such that E < D, and 〈G(Z(x)), G(Z(y))〉 ap-
proximates 〈Z(x),Z(y)〉. CRAFTMaps are therefore con-
structed by first up projecting the original data non-linearly
to RD in order to minimize |〈Z(x),Z(y)〉 −K(x,y)|. This
is followed by linearly down projecting the up-projected
vectors to RE with E < D in order to capture the under-
lying structure in RD more compactly. We present both
analytical as well as empirical evidence of the fact that the
“up/down” projections employed by CRAFTMaps approx-
imate K(x,y) better than a direct random polynomial fea-
ture map Z : Rd → RE.

The additional cost of down projecting from RD to RE in-
curred by CRAFTMaps is well-justified by the efficiency
gains they offer in terms of training in RE. To further im-
prove the efficiency of CRAFTMaps, we show how they
can be generated using structured random matrices, in par-
ticular Hadamard transform, that reduces the cost of mul-
tiplying two n × n matrices from O(n3) to O(n2log(n)).
This gain is exploited for both up as well as down projec-
tion steps of CRAFTMaps.

The compactness of CRAFTMaps makes them particularly
suitable for using Hessian based methods to learn classi-
fiers in a single pass over the data. Moreover, we show
how CRAFTMaps can be used to learn multi-class classi-
fiers in a streaming manner, using the previously proposed
framework of error correcting output codes (ECOCs) (Di-
etterich & Bakiri, 1994), to minimize the least square error
between the predicted and the true class labels. This combi-
nation of CRAFTMaps and ECOCs is particularly powerful
as it can be formalized as a matrix-matrix multiplication,
and can therefore maximally exploit the multi-core pro-
cessing power of modern hardware using BLAS3 (Golub
& Van Loan, 2012). Finally, by requiring minimal commu-
nication among mappers, this framework is well-suited for
map-reduce based settings.

2. Related Work
Extending the kernel machines framework to large scale
learning has been explored in a variety of ways (Bottou
et al., 2007) (Sonnenburg et al., 2006) (Joachims, 1999).
The most popular of these approaches are decomposi-
tion methods for solving Support Vector Machines (Platt,
1999) (Chang & Lin, 2011). While in general extremely
useful, these methods do not always scale well to problems

with more than a few hundreds of thousand data-points.

To solve this challenge, several schemes have been pro-
posed to explicitly approximate the kernel matrix, includ-
ing low-rank approximations (Blum, 2006) (Bach & Jor-
dan, 2005), sampling individual entries (Achlioptas et al.,
2002), or discarding entire rows (Drineas & Mahoney,
2005). Similarly, fast nearest neighbor look-up methods
have been used to approximate multiplication operations
with the kernel matrix (Shen et al., 2005). Moreover,
concepts from computational geometry have also been ex-
plored to obtain efficient approximate solutions for SVM
learning (Tsang et al., 2006).

An altogether different approximation approach that has re-
cently gained much interest is to approximate the kernel
function directly as opposed to explicitly operating on the
kernel matrix. This can be done by embedding the non-
linear kernel space into a low dimensional Euclidean space
while incurring an arbitrarily small additive distortion in
the inner product values (Rahimi & Recht, 2007). By re-
lying only on the embedded space dimensionality, this ap-
proach presents a potential solution to the aforementioned
curse of support, and is similar in spirit to previous efforts
to avoid the curse of dimensionality in nearest neighbor
problems (Indyk & Motwani, 1998).

While the work done in (Rahimi & Recht, 2007) focuses
on translation invariant kernels, there have been several
subsequent approaches proposed to approximate other ker-
nels as well, some of which include group invariant (Li
et al., 2010), intersection (Maji & Berg, 2009), and RBF
kernels (Le et al., 2013). There has also been an inter-
est in approximating polynomial kernels using random fea-
ture maps (Kar & Karnick, 2012) and random tensor prod-
ucts (Pham & Pagh, 2013). Our work builds on these ap-
proaches and provides a more compact representation of
accurately approximating polynomial kernels.

3. Compact Random Feature Maps
We begin by demonstrating the rank deficiency of the pre-
vious polynomial kernel approximations (Kar & Karnick,
2012) (Pham & Pagh, 2013), followed by a detailed pre-
sentation of the CRAFTMaps framework.

3.1. Preliminaries

Following (Kar & Karnick, 2012), consider a positive def-
inite kernel K : (x,y) 7→ f(〈x,y〉), where f admits a
Maclaurin expansion, i.e., f(x) =

∑∞
n=0 anx

n, where
an = f (n)(0)/n!. An example of such a kernel is the
polynomial kernel K(x,y) = (〈x,y〉+q)r, with q ∈ R+

and r ∈ N0. By defining estimators for each individual
term of the kernel expansion, one can approximate the ex-
act kernel dot-products. To this end, let w ∈ {−1, 1}d
be a Rademacher vector, i.e., each of its components are
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Algorithm 1 – RANDOM FEATURE MAPS (RFM)
Input: Kernel parameters q and r, output dimensionality
D, sampling parameter p > 1
Output: Random feature map Z : Rd → RD such that
〈Z(x),Z(y)〉 ≈ K(x,y)

1: Find f(x) =
∞∑
n=0

anx
n, where an = f(n)(0)

n!

2: for each i = 1 to D do
3: Choose variable N using Pr[N = n] = 1

pn+1

4: Choose wj ∈ {−1, 1}d using N fair coin tosses

5: Define Zi : x 7→
√
aNpN+1

N∏
j=1

wT
jx

6: Construct Z : x 7→ 1√
D

(Z1, · · ·, ZD)

chosen independently using a fair coin toss from the set
{−1, 1}. It can be shown that for Pr[N = n] = 1/(pn+1)
for some constant p > 1, and w1, · · ·,wN as N indepen-
dent Rademacher vectors, the feature map Zi : Rd → R,
Zi : x 7→

√
aNpN+1

∏N
j=1 w

T
jx gives an unbiased estimate

of the polynomial kernel. Generating D such feature maps
independently and concatenating them together constructs
a multi-dimensional feature map Z : Rd → RD,Z : x 7→
1/
√

D(Z1(x), · · ·, ZD(x)), such that E (〈Z(x),Z(y)〉) =
K(x,y). The procedure for generating random feature
maps for polynomial kernels is listed in Algorithm 1 and
illustrated in Figure 1.

3.2. Limitations of Random Feature Maps

The benefit of random feature maps to approximate the un-
derlying eigen structure of the exact kernel space can come
at the cost of their rank deficiency. Consider e.g. Fig-
ure 2(a) where the black graph shows the log-scree plot
of the exact 7th order polynomial kernel (q = 1) obtained
using 1000 randomly selected set of points from MNIST
data. The red graph shows the log-scree plot for the ran-
dom feature map (Kar & Karnick, 2012) in a 212 dimen-
sional space. Note that the red plot is substantially lower
than the black one for majority of the spectrum range. This
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Figure 1: Projection of a 5 dimensional vector to a random fea-
ture map for a 2nd order homogenous polynomial kernel in 4 di-
mensions. As an = {1, 0, 0} here, we need r × D = 2 × 4 = 8
Rademacher vectors such that we could multiply each r = 2 pro-
jections to construct Z in D = 4 dimensions.

Algorithm 2 – CRAFTMAPS USING RFM
Input: Kernel parameters q and r, up and down projection
dimensionalities D and E such that E < D, sampling pa-
rameter p > 1
Output: CRAFTMap G : Rd → RE, such that
〈G(x),G(y)〉 ≈ K(x,y)

1: Up Project: Using Algorithm 1, construct random fea-
ture map Z : Rd → RD, such that 〈Z(x),Z(y)〉 ≈
K(x,y)

2: Down Project: Using Johnson-Lindenstrauss ran-
dom projection, linearly down-project Z to construct
G : RD → RE such that 〈G(Z(x)),G(Z(y)〉 ≈
〈Z(x),Z(y)〉.

rank deficiency is also true for the space generated by ran-
dom tensor products (Pham & Pagh, 2013) whose log-scree
plot is shown in green in Figure 2(a).

This rank deficiency can result in the under-utilization of
the projected feature space. Figure 2(b) shows the his-
togram of the linear weight vector learned in a 212 dimen-
sional random feature map (Kar & Karnick, 2012) for a 7th

order polynomial kernel (q = 1). The plot was obtained
for 1000 randomly selected points from MNIST data for
two class-sets. The spike at zero shows that a majority of
the learned weight components do not play any role in clas-
sification.

3.3. CRAFTMaps using Up/Down Projections

To address the limitations of random feature maps, we pro-
pose CRAFTMaps as a more accurate approximation of
polynomial kernels. The intuition behind CRAFTMaps is
to first capture the eigen structure of the exact kernel space
comprehensively, followed by representing it in a more
concise form. CRAFTMaps are therefore generated in the
following two steps:

Up Projection: Since the difference between 〈Z(x),Z(y)〉
and K(x,y) reduces exponentially as a function of the di-
mensionality of Z (Kar & Karnick, 2012) (Pham & Pagh,
2013), we first up project the original data non-linearly
from Rd to a substantially higher dimensional space RD

to maximally capture the underlying eigen structure of the
exact kernel space.

Down Projection: Since the randomized feature map Z :
Rd → RD generated as a result of the up-projection step
is fundamentally rank-deficient (as shown previously in
§ 3.2), we linearly down project Z to a lower-dimensional
map G : RD → RE, such that E < D, and 〈G(Z(x)),
G(Z(y))〉 ≈ 〈Z(x),Z(y)〉. The procedure to generate
CRAFTMaps is listed in Algorithm 2. Note that while Al-
gorithm 2 uses random feature maps (Kar & Karnick, 2012)
for up-projection, one could also use other feature maps
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Figure 2: (a) Rank deficiency of tensor sketch (Pham & Pagh,
2013) and random feature maps (Kar & Karnick, 2012), along
with rank improvements due to CRAFTMaps. (b-c) Histograms
of weight vectors learned in a 212 dimensional random feature
map (Kar & Karnick, 2012) and CRAFTMaps (here D was set
equal to 214).

e.g. tensor products (Pham & Pagh, 2013) to generate Z.

The rank improvement brought about by using
CRAFTMaps for random feature maps and tensor
sketch is shown in Figure 2-a by the dotted red and green
plots respectively. The improved utilization of the pro-
jected space of random feature maps due to CRAFTMaps
is demonstrated in Figure 2(c).

3.4. Error Bounds for CRAFTMaps

Recall that the following result obtained using an applica-
tion of the Hoeffding inequality (Hoeffding, 1963) is cen-
tral to the analysis of (Kar & Karnick, 2012):

Pr (|〈Z(x),Z(y)〉 − K(x,y)| > ε) ≤ 2 exp

(
−Dε2

8C2
Ω

)
(1)

where D is the dimensionality of Z, and C2
Ω is a constant

(defined below). We first examine this inequality more
closely for homogenous polynomial kernels K(x,y) =
〈x,y〉r for all points on the unit sphere. In that case we
have,

C2
Ω = (pf(pR2))2 =

(
1

2r+1

)2

d2r (2)

where R = max ‖x‖`1 =
√
d and a suitable choice for p is

1/2. We only get a non-trivial bound when D & ε−2d2r.
Note however that if we used explicit kernel expansion, we
would need substantially fewer features (at most

(
d+r−1
r

)
).

The same holds for (Pham & Pagh, 2013) since they apply
the same Hoeffding inequality, and the analysis produces
the same asymptotics.

We therefore first present an improved error analysis
of (Kar & Karnick, 2012), focusing on homogeneous poly-
nomial kernels. We then use this analysis to prove error

bounds of CRAFTMaps. Note that these bounds are inde-
pendent of the dimensionality of the input space, which is a
significant improvement over both (Kar & Karnick, 2012)
and (Pham & Pagh, 2013).

Lemma 3.1. Fix an integer r ≥ 2, and define SD as:

SD =

D∑
i=1

r∏
j=1

〈x, ωi,j〉〈x′, ωi,j〉

where x,x′ are vectors of unit Euclidean length, and ωi,j ∼
N (0, Id) are independent Gaussian vectors. Then when-
ever D ≥ 3 · 4r+2ε−2,

Pr

(∣∣∣∣ 1

D
SD − 〈x,x′〉r

∣∣∣∣ ≥ ε) ≤ cr exp

(
−1

2

(
Dε2

11

) 1
2r+2

)
where 0 < c < 0.766 is a universal constant.

Proof: Let Yi =
∏r
j=1〈x, ωi,j〉〈x′, ωi,j〉, then the devia-

tion of SD from its mean is estimated by the rate at which
the tails of Yi decay, which is in turn determined by the
rates at which the moments of Yi grow. We first verify that
the expectation of the summands indeed equals 〈x,x′〉r:

E (Yi) =

r∏
j=1

E
(
xTωi,jω

T
i,jx
′) = 〈x,x′〉r

Similarly, the kth moment of Yi can be determined as:

E
(
|Yi|k

)
=

r∏
j=1

E
(
|tr
(
xTωi,jω

T
i,jx
′) |k)

≤
r∏
j=1

[∥∥x′xT
∥∥k

2
E
(

tr
(
xTωi,jω

T
i,jx
)k)]

=

r∏
j=1

E
(
|ωT
i,jx|2k

)
=

r∏
j=1

E
(
|γj |2k

)
=

[(
1

2

)k
(2k)!

k!

]r
≤ (
√

2)r
(

2k

e

)rk
= crkrk

Here γj ∼ N (0, 1), c =
√

2(2/e)k, and the last three ex-
pressions above follow from the formula for the moments
of a standard Gaussian random variables (Patel & Read,
1996). We now estimate moments of feature map approxi-
mation error.

Q =
1

Dk
E

(∣∣∣ D∑
i=1

(Yi − E (Yi))
∣∣∣k)

Assuming k ≥ 2, and using Marcinkiewicz–Zygmund in-
equality (Burkholder, 1988) we have:

Q ≤
(

k√
D

)k
E
(
|Yi − E (Yi) |k

)
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A standard estimate of the right-hand quantity using Jen-
son’s inequality allows us to conclude that

Q ≤
(

2k√
D

)k
E
(
|Yi|k

)
≤ cr

(
2k√

D

)k
krk

Finally, we apply Markov’s inequality to bound the tails of
the approximation error:

Pr

(∣∣∣∣∣ 1

D

D∑
i=1

Yi − 〈x,x′〉r
∣∣∣∣∣ ≥ ε

)
≤ Q
εk
≤ cr

(
2k

ε
√

D

)k
krk

= cr exp
(
k
[

log(2kr+1)− log(ε
√

D)
])

Fixing α > 0 and assuming that D > e2α4r+2ε−2 and
k = b(ε2De−2α/4)1/(2r+2)c ensures that

log(2kr+1)− log(ε
√

D) ≤ −α

and k ≥ 2, so our earlier assumption when applying
Marcinkiewicz–Zygmund inequality is valid. Thus

Pr

(∣∣∣∣∣ 1

D

D∑
i=1

Yi − 〈x,x′〉r
∣∣∣∣∣ ≥ ε

)
≤ cr exp

(
−α

(
Dε2

4e2α

)ρ)

where ρ = 1/(2r + 2) and c ≤
√

2(2/e)2 < 0.766. Take
α = 1/2 to reach the bound in the theorem. �

Applying Lemma 3.1, the following corollary follows:

Corollary 3.2. Let X ⊂ Rd be a set of n unit vectors. Let
ωi,j ∼ N(0, Id) be a set of r · D independent Gaussian
random vectors. If D & 4r+1 log(n)2r+2ε−2 then we have
with high probability:∣∣∣∣∣∣ 1

D

D∑
i=1

r∏
j=1

〈x, ωi,j〉 〈x′, ωi,j〉 − 〈x,x′〉
r

∣∣∣∣∣∣ ≤ ε
which holds simultaneously ∀ x,x′ ∈ X.

Proof: We apply the Lemma 3.1 along with the triv-
ial union bound over O(n2) points. Thus, we require
exp(log(n2) − (Dε2)1/(2r+2)) to be small. In this case,
picking D ≥ log(n2)(2r+2)ε−2 suffices. �

An alternate way to view this is to fix D, in which case the
final approximation error will be bounded by:

ε . log(n2)r+1/
√

D (3)

We can combine this with a usual Johnson-
Lindenstrauss (Johnson & Lindenstrauss, 1984) random
projection as follows:

Theorem 3.3. Let X ⊂ Rd be a set of n unit vectors. Sup-
pose we map these vectors using a random feature map

Z : Rd → RD composed with a Johnson-Lindenstrauss
map Q : RD → RE, where D ≥ E, to obtain Z′, then the
following holds:∣∣〈x, x′〉r − 〈Z′(x),Z′(y)〉

∣∣ . 2r+1 log(n)r+1

D1/2
+

log(n)1/2

E1/2

with high probability ∀ x,x′ ∈ X simultaneously.

Proof: A Johnson-Lindenstrauss projection from RD to RE

preserves with high probability all pairwise inner products
of the n points {Z(x) : x ∈ X} in RD to within an addi-
tive factor of ε′ . log(n)1/2/E1/2. Applying the triangle
inequality:

|〈x,y〉r − 〈Z′(x),Z′(y)〉| ≤ |〈x,y〉r − 〈Z(x),Z(y)〉|+
|〈Z(x),Z(y)〉 − 〈Z′(x),Z′(y)〉| := ε+ ε′

Referring to Equation 3 to bound ε, we obtain the final error
bound:

ε+ ε′ .
2r+1 log(n)r+1

D1/2
+

log(n)1/2

E1/2

�

In particular, the error is lower than random feature
maps (Kar & Karnick, 2012) whenever:

2r+1 log(n)r+1

D1/2
+

log(n)1/2

E1/2
.

2r+1 log(n)r+1

E1/2

Fixing D = g(r)E for some constant g(r) ≥ 1,
CRAFTMaps provide a better error bound when:

g(r) &

(
log(n)r+1/2

log(n)(r+1/2) − 2−(r+1)

)2

≈ 1

3.5. Efficient CRAFTMaps Generation

Recall that for Hessian based optimization of linear re-
gression problems, the dominant cost of O(nD2) is spent
calculating the Hessian. By compactly representing ran-
dom feature maps in RE as opposed to RD for E < D,
CRAFTMaps provide a factor of D2/E2 gain in the com-
plexity of Hessian computation. A straightforward version
of CRAFTMaps would incur an additional cost ofO(nDE)
for the down-projection step. However, since for problems
at scale n >> D, the gains CRAFTMaps provide for clas-
sifier learning over random feature maps is well worth the
relatively small additional cost they incur.

These gains can be further improved by using struc-
tured random matrices for the up/down projections of
CRAFTMaps. One way to do this is to use the Hadamard
matrix as a set of orthonormal bases, as opposed to us-
ing a random bases-set sampled from a zero mean distri-
bution. The structured nature of Hadamard matrices en-
ables efficient recursive matrix-matrix multiplication that
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Figure 3: Randomized Hadamard basis to up-project an input
vector in 4 dimensional space to a random map for a 2nd order
homogenous kernel in a 4 dimensional space.

only requires O(n2log(n)) operations compared to the
O(n3) operations needed for the product of two n × n
non-structured matrices. Constructing CRAFTMaps us-
ing Hadamard transform can therefore reduce the complex-
ity of up projection from O(nDd) to O(nDlog(d)), and
that of down projection from O(nD2) to O(nDlog(D))
respectively. To employ Hadmard matrices for efficient
CRAFTMaps generation, we use the sub-sampled random-
ized Hadamard transform (SRHT) (Tropp, 2011).

While SRHT can be used directly for the down-projection
step, we need to incorporate a few novel modifications to it
before it can be used for up-projection. In particular, given
a kernel function K : (x,y) 7→ f(〈x,y〉) and a d dimen-
sional1 vector x, we first construct T = d(

∑D
i=1 Ni)/de

copies of x, where N is defined in Algorithm 1. Each copy
xt is multiplied by a diagonal matrix Mt whose entries are
set to +1 or −1 with equal probability. Each matrix Mtxt
is implicitly multiplied by the d × d Hadamard matrix H.
All rows of HMtxt for all t = {1, · · ·,T} are first con-
catenated, and then randomly permuted, to be finally used
according to Algorithm 1 to non-linearly up-project x from
Rd to RD (see Figure 3).

4. Classification Using ECOCs
To solve multi-class classification problems, we use er-
ror correcting output codes (ECOCs) (Dietterich & Bakiri,
1994) which employ a unique binary “codeword” of length
c for each of the k classes, and learn c binary functions, one
for each bit position in the codewords. For training, using
an example from class i, the required outputs of the c binary
functions are specified by the codeword for class i. Given a
test instance x, each of the c binary functions are evaluated
to compute a c-bit string s. This string is compared to the
k codewords, assigning x to the class whose codeword is
closest to s according to some distance (see Figure 4).

Overall, given d dimensional data from k classes, we use
up/down projections to construct its CRAFTMap represen-
tation in RE. We then use ECOCs to learn c binary linear

1As Hadamards exist in powers of 2, usually x needs to be
zero-padded to the closest higher power of 2.

b1 b2 b3 b4 b5 b6

o1 o2 o3 o4 o5 o6

Cx

x

C1

C2

C3

C4

Classes

codewords

decoding

Input

0

0

0

1
1

1

1 1 1
1 1

1 1

1 1

0 0 0

0 0

0 0

0 0

0

00

0 0 0
0 0

0 0 0

0 0 0 0

Figure 4: To learn bit 3 classi-
fier, all points from C2 & C4 are
considered positive, and those
from C1 & C3 negative. If e.g.
the detected labels for a test in-
stance are 110110, it is assigned
to C3 as it is at minimum dis-
tance from C3 codeword.

regressors in RE. To test a point, we up/down project it to
RE and then pass it through the ECOCs to be classified to
one of the k classes.

5. Experiments and Results
We now present CRAFTMaps results on multiple data-sets.
Unless otherwise mentioned, we use the H-0/1 heuristic
of (Kar & Karnick, 2012) for random feature maps (RFM)
and CRAFTMaps on RFM.

5.1. Reconstruction Error

Figure 5 shows the normalized root mean square errors
(NRMSE) for MNIST data obtained for an r = 7 and
q = 1 kernel using random feature maps (RFM – top
row) (Kar & Karnick, 2012) versus CRAFTMaps (bottom
table) over RFM. These results were obtained using the
same set of 1000 randomly selected data points. As shown,
CRAFTMaps provide a significant improvement consistent
over a range of D and E. Similar trends can be found in Fig-
ure 6 where NRMSE for 6 different data-sets over a range
of E are shown.

Figure 7 (a) shows reconstruction results as a function
of polynomial degree obtained using 10 sets of 1000
randomly picked points from MNIST data. As shown,
CRAFTMaps consistently improve the reconstruction error
over a wide range of polynomial degrees.
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CRAFTMaps on RFM.
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Figure 6: NRMSE obtained while reconstructing the polynomial kernel with r = 7 and q = 1. Here D = 2×max(E).
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Figure 7: (a) Reconstruction error as a function of polynomial degree, averaged over 10 randomly sampled 1000 points of MNIST
data. Here RD = 215 while RE = 213. (b) Test classification for MNIST8M. Here D = 217, E = 214, q = 1, r = 7 and ECOCs =
200. (c) Log-log scatter plot of compute times (projection+Hessian) for MNIST data. For CRAFTMaps, projection took 18.1s, 36.3s,
75.9s, 186.3s, and 419.2s, while finding Hessian took 9.5s, 26.2s, 81.1s, 334.8s, and 1100.3s respectively. Note that CRAFTMaps
show significant per unit-time classification improvements for larger feature spaces.

5.2. Classification Error

Table 1 shows the test classification error using
CRAFTMaps on random feature maps (Kar & Kar-
nick, 2012) and tensor sketch (Pham & Pagh, 2013)
compared to 5 alternate approaches over 4 different
data-sets. As can be observed, CRAFTMaps consistently
delivered improved classification performance, mostly
outperforming the considered alternatives.

We now explain results for CRAFTMaps on MNIST
data for small and substantially large projected feature

spaces. We also explain CRAFTMaps results on very large
amounts of training data using MNIST8M.

Small Feature Spaces: Table 1-a shows MNIST results
on feature space sizes 300 to 700 dimensions. Note that
for E < d (which for MNIST is 784 ), the random feature
maps cannot use the H-0/1 heuristic of (Kar & Karnick,
2012). CRAFTMaps however do not have this limitation
as even for E < d, D can still be >> d. This allows
CRAFTMaps to use the H-0/1 heuristic in RD, which in
turn reflects in RE. This results in substantial classifica-
tion gains achieved by CRAFTMaps for small-sized fea-



Compact Random Feature Maps

ture spaces, and highlights their usefulness in applications
with low memory footprint such as mobile phone apps.

Large Feature Spaces: Table 1-b shows the MNIST re-
sults on feature sizes 212 to 216, where CRAFTMaps man-
aged to achieve 1.12% test error using the original 60K
training data (unit-length normalized, non-jittered and non-
deskewed). While for small-sized feature spaces the exact
kernel on MNIST data perform quite well, CRAFTMaps
outperform all alternatives as the size of the feature space
grows to larger values.

Results on MNIST8M Data Figure 7 (b) shows the com-
parative performance of CRAFTMaps for a given sized E
(214) as training size varies from 60K to 8.1M. This ex-
periment uses the same set of 10 thousand test points as
used for the experiments with MNIST data. It can be seen
that CRAFTMaps on random feature maps converge the
fastest, and consistently gives better classification perfor-
mance compared to the other representations. These re-
sults were obtained using a polynomial kernel with r = 7,
q = 1, D = 217, E = 214, and ECOCs equal to 200. As
we increase E to 216 and D to 219 using CRAFTMaps on
RFM for 7th order polynomial kernel (q = 1), we achieved
test classification error of 0.91% on MNIST8M data-set.

5.3. Run-Time Analysis

Figure 7(c) shows the log-log scatter plot of the compute
times (projection + Hessian) for random feature maps (Kar
& Karnick, 2012), tensor sketching (Pham & Pagh, 2013),
and CRAFTMaps using random feature maps (with H-01
heuristic). These times were recorded for MNIST data us-
ing a 40-core machine. Notice that CRAFTMaps show sig-
nificant per unit-time classification improvements towards
the right end of the x-axis. This is because as the size of
the projected space increases, the Hessian computation cost
becomes dominant. This naturally gives CRAFTMaps an
edge given their ability to encode information more com-
pactly. The gains of CRAFTMaps are expected to grow
even more as the training size further increases.

6. Conclusions and Future Work
In this work, we proposed CRAFTMaps to approximate
polynomial kernels more concisely and accurately com-
pared to previous approaches. An important context where
CRAFTMaps are particularly useful is the map-reduce set-
ting. By computing a single Hessian matrix (with differ-
ent gradients for each ECOC) in a concise feature space,
CRAFTMaps provide an effective way to learn multi-class
classifiers in a single-pass over large amounts of data.
Moreover, their ability to compactly capture the eigen
structure of the kernel space makes CRAFTMaps suitable
for smaller scale applications such as mobile phone apps.

Going forward, we would like to further explore how to

a-MNIST 1 300 400 500 600 700

FastFood 32.8 26.6 15.3 11.5 8.4
RKS 8.9 6.7 5.9 5.3 5.0
RFM 14.0 12.3 11.4 10.3 9.5
TS 13.1 11.2 10.0 8.6 8.0

CM RFM 9.5 7.7 7.2 6.6 5.9
CM TS 12.6 10.8 8.9 7.9 7.3
Exact 6.0 5.4 5.0 4.5 4.1

b-MNIST 2 212 213 214 215 216

FastFood 2.78 2.20 2.02 1.87 1.50
RKS 2.94 2.51 2.13 1.91 1.52
RFM 3.17 2.30 1.91 1.62 1.49
TS 3.25 2.41 2.01 1.65 1.41

CM RFM 3.09 2.18 1.79 1.52 1.27
CM TS 2.90 2.20 1.75 1.44 1.12
Exact 2.49 2.21 1.80 1.49 1.20

c-USPS 210 211 212 213 214

FastFood 5.87 5.18 4.83 4.78 4.65
RKS 5.89 5.78 5.53 4.98 4.78
RFM 5.97 5.33 4.68 4.48 4.13
TS 5.92 5.03 4.63 4.48 4.33

CM RFM 5.68 5.03 4.48 4.28 4.03
CM TS 5.77 5.03 4.28 4.23 3.93
Exact 5.73 5.08 4.83 −− −−

d-COIL100 211 212 213 214 215

FastFood 8.25 7.83 6.80 6.32 5.21
RKS 8.14 7.36 6.50 5.97 4.81
RFM 11.11 7.55 6.33 5.05 4.83
TS 10.08 7.19 5.69 4.75 4.27

CM RFM 8.94 6.86 5.47 4.52 4.08
CM TS 8.16 5.97 4.75 4.02 3.96
Exact 9.55 −− −− −− −−

e-PENDIGITS 26 27 28 29 210

FastFood 8.74 5.03 3.08 2.85 2.71
RKS 5.83 4.25 2.63 2.17 2.08
RFM 7.94 3.94 2.85 2.28 1.91
TS 11.20 4.57 2.37 1.80 1.77

CM RFM 7.43 3.57 2.28 1.97 1.57
CM TS 8.03 3.80 2.37 2.05 1.74
Exact 9.29 3.74 2.74 2.31 2.87

Table 1: Test classification errors for multiple data-sets is shown.
Here r = 7, 7, 5, 5 and 9 respectively while q = 1. RFM, TS,
RKS, Fastfood, and CM stand for (Kar & Karnick, 2012), (Pham
& Pagh, 2013), (Rahimi & Recht, 2007), (Le et al., 2013), and
CraftMaps respectively. First row of each table shows E, while
D = 8×E. Some entries for exact kernel are left empty as training
examples for these cases were less than projection dimensionality.

better allocate the set of random bases available to us to
approximate the different Maclaurin coefficients of a ker-
nel more accurately. Furthermore, we currently commit
to a particular kernel function at the start of the training
process. However that kernel may not be optimal for the
specific learning problem at hand. We are interested in ex-
ploring if one can simultaneously solve what is know as
the “kernel alignment” problem (Cristianini et al., 2001),
as well as learning a low-dimensional kernel embedding
using random projections.
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