
Concept Drift Detection Through Resampling

A. Supplementary Material - Proof of Theorem 3
For convenience we restate the theorem.

Theorem 3. DefineH0 andH1 as in (1). For an algorithm with βn = O( 1n ), a slack γ =
12npβn(1−p)+2

√
2 log(4/δ)/np+2η

(1−p)(1+2p) ,

where p = |J|
n , and any δ ∈ (0, 1), we have that underH0, with probability of at least 1− δ,

���R̂ord − R̂perm

��� ≤6npβn(1−p)+
�
2 log(4/δ)/np+Δ(1− p)(1 + 2p) + η.

UnderH1, the inverse inequality holds with probability of at least 1− δ.

Examples for stable algorithms with βn = O( 1n ) are k-Nearest Neighbors, soft margin SVM, SVM regression (SVR), and
Regularized Least Squares (Bousquet & Elisseeff, 2002).

The proof of the theorem requires the following definitions and lemmas.

We would like to bound the variability of the risk resulting from different training sets. We use the notion of error stability
(Kearns & Ron, 1999):

Definition 5. An algorithm A has error stability βn with respect to the loss function � if

∀Zn ∈ Zn, ∀i ∈ {1, ..., n}
���RD(AZn

)−RD(AZ−i
n
)
��� ≤ βn,

where Z−i
n is the set Zn with the sample i removed, and βn decreases with n.

We extend Definition 5 for the case of qn = q(n) samples removed.

Definition 6. An algorithm A has qn-error stability β̃qn with respect to the loss function � if

∀Zn ∈ Zn, ∀I ⊂ {1, ..., n}, |I| = qn

���RD(AZn)−RD(AZ−I
n

)
��� ≤ β̃qn ,

where Z−I
n is the set Zn with the sample set I removed, and β̃qn decreases as a function of n.

The triangle inequality implies the following lemma.

Lemma 7. If algorithm A has error stability βn and qnβn−qn decreases as a function of n, then A has qn-error stability
with β̃qn ≤ qnβn−qn .

Proof. Let I = {i1, ..., iq} be the set of indices removed from Zn, then if βn is non-increasing the following holds by the
triangle inequality.

���RD(AZn)−RD(AZ−I
n

)
��� ≤

���RD(AZn)−RD(AZ
−i1
n

)
���+

���RD(AZ
−i1
n

)−RD(AZ−I
n

)
���

βn +
���RD(AZ

−i1
n

)−RD(AZ−I
n

)
��� ≤

qn�

i=1

βn−qn+i ≤ qnβn−qn+1 ≤ qnβn−qn .

Therefore, β̃qn ≤ qnβn−qn . If also qnβn−qn decreases as a function of n, than β̃qn decreases with n.

Corollary 8. Let algorithm A be with error stability βn = O( 1n ), then for qn = np, where p = O( 1
nc ), c ∈ (0, 1],

algorithm A is also pn-error stable.

Proof. We have that npβn(1−p) = O( np
n(1−p) ) = O( 1

nc−1 ), which decreases as a function of n. Therefore, by Lemma 7,

A also has pn-error stability with β̃pn ≤ npβn(1−p) .

The following lemma gives a concentration result of the empirical risk over samples zt ∈ S�, each generated by a distribu-
tion Dt.



Concept Drift Detection Through Resampling

Lemma 9. Let S and S� be some train-test split of Zn, and denote I �S the index set of S�, then for any � ∈ (0, 1):

P
����RIS� (AS)− R̂S�(AS)

��� ≤ �
�
≥ 1− 2e−2np�2 .

Proof. By definition

P
����RIS� (AS)− R̂S�(AS)

��� ≥ �
�
= P



| 1

np

�

i∈IS�

RDi(AS)− �(AS , zi)| ≥ �





= ES


PS�


 | 1

np

�

i∈IS�

RDi(AS)− �(AS , zi)| ≥ �

������
S




 .

Next, we bound the inner conditional probability using Hoeffding’s inequality: E
�
eαX

�
≤ eα

2/8 for a zero mean random
variable in the range 0 ≤ X ≤ 1 and α > 0.

PS�


 1

np

�

i∈IS�

(�(AS , zi)−RDi(AS)) ≥ �

������
S


 ≤ inf

λ>0
e−λ�ES�

�
e

λ
np

�
i∈I

S� (�(AS ,zi)−RDi
(AS))

����S
�

≤ inf
λ>0

e−λ�
�

i∈IS�

ES�

�
e

λ
np (�(AS ,zi)−RDi

(AS))
���S

�
≤ inf

λ>0
e−λ�e

λ2

8np = e−2np�2 .

The complimentary bound can be derived similarly.

The following components d0 and d1 differentiate between the behavior under the null and alternative hypothesis. The
lemma gives upper and lower bounds on these components.

Lemma 10. Let I and J be two sets of consecutive indices ranges, such that |J | = �pn� and |I| = n − |J | for some
p ∈ (0, 1), and IJ = I ∪ J . Let A be a pn-error stable algorithm (Definition 6). Denote the difference between the
expected risks of J and IJ of the function f by d0

.
= RJ(f)−RIJ(f), and the difference between the expected risks over

all (S, S�) train-test splits by d1
.
= ES∼Un

[RIJ(AS)]− ES∼Un

�
RIS� (AS)

�
.

UnderH0 : |RJ(f)−RI(f)| ≤ Δ we have that

d0 ≤ (1− p)Δ, d1 ≤ 2p(1− p)Δ + η + 4β̃np,

UnderH1 : |RJ(f)−RI(f)| ≥ Δ+ γ we have that

d0 ≥ (1− p)(Δ + γ), d1 ≥ 2p(1− p)(Δ + γ)− η − 4β̃np.

Proof. For any function f for which |RI(f)−RJ(f)| ≤ Δ we have that the difference between the average risks is
bounded:

|RIJ(f)−RI(f)| = |(1− p)RI(f) + pRJ(f)−RI(f)| = p |RJ(f)−RI(f)| ≤ pΔ, (3)
|RIJ(f)−RJ(f)| = |(1− p)RI(f) + pRJ(f)−RJ(f)| = (1− p) |RJ(f)−RI(f)| ≤ (1− p)Δ.

Therefore, under H0 we have that d0
.
= RJ(f)−RIJ(f) ≤ (1− p)Δ.

Due to the η-permitted variation assumption, the difference between the average risk on IJ and the risk with respect to
some Di for i ∈ IJ is also bounded:

∀i ∈ I |RIJ(f)−RDi
(f)| ≤ pΔ+ |RI(f)−RDi

(f)| ≤ pΔ+ η, (4)

∀j ∈ J
��RIJ(f)−RDj

(f)
�� ≤ (1− p)Δ +

��RJ(f)−RDj
(f)

�� ≤ (1− p)Δ + η.
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By stability of algorithm A we have that for any distribution P,Q :

|RP (AS)−RQ(AS)| ≤ |RP (AS)−RP (AZn
)|+ |RQ(AZn

)−RQ(AS)|+ |RP (AZn
)−RQ(AZn

)| ≤ (5)

2β̃np + |RP (AZn)−RQ(AZn)| ≤ 4β̃np + |RP (f)−RQ(f)| .

Recall that Un denotes the uniform distribution over all possible (S, S�) splits. Notice that the sizes of the sets (S, S�) are
|S| = |I| and |S�| = |J |. Under the null hypothesis and inequalities (4) and (5) we have that

|RIJ(AS)−RDi(AS)| ≤ 4β̃np + |RIJ(f)−RDi(f)| ≤ 4β̃np + pΔ+ η, ∀i ∈ I. (6)

|RIJ(AS)−RDi
(AS)| ≤ 4β̃np + (1− p)Δ + η, ∀j ∈ J.

By inserting the above inequalities we bound the expected difference between the risk on IJ and the risk on the set IS�

corresponding to the test set S�:

d1
.
= ES∼Un

�
RIJ(AS)−RIS� (AS)

�
=

1

np
�
n
np

�
�

S�

�

i∈S�

(RIJ(AS)−RDi(AS))

≤ 1

np
�
n
np

�
�

n− 1

np− 1

��
(1− p)n(pΔ+ η + 4β̃np) + pn((1− p)Δ + η + 4β̃np)

�
= 2p(1− p)Δ + η + 4β̃np.

The assertions under the alternative hypothesis are obtained in a similar manner to the above derivation. For any function
f for which |RI(f)−RJ(f)| ≥ Δ+ γ it may be shown that

|RIJ(f)−RI(f)| ≥ p(Δ + γ),

|RIJ(f)−RJ(f)| ≥ (1− p)(Δ + γ),

∀i ∈ I |RIJ(f)−RDi
(f)| ≥ p(Δ + γ)− η,

∀j ∈ J
��RIJ(f)−RDj

(f)
�� ≥ (1− p)(Δ + γ)− η.

Combined with the stability of the algorithm we have that

d0 ≥ (1− p)(Δ + γ) and d1 ≥ 2p(1− p)(Δ + γ)− η − 4β̃np. (7)

We are now ready to provide the proof of the main theorem.

Proof (Theorem 3): We begin by showing that the following holds:

P
����R̂ord − R̂perm − d0 − d1

��� ≥ 2npβn(1−p) +
�
2 log(4/δ)/np

�
≤ δ, (8)

where d0
.
= RJ(f)−RIJ(f), and d1

.
= ES∼Un

[RIJ(AS)]− ES∼Un

�
RIS� (AS)

�
are as defined in Lemma 10.

The bound is obtained as follows:
���R̂ord − R̂perm − d0 − d1

��� .
=

���R̂ord − ES∼Un

�
R̂S�(S)

�
−RJ(f) +RIJ(f)− ES∼Un

�
RIJ(AS)−RIS� (AS)

���� ≤
���R̂ord −RJ(f)

���+ ES∼Un

����RIS� (AS)− R̂S�(AS)
���
�
+ |RIJ(f)− ES∼Un [RIJ(AS)]| .

The probability of the first two components is bounded by Lemma 9. The probability of the last component is bounded
by stability as follows. By construction, |Zn| − |S| = |J | = np. By Corollary 8 algorithm A is pn-error stable with
β̃pn ≤ npβn(1−p). Therefore,

|RIJ(f)− ES∼Un
[RIJ(AS)]| ≤

|RIJ(f)−RIJ(AZn
)|+ |RIJ(AZn

)− ES∼Un
[RIJ(AS)]| ≤

|RIJ(f)−RIJ(AZn
)|+ max

S∼Un

|RIJ(AZn
)−RIJ(AS)| ≤ 2β̃pn ≤ 2npβn(1−p)
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with probability one.

By Lemma 10, we have that under the null hypothesis d0 + d1 ≤ Δ(1 − p)(1 + 2p) + η + 4β̃np. Inserting this bound to
the inequality in (8) we have that

PH0

�
R̂ord − R̂perm ≥ 6npβn(1−p) +

�
2 log(4/δ)/np+Δ(1− p)(1 + 2p) + η

�
≤ δ,

which proves the first part of the theorem.

For the inverted inequality, first recall that γ =
12npβn(1−p)+2

√
2 log(4/δ)/np+2η

(1−p)(1+2p) .
By Lemma 10

d0 + d1 ≥ (Δ + γ)(1− p)(1 + 2p)− η − 4npβn(1−p) = Δ(1− p)(1 + 2p) + 8npβn(1−p) + 2
�

2 log(4/δ)/np+ η
(9)

Under the alternative hypothesis, the probability of obtaining a false negative is bounded as follows.

PH1

����R̂ord − R̂perm

��� ≤ 6npβn(1−p) +
�
2 log(4/δ)/np+Δ(1− p)(1 + 2p) + η

�
=

PH1

����R̂ord − R̂perm

��� ≤ −2npβn(1−p) −
�
2 log(4/δ)/np+

�
8npβn(1−p) + 2

�
2 log(4/δ)/np+Δ(1− p)(1 + 2p) + η

�� (a)

≤

PH1

����R̂ord − R̂perm

��� ≤ −2npβn(1−p) −
�
2 log(4/δ)/np+ d0 + d1

�
≤

PH1

�
d0 + d1 − R̂ord + R̂perm ≥ 2npβn(1−p) +

�
2 log(4/δ)/np

� (b)

≤ δ,

where (a) holds by Equation (9), and (b) is by applying the bound in (8).


