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Abstract

We define the beta diffusion tree, a random tree
structure with a set of leaves that defines a collec-
tion of overlapping subsets of objects, known as a
feature allocation. The generative process for the
tree is defined in terms of particles (representing
the objects) diffusing in some continuous space,
analogously to the Dirichlet and Pitman—Yor dif-
fusion trees (Neal, 2003b; Knowles & Ghahra-
mani, 2011), both of which define tree structures
over clusters of the particles. With the beta diffu-
sion tree, however, multiple copies of a particle
may exist and diffuse to multiple locations in the
continuous space, resulting in (a random number
of) possibly overlapping clusters of the objects.
We demonstrate how to build a hierarchically-
clustered factor analysis model with the beta dif-
fusion tree and how to perform inference over
the random tree structures with a Markov chain
Monte Carlo algorithm. We conclude with sev-
eral numerical experiments on missing data prob-
lems with data sets of gene expression arrays,
international development statistics, and intrana-
tional socioeconomic measurements.

1. Introduction

Latent feature models assume that there are a set of non-
overlapping subsets (called features) of a collection of ob-
jects underlying a data set. This is an appropriate assump-
tion for a variety of statistical tasks, for example, in visual
scene analyses, images could be assigned to the following
features: “image contains a chair”, “image contains a ta-
ble”, “image is of a kitchen”, etc. The Indian buffet pro-
cess (IBP; Griffiths & Ghahramani (2011)) defines a prior

on such clusterings, called feature allocations.
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With the IBP, objects are assigned or not assigned to a fea-
ture with a feature-specific probability that is independent
of the other features. In the scene example, however, the
features are structured into a hierarchy: tables and chairs
are likely to appear in scenes together, and if the scene is in
a kitchen, then possessing both tables and chairs are highly
probable. In order to model hierarchically related feature
allocations, we define the beta diffusion tree a random tree
structure whose set of leaves define a feature allocation for
a collection of objects. As with the IBP, the number of
leaves (features) is random and unbounded, but will be al-
most surely finite for a finite set of objects.

Models for hierarchically structured partitions (non-
overlapping subsets) of a collection of objects can be con-
structed by the Dirichlet and Pitman—Yor diffusion trees
(Neal, 2003b; Knowles, 2012; Knowles & Ghahramani,
2014), in which a collection of particles (representing the
objects) diffuse in some continuous space X (for example,
as Brownian motion in Euclidean space) over some inter-
val of time. Particles start at a fixed point and sequentially
follow the paths of previous particles, potentially diverging
from a path at random times. At the end of the time interval,
the clusters of particles define a partition of the objects, and
the paths taken by the particles define a tree structure over
the partitions. The beta diffusion tree proceeds analogously
to the Dirichlet diffusion tree, except that multiple copies
of a particle (corresponding to multiple copies of an object)
may be created (or removed) at random times. Therefore,
at the end of the time interval, objects may correspond to
particles in multiple clusters, and each cluster is interpreted
as a feature.

The article is organized as follows: In Section 2, we de-
scribe a generative process for the beta diffusion tree and
investigate its properties. In Section 3, we construct a
hierarchically-clustered factor analysis model with the beta
diffusion tree and review related work. In Section 4, we
describe a Markov chain Monte Carlo procedure to inte-
grate over the tree structures, which we apply in Section 5
to experiments on missing data problems.
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2. A generative process

We describe a collection of particles, each labelled with
one of N objects, diffusing in a continuous space X over
a hypothetical time interval ¢ € [0,1]. If a particle is la-
beled with object n, then we call it an n-particle, multiple
of which may exist at time £ > 0. In this work, we take
X = RP for some dimension D, and let the (random) dif-
fusion paths be distributed as Brownian motion with vari-
ance 0% Ip. In particular, if an n-particle is at position x (¢)
in RP at time ¢, then it will reach position

x(t+dt) | x(t) ~ N(x(t),oc%x Ipdt), (1)

at time t + dt. Sequentially for every data point n =
1,..., N, we begin with one n-particle at the origin O,
which follows the paths of previous particles. At random
times t* throughout the process, an n-particle travelling a
path may perform one of two actions:

1. stop: The particle stops diffusing at time ¢*.

2. replicate: A copy of the n-particle is created at time
t*. One copy continues along the original path and
the other diverges from the path and diffuses indepen-
dently of all other particles.

More precisely, let As, A, 85, and 6,. be positive, finite con-
stants that parameterize the generative process, which pro-
ceeds as follows:

e . = 1: A I-particle starts at the origin and diffuses as
Brownian motion for ¢ > 0.

— The particle sfops in the next infinitesimal time in-
terval [t, d¢] with probability

A, dt. )
— The particle replicates in [t, dt] with probability
A dt, 3)

creating a copy of the 1-particle. Both particles dif-
fuse (independently of each other) for ¢ > 1, each
stopping or replicating with the probabilities given
by Eq. (2) and Eq. (3), respectively. Arbitrarily la-
bel one of the paths as the “original path” and the
other as the “divergent path”.

e n > 2: For every n > 2, a single n-particle starts
at the origin and follows the path initially taken by the
previous particles. For a particle travelling on a path
along which m particles have previously travelled:

— The particle stops in [t, d¢] with probability

05
s +m

A\, dt. 4)

— The particle replicates in [¢t, d¢] with probability

0,
0, +m

A dt, (5)

creating a copy of the n-particle. One copy follows
the original path, and the other copy diverges from
the path and diffuses independently of all previous
particles, stopping or replicating with the probabili-
ties in Eq. (2) and Eq. (3), respectively. The newly
created path is labeled as the “divergent path”.

— If the particle reaches an existing stop point (a point
on the path where at least one previous particle has
stopped), it also stops at this point with probability

ns
0, +m’

(6)

where n; is the number of particles that have previ-
ously stopped at this location.

— If the particle reaches an existing replicate point (a
point on the path where a particle has previously
replicated), the particle also replicates at this point
with probability

ny
0, +m’

)

where n, is the number of particles that have pre-
viously replicated at this point (and taken the diver-
gent path). In this case, one copy of the particle fol-
lows the original path and the other follows the di-
vergent path. If the particle does not replicate, then
it continues along the original path.

The process terminates at £ = 1, at which point all particles
stop diffusing. The times until stopping or replicating on
a path along which m particles have previously travelled
are exponentially distributed with rates As65 /(65 +m) and
Ar0r /(0 +m), respectively, and it is therefore straightfor-
ward to simulate a beta diffusion tree in practice. In Fig. 1,
we show a beta diffusion tree with V = 3 objectsin D =1
dimension, along with its corresponding tree structure, in
which the origin is the root node, stop points are stop nodes,
replicate points are replicate nodes, and the points at ¢ = 1
are leaf nodes. We call segments between nodes branches.
Because multiple copies of a particle (all corresponding to
the same object) can follow multiple branches to multi-
ple leaves in the tree, the leaves define a feature allocation
of the NV objects. For example, adopting the notation of
Broderick et al. (2013), the beta diffusion tree in Fig. 1 de-
termines a feature allocation with two features {1, 3} and
{2, 3}. The number of (non-empty) features is therefore the
number of leaves in the tree structure, which is unbounded,
however, in Section 2.2 we will see that this number is (al-
most surely) finite for any finite number of objects.
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(a) A beta diffusion tree with N = 3 objects
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Figure 1. (a) A beta diffusion tree with N = 3 objects, where b and d are stop points and a and c are replicate points, resulting in the
feature allocation {{1,3},{2,3}}. (b) The corresponding tree structures as each object is included in the generative process, where
the origin is the root node, the replicate and stop points are internal nodes, the features are leaf nodes, and segments between nodes are
branches. Here, the stop nodes have been additionally annotated with the (labels of) the particles that have stopped at the node.

2.1. The generative process is exchangeable

Let T[N] denote the tree structure (i.e., the collection of
nodes, associated node times, and branches) of the beta dif-
fusion tree with ordered set of objects [N] := (1,...,N),
and let @7, denote the set of node locations in &X. While
the generative process depends on the ordering of [N], we
will now show that the density p(7[n1, Z7;y,) does not de-
pend on this ordering. Because the times until stopping or
replicating on a branch are exponentially distributed, it fol-
lows that the probability of neither replicating nor stopping
between times ¢ and t' (with ¢ < ') on a branch along
which m previous particles have traversed is given by

U, (t,t") := P{ not replicating and not stopping in [¢,t'] }
05
= exp{ —

b !

G t)}.

For example, consider the tree in Fig. 1, consisting of nodes
a, b, c,d, {1,3}, and {2, 3}, with corresponding node times
ta, tp, etc. From the tree structure, we can determine that
there is one 1-particle, two 2-particles, and two 3-particles.
The 1-particle contributes a factor of ¥((0,1) to the den-
sity p(7[n], 7,) for no “event” (i.e., for not stopping or
replicating) in ¢ € (0, 1). The 2-particles contribute:

T - /—t—
R Gt

1. ¥,(0,t,) fornoeventint € (0,t,),
2. 559 A for replicating at t = ¢,

Wy (tq,tp) forno eventin t € (tq,t,),
7 +1>‘ for stopping at t = t;, and
Uy (ta, 1) forno eventin t € (t4,1).

kW

The 3-particles contribute:

1. U5(0,t,) forno eventint € (0,t,),
2. 0T1+2 for taking the divergent path at t = ¢,
3. Wy(ta,ty) fornoeventint € (tq,tp),

-4 +2 for not stopping at ¢ = tp,
W1 (ty, 1) for no event in ¢ € (3, 1),
\I/l(ta,t ) for no eventin t € (t,,t.),
747 Ar for replicating at ¢ = ¢,
\Il (tc, 1) fornoeventint € (., 1),
9. Wy(t.,tq) fornoeventint € (t.,tq4), and
10. A for stopping at t = ¢g.

P NNk

Finally, the components of the density resulting from the
node locations x,, xp, etc., are

N (450, 0%ta) N (203 20, 0% (s — 1) ®)
XN (2e; Tay 0% (te —ta)) N(2g; 2o, 0% (tg — te))
X N(x(1,3y; 2, 0% (1 —1t)) N(zp2,3y; e, 0% (1 —t.)).

There is one Gaussian term for each branch. Because the
behavior of objects in the generative process depends on
previous objects, the terms above depend on their ordering.
However, this dependence is superficial; if we were to mul-
tiply these terms together, we would find that the resulting
expression for (73, T ), does not depend on the order-
ing of the objects. In Heaukulani et al. (2014), we general-
ize this expression to an arbitrary number of objects N and
find that the density function is given by

p(7—[N]7 1137'[1\,]) (9)

L(n(u)) (0, + m(u) — n(u))
= 0r\
ueg}’m)[ L0, + m(u)) ]
L(n.(v)) T'(0s + m(v) —n.(v))
< JT  [0sAs
veS(T[N]){ I'@s + m(v)) }
< TT [eo{ OB+ AHE ) )t~ )}
[uwv]€eB(TN)

)ID)]

X N(2y; Ty, 0% (ty
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where R(7[n}), S(T[n1), and B(7[n]) denote the sets of
replicate nodes, stop nodes, and branches in 7'[N}, respec-
tively; for every non-root node w in the tree structure, m(u)
denotes the number of particles that have traversed the
branch ending at u; for every u € R(7[n1), nr-(u) denotes
the number of particles that have replicated at u; for every
v € S(7T[n)), ns(v) denotes the number of particles that
have stopped at v; and finally HY := > 1" o/(a + 7).
Because this expression does not depend on the order-
ing of the objects, the stochastic process (7n], 7;y,) is
exchangeable with respect to the ordering of the objects.
Stated more formally:

Theorem 1 (Exchangeability). Let o([N]) be any permu-
tation of [N]. Then

d
(Tivp 27080) = (To () 7, ) )- (10)

Because the ordering of the sequence [NV] is irrelevant, we
will henceforth simply write 7. By its sequential con-
struction, the generative process is projective, and we may
therefore define a stochastic process by a beta diffusion tree
with set of objects N, the associated tree structure 7Ty of
which is a tree structure over feature allocations of N.

2.2. A nested feature allocation scheme

Let there be L levels in a nested feature allocation scheme
of N objects. Associate each level ¢ < L of the scheme

with a discrete time t, = (¢{ — 1)/L € [0, 1], and let py)

and pgé) be independent random variables with

Pt~ beta(Bs(1 = Ao/L), A/ L),

© an
ps’ ~ beta(d,\,./L,0,.(1 —\./L)).

At the first level, we allocate the N objects to two differ-

ent features fl(l) and fz(l) independently with the level one-

specific probabilities pgl) and pél), respectively. At the next

level, we allocate the objects in fl(l) to two different fea-

tures, fl(f) and f{? at level two, independently with prob-

abilities pEQ) and pég), respectively. The objects in f2(1) are

likewise allocated to two features fz(f) and fég) at level two.
A figure depicting this scheme for L = 2 levels is shown
in Fig. 2(a). Continue this scheme recursively for L levels,
where we allocate the objects in every (non-empty) feature
at level £ — 1 to two features in level ¢, independently with
the level /-specific probabilities given by Eq. (11). Define a
binary branching, discrete tree structure where every non-
empty feature represents a node, as depicted in Fig. 2(b).
Let segments between nodes be branches and let 7y, 1, de-
note the collection of nodes and branches. In Heaukulani
et al. (2014), we show that in the continuum limit L — oo,
we obtain the tree structure of the beta diffusion tree:

fi fa
N f].l f21 f22
fi f2

fir fiz far fa

(a) Nested feature allo-
cations

fiin fue fao1  faoo

fi121 fiize foznn fozi2

(b) Tree structure associated
with the non-empty features

Figure 2. Depictions of a nested feature allocation scheme. In (a)
we show the nested scheme for L = 2 levels, where the objects in
each feature at level one are allocated to two features at level two.
In (b) we show the tree structure corresponding to an L = 4 level
deep scheme, where the nodes in the tree are non-empty features.

Theorem 2 (continuum limit). Let Ty be the tree structure
of a beta diffusion tree with set of objects N. Then

lim Tr.p < Tr. (12)
L—oco

From the perspective of the nested feature allocation
scheme and Theorem 2, it is clear that the de Finetti mea-
sure for the beta diffusion tree with index set N is charac-
terized by the countable collection

F={@", 0, @V, p$?),. ..}, (13)

of (tuples of) beta random variables, motivating our name
for the stochastic process. In Heaukulani et al. (2014), we
use this identification of F to provide yet another character-
ization of the beta diffusion tree as a multitype continuous-
time Markov branching process (Mode, 1971; Athreya &
Vidyashankar, 2001; Harris, 2002). Taking advantage of
these well-studied stochastic processes, we show:

Theorem 3. Let Ty be the tree structure of a beta diffusion
tree with a finite set of N objects. If s, A\, 05,0, < o0,
then the number of leaves in Ty is almost surely finite.

This is a reassuring property for any stochastic process em-
ployed as a non-parametric latent variable model, the trans-
lation in this case being that the number of latent features
will be (almost surely) finite for any finite data set. Further-
more, we also characterize the expected number of leaves
in a beta diffusion tree.

2.3. Correlating features and related work

We show another beta diffusion tree with NV = 150 objects
in Fig. 3(a). Let K denote the number of leaf nodes (fea-
tures), which we have seen is unbounded yet almost surely
finite. In this larger example, it is convenient to represent
the feature allocation as a binary matrix, which we will de-
note as Z, where the n-th row z,, € {0, 1}¥ indicates the
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Figure 3. A simulated beta diffusion tree with N = 150 objects
and its corresponding representation as a binary feature matrix,
whose columns are interpreted as the features. The hierarchical
clustering defined by the tree structure is shown over the columns.
For visualization, the rows have been sorted according to their
binary representations.

features to which object n is allocated, i.e., z,; = 1 indi-
cates object n is allocated to feature k. Then each column
of Z represents a feature, and the tree structure defines a hi-
erarchical clustering of the columns, depicted in Fig. 3(b).

The Indian buffet process (IBP; (Griffiths & Ghahramani,
2006; Ghahramani et al., 2007)) was originally described in
terms of such binary matrices with an unbounded number
of independent columns. A class of correlated IBP mod-
els appeared in (Doshi-Velez & Ghahramani, 2009), which
cluster the columns of an IBP-distributed matrix in order
to induce (sparse) dependencies between the features. For
example, let Z (1) be an IBP-distributed matrix, and con-
ditioned on ZW, let Z? be another IBP-distributed ma-
trix whose rows corresponds to the columns of Z(1). This
scheme is extended to an arbitrary number of iterations by
the cascading Indian buffet process (Adams et al., 2010b),
in which the rows in an IBP-distributed matrix Z (™) at it-
eration m correspond to the columns in the IBP-distributed
matrix Z("~1) at iteration m — 1. While the beta diffusion
tree generalizes the “flat clustering” of the correlated IBP
to a hierarchical clustering, it does not obtain the general
network structure obtained with the cascading IBP.

These stochastic processes all model continuous tree struc-
tures, which are most useful when modeling continuous
variables associated with the hierarchy. We will see exam-
ples using the beta diffusion tree in Section 3. Probabilis-
tic models for non-parametric, discrete tree structures are
also widespread (Blei et al., 2010; Rodriguez et al., 2008;

Paisley et al., 2012; Adams et al., 2010a; Steinhardt &
Ghahramani, 2012), which would be appropriate for mod-
eling only discrete variables associated with the tree struc-
ture. Relevant examples of non-probabilistic models for
non-parametric tree structures include (Heller & Ghahra-
mani, 2005; Blundell et al., 2010).

Models based on the beta diffusion tree are not to be con-
fused with the phylogenetic Indian buffet process (Miller
et al., 2008), which hierarchically clusters the rows (ob-
jects) in an IBP-distributed matrix. Alternatively, the
distance-dependent IBP (Gershman et al., 2011) assumes
that there is an observed distance metric between objects.
If two objects are close, they tend to share the same fea-
tures. Both of these models, unlike models based on the
beta diffusion tree and the correlated IBP, assume that the
features themselves are a priori independent.

3. Application: Linear Gaussian models with
hierarchical factor loadings

In applications, we typically associate the objects allocated
to a feature with a set of feature-specific latent parameters.
The objects can be observed data that depend on the latent
parameters, or the objects can themselves be unobserved
variables in the model. A convenient choice for a set of
continuous-valued latent parameters associated with each
feature (leaf node in the beta diffusion tree) are the loca-
tions of the leaf nodes in X. Consider the following exam-
ple: Let Z be the binary matrix representation of the fea-
ture allocation corresponding to a beta diffusion tree with
K leaf nodes. Recall that the k-th column of Z corre-
sponds to a leaf node in the tree with diffusion location
xp, in X = RP at time t = 1 (c.f. Fig. 1). We model a
collection of N data points ¥, . .., yy in R by

Yn = z) X + €n, n <N, (14)
where X is a K x D factor loading matrix whose k-th
row is given by x, and €1, . . ., €, are i.i.d. Gaussian noise
vectors with zero mean and covariance 0% Ip. Here o3
is the noise variance and Ip denotes the D x D identity
matrix. Let Y be the N x D matrix with its n-th row
given by y,,. Then Y is matrix Gaussian and we may write
ElY | 7Tv,X] = ZX. This is a type of factor analy-
sis model that generalizes the linear Gaussian models uti-
lized by Griffiths & Ghahramani (2011) and Doshi-Velez
& Ghahramani (2009). In the former, the latent features
(columns of Z) are independent and in the latter, the fea-
tures are correlated via a flat clustering. In both models,
the factor loadings x1, ...,z are mutually independent.
With the beta diffusion tree, on the other hand, both the la-
tent features and factor loadings are hierarchically related
through the tree structure.



Beta diffusion trees

Because the particles in the beta diffusion tree diffuse as
Brownian motion, we may analytically integrate out the
specific paths that were taken, along with the locations of
the internal (non-leaf) nodes in the tree structure. Further-
more, because Y and X are both Gaussian, we may follow
the derivations by Griffiths & Ghahramani (2011) to analyt-
ically integrate out the factor loadings X from the model,
giving the resulting likelihood function

1

p<Y|TN): N_K)D D/2
(2m)ND/2g (NP G RE| Q|

(15)

exp{—%i%tr[YT (IN — ZQ‘1VZT)Y} }

where Q :=VZTZ + Z—E‘IK, and V is a K x K matrix
Y
with entries given by

ta(l k)» if ¢ 7é k7
= ’ 16
Vik {1, if 0=k, (16)

where t4(¢ ) is the time of the most recent common ances-
tor node to leaf nodes ¢ and k in the tree, and we recall that
ag( is the variance of the Brownian motion (c.f. Eq. (1)).

4. Inference

In Heaukulani et al. (2014), we describe a series of Markov
Chain Monte Carlo steps to integrate over the random tree
structures of the beta diffusion tree. These moves are sum-
marized as the following proposals:

Resample subtrees: Randomly select a subtree rooted at a
non-leaf node in the tree, and resample the paths of one or
more particles down the subtree according to the prior.

Add and remove replicate and stop nodes: Randomly
propose an internal (either replicate or stop) node in the
tree structure to remove. If the removed node is a replicate
node, then the entire subtree emerging from the divergent
branch is removed. If the node is a stop node, then the par-
ticles that stopped at the node need to be resample down the
remaining tree according to the prior. Conversely, propose
adding replicate and stop nodes to branches in the tree.

Resample configurations at internal nodes: Randomly
select an internal node in the tree and propose changing the
decisions that particles take at the node (i.e., the decisions
to either replicate at replicate nodes or stop at stop nodes).

Heuristics to prune or thicken branches: Propose re-
moving replicate (or stop) nodes at which a small propor-
tion of the particles through the node have decided to repli-
cate (or stop).

Each proposal is accepted or rejected with a Metropolis—
Hastings step. In Heaukulani et al. (2014), we provide the

results on joint distribution tests (Geweke, 2004) ensuring
that the first three moves sample from the correct poste-
rior distributions. The fourth move is a heuristic that does
not leave the steady state distribution of the Markov chain
invariant, though we found it critical for efficient mixing
and good performance of the procedure. All hyperparame-
ters were given broad prior distributions and integrated out
with slice sampling (Neal, 2003a).

5. Numerical comparisons on test data

We implement our MCMC procedure on the linear Gaus-
sian model and evaluate the log-likelihood of the inferred
model given test sets of held-out data on an E. Coli dataset
of the expression levels of N = 100 genes measured at
D = 24 time points (Kao et al., 2004), a UN dataset of
human development statistics for N = 161 countries on
D = 15 variables (UN Development Programme, 2013),
and an India dataset of socioeconomic measurements for
N = 400 Indian households on D = 15 variables (De-
sai & Vanneman, 2013). We compare this performance
against baselines modeling Z with the two parameter In-
dian buffet process (IBP; Ghahramani et al. (2007)) and
two correlated latent feature models introduced by Doshi-
Velez & Ghahramani (2009). All three baselines model the
factor loadings (independently from the factors) as mutu-
ally independent Gaussian vectors z, ~ N(0,0%1Ip),
k=1,..., K, where K is the number of non-empty fea-
tures. For each data set, we created 10 different test sets,
each one holding out a different 10% of the data. In Fig. 4,
we display the box-plots of the test log-likelihood scores
over the 10 test sets, where the score for a single set is aver-
aged over 3,000 samples (of the latent variables and param-
eters of the model) collected following the burn-in period
of each method. The beta diffusion tree achieved the high-
est median score in every experiment, with the IBP-IBP
achieving the second best performance in each instance.
The difference between these two sets of scores is statis-
tically significant in each case, based on a t-test at a 0.05
significance level. The p-values for the null hypothesis that
the means of the two sets are the same were 5.3 x 1073,
1.5 x 1074, and 7.9 x 1073 for the E. Coli, UN, and India
data sets, respectively. In Fig. 5, we display box plots of
the number of features inferred for each test set (averaged
over the 3,000 samples following the burn-in). The supe-
rior performance on the test log-likelihood metric therefore
suggests that a hierarchical feature allocation is an appro-
priate model for these data sets.

We can extend the qualitative analysis by Doshi-Velez &
Ghahramani (2009) on the UN development statistics. Here
we display the maximum a posteriori probability sample
(among 2,000 samples collected after a burn-in period on
the data set with no missing entries) of the feature matrix
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Figure 4. Box plots of the test log-likelihoods for the four different models on three different data sets. See the text for descriptions of
the data sets and methods. The beta diffusion tree achieves the best performance in each case.
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Figure 5. Box plots of the average number of inferred features in the numerical experiments.

and tree structure over the features. For visualization, the
rows (corresponding to different countries) are sorted from
highest human development index (HDI — a score com-
puted by the UN) to lowest. We also display the HDI scores
for five ranges of equal sizes, along with the names of the
top and bottom 10 countries in each range. We can see
that a hierarchical structure is present; many highly devel-
oped countries are assigned to the third feature, with a more
refined set belonging to the fourth feature. An even finer
subset belongs to the fifth feature. On the other hand, the
less developed countries have high prevalence in the sec-
ond feature, with a broader set belonging to the first. This
subset is not strict; many countries belonging to the second
feature do not belong to the first. We have also displayed
the posterior mean of the factor loading matrix. The third
feature places higher weight on the variables we expect to
be positively correlated with the highly developed coun-
tries, for example, GDP per capita, the number of broad-
band subscribers, and life expectancy. On the other hand,
these features place lower weight on the variables we ex-
pect to be negatively correlated with the highly developed
countries, notably, the rates for homicide and infant mor-
tality. The first and second features are the reverse.

Similarly, in Fig. 7 we display the maximum a posteri-
ori probability feature matrix and corresponding hierarchy
over the features for the E. Coli data set when no data is
held out. We note that, in this figure, the features are not
necessarily ordered with the divergent branches to the right
like in the previous figures in the document. In this case,
the individual genes are not as interpretable as the coun-
tries in the UN data set, however, the hierarchical structure
is reflected in the feature allocation matrix.

6. Conclusion

The beta diffusion tree is an expressive new model class
of tree-structured feature allocations of N, where the num-
ber of features are unbounded. The superior performance
of this model class in our experiments, compared to inde-
pendent or flatly-clustered features, provides evidence that
hierarchically-structured feature allocations are appropriate
for a wide range of statistical applications, and that the beta
diffusion tree can successfully capture this structure.

There are many future directions to be explored. The fea-
tures in the beta diffusion tree are not exchangeable (at a
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Figure 6. Left: Inferred factor matrix and corresponding hierarchy over the features for the UN data set. Black entries correspond to a
one, and white entries correspond to a zero. The rows correspond to countries, which are ranked by their Human Development Indices
(HDI). The names of the top and bottom 10 countries in five different ranges of the HDIs are displayed. Right: The posterior mean of
the factor loading matrix, along with the hierarchy over the features. Darker values correspond to larger values.
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Figure 7. Inferred factor matrix and feature hierarchy for the
E. Coli data set. Note that, unlike previously in the document,
the features here are not necessarily ordered with the divergent
branches to the right.

replicate point, particles are guaranteed to follow an origi-
nal branch but not necessarily a divergent branch). This is
reflected by the fact that the feature allocation probabilities

(0 Ox
b1

and p, ’ in the nested feature allocation scheme are not

exchangeable. In contrast, the exchangeability of the fea-
ture allocation probabilities obtained from the beta process
(Hjort, 1990) implies the exchangeability of the features in
the IBP (Thibaux & Jordan, 2007). One could investigate
if there is a variant or generalization of the beta diffusion
tree in which the features are exchangeable. This could be
a desirable modeling assumption in some applications and
may enable the development of new inference procedures.

Teh et al. (2011); Elliott & Teh (2012) showed
that the Dirichlet diffusion tree (Neal, 2003b) is the
fragementation-coagulation dual (Pitman, 2006; Bertoin,
2006) of the Kingman coalescent (Kingman, 1982; Teh
et al., 2007). The stochastic process introduced therein
can be viewed as combining the dual processes in order
to model a time-evolving partition of objects. One could
investigate if such a dual process exists for the beta diffu-
sion tree or some variant thereof, from which a model for
time evolving feature allocations could be obtained.
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