
Supp. file for “Inferning with High Girth Graphical Models”

May 18, 2014

This file contains proofs of the results in the main text. Throughout we use the following definitions (some
repeated from the text). We make the following notational shortcuts for brevity:

• The graph underlying the model is denoted by (V,E) for vertices and edges. These are not always specified
explicitly.

• The mutual information between Xi and Xj under the Ising model p(x;θ) is denoted by Iθ(Xi;Xj).

• The dependence of model marginals on θ is not always specified.

• A model is in LGε if there exists an l that satisfies properties as in the definition of LGε in the main text. This
l of course depends on ε and the model itself, but we do not state this dependence directly. Furthermore, we
routinely use the fact that this l will satisfy l ≤ g−1

2 where g is the girth of the graph of LGε.

Definition 1. θ ∈ LGε if there exists an l ∈ N such that for all i ∈ V ,and all j ∈ nei(i),

1− ε <
p(xi, xj |x∂Bl(ij);θ)

p(xi, xj ;θ)
< 1 + ε (0.1)

and Bl(ij) is a tree.

Definition 2. Given a model p(x;θ), we define αij for each ij ∈ E as follows:

αij = p(xi = 1, xj = 1)− p(xi = 1)p(xk = 1) (0.2)

Note that αij is a measure of the dependence between Xi and Xj (it is zero if they are independent).

In Section 6 we give some useful properties of α.

1 Proof of Lemma 1 in the main text
First, the fact that BP converges follows directly from the criterion in Tatikonda and Jordan (2002) andAε. In fact,
Tatikonda and Jordan (2002) require a looser bound.1 We require a smaller θmax for the parameter consistency
results shown later.

We turn to show that the marginals τij(xi, xj) obtained as the BP fixed points are within ε2 of the true
marginals.

Lemma 1. Assume the model (G,θ) satisfies Aε. Then running belief propagation on the model will converge to
marginals τij(xi, xj) such that for all ij ∈ E:

|p(xi, xj ;θ)− τij(xi, xj)| ≤ ε2 (1.1)

Proof: Since BP converges the τ marginals are well defined. To calculate the conditional marginals p(xi, xj |x∂Bl(ij)),
BP can be run on the tree Bl(ij) with the given assignment for x∂Bl(ij). The resulting conditional marginal will
be exact since BP is exact on trees. The lemma then follows from applying Eq. 2.1 to all x∂Bl(ij) assignments,
taking their convex combination (according to the BP marginals on x∂Bl(ij)) and using the triangle inequality.

1The bound in Tatikonda and Jordan (2002) is maxi∈V
∑

j∈nei(i) Jij < 1.
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2 Proof of Lemma 2 in the main text
Lemma 2. If (G,θ) satisfies the Aε assumptions above, then the model is in LGε.
Proof: Following the proof from Mossel and Sly (2008, Lemma 2.8) and Anandkumar et al. (2012, Proposition 1
in supp. file) with small modifications we have:

|p(xi, xj |x∂Bl(ij))− p(xi, xj)| ≤ ε
2 (2.1)

By Lemma 11 we have p(xi, xj) ≥ ε and we conclude:

p(xi, xj |x∂Bl(ij))

p(xi, xj)
− 1 ≤ ε2

p(xi, xj)

p(xi, xj |x∂Bl(ij))

p(xi, xj)
≤ 1 +

ε2

p(xi, xj)
≤ 1 + ε

The other direction follows in the same way.

Corollary 1. If (G,θ) satisfies the Aε assumptions above, then

1− ε ≤ 1− ε2

p(xi)
≤ p(xi|x∂Bl(ij)

)

p(xi)
≤ 1 +

ε2

p(xi)
≤ 1 + ε (2.2)

1− 2ε ≤ 1− ε2

1 + ε2
≤ p(xi|xj ,x∂Bl(ij)

)

p(xi|xj) ≤ 1 + ε

1− ε
≤ 1 + 3ε (2.3)

Proof: Eq. (2.2) can be derived in exactly the same way as Lemma 2. This can be used to prove Eq. 2.3 as follows:

p(xi|xj , x∂Bl(ij))

p(xi|xj)
=

p(xi|xj , x∂Bl(ij))p(xj |x∂Bl(ij))

p(xi|xj)p(xj |x∂Bl(ij))

≤
p(xi|xj , x∂Bl(ij))p(xj |x∂Bl(ij))

p(xi|xj)p(xj)(1− ε)
=
p(xi, xj |x∂Bl(ij))

p(xi, xj)(1− ε)

≤ 1 + ε

1− ε
≤ 1 + 3ε

The last inequality is due to ε < 1
3 .

3 Proof of Structural Consistency
In what follows we always assume that assumptions Aε holds, and hence θ ∈ LGε.

3.1 Proof of Lemma 3 in the main text
Lemma 3. Assume (G,θ) satisfies Aε, for all ij ∈ E and k /∈ Bl(ij) it holds that Iθ(Xi;Xk) ≤ ε2.

Proof: We can bound p(xi, xk) as follows,

p(xi, xk) =
∑

x∂Bl(ij)

p(xi, xk, x∂Bl(ij)) =
∑

x∂Bl(ij)

p(xi|x∂Bl(ij))p(xk, x∂Bl(ij)) ≤ (1 +
ε2

p(xi)
)p(xi)p(xk)

where the second equality is a result of x∂Bl(ij) separating xi and xk in the graph, and the last inequality is
Eq. (2.2).

Plugging this into the expression for mutual information, and using log (1 + ε) ≤ ε gives the desired result:

Iθ(Xi;Xk) =
∑
xi,xk

p(xi, xk) log
p(xi, xk)

p(xi)p(xk)
≤
∑
xi,xk

p(xi, xk) log
(1 + ε2

p(xi)
)p(xi)p(xk)

p(xi)p(xk)

=
∑
xi

p(xi) log

(
1 +

ε2

p(xi)

)
≤ ε2
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3.2 Proof of Lemma 4 in the main text
The following is a key result in facilitating our greedy ECL procedure. It says that the information between
any two disconnected variables Xi and Xj is strictly smaller than the information between any two variables on
the path between Xi and Xj . This will later imply (see Theorem 1) that the greedy algorithm will not choose
erroneous “shortcut” edges between such Xi and Xj .

Lemma 4. Assume (G,θ) satisfies Aε. Let ij /∈ E be two nodes whose distance in G is q < b g−1
2 c. Let

P ij = {xi = xp1 , . . . , xpq = xj} be a shortest path in the graph between i and j. Then,

Iθ(Xi;Xj) + 3ε < Iθ(Xps ;Xps+1
) ∀1 ≤ s ≤ q − 1 (3.1)

For proving Lemma 4 we will need the following two lemmas. The first lemma will give a bound on the
difference between a three variables Markov chain to three variables in a large girth model.

Lemma 5. Let k ∈ nei(i) be on the shortest path between i and j where j ∈ Bl(i, k) in the graph G. Consider a
new distribution on the three variables Xi, Xj , Xk defined as follows:2

pM (xi, xj , xk) = p(xi)p(xk|xi)p(xj |xk) (3.2)

Denote by I(Xi;Xj), IM (Xi;Xj) the mutual informations under the models p and pM respectively. Then it
holds that:

|I(Xi;Xj)− IM (Xi;Xj)| < 12ε (3.3)

Proof: We first relate p(xj |xi) to pM (xj |xi) as follows:

p(xj |xi) =

∑
xk,x∂Bl(ik)

p(xi, xk, x∂Bl(ik), xj)

p(xi)

=

∑
xk,x∂Bl(ik)

p(xk)p(x∂Bl(ik)|xk)p(xi|x∂Bl(ik), xk)p(xj |xk, x∂Bl(ik), xi)

p(xi)

≤

∑
xk,x∂Bl(ik)

p(xk)p(x∂Bl(ik)|xk)p(xi|xk)(1 + 3ε)p(xj |xk, x∂Bl(ik))

p(xi)
(3.4)

=

∑
xk,x∂Bl(ik)

p(xi, xk)(1 + 3ε)p(xj , x∂Bl(ik)|xk)

p(xi)

=
∑
xk

p(xk|xi)(1 + 3ε)p(xj |xk)

= (1 + 3ε)pM (xj |xi) (3.5)

where Eq. (3.4) is due to Eq. 2.3.
Similarly it can be shown that (1−2ε)pM (xj |xi) ≤ p(xj |xi) and pM (xj)(1−2ε) ≤ p(xj) ≤ pM (xj)(1+3ε).

We can now write:

−H(Xj |Xi) =
∑
xi,xj

p(xi, xj) log p(xj |xi) ≥ log (1− 2ε) +
∑
xi,xj

p(xi, xj) log pM (xj |xi)

Now because log pM (xj |xi) is non-positive, and p(xi) = pM (xi) we have:

−H(Xj |Xi) ≥ log (1− 2ε) + (1 + 3ε)
∑
xi

p(xi)pM (xj |xi) log pM (xj |xi)

= log (1− 2ε)− (1 + 3ε)HM (Xj |Xi)

≥ −HM (Xj |Xi)− 3εHM (Xj |Xi) + log (1− 2ε)

2In other words, pM corresponds to the Markov chain Xi → Xk → Xj , with pairwise distributions inherited from p(x;θ)
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Next, use the fact that for 0 ≤ ε ≤ 0.1 it holds that log (1− 2ε) ≥ −3ε, and the fact that conditioning reduces
entropy to get:

−H(Xj |Xi) ≥ −HM (Xj |Xi)− ε (3 + 3HM (Xj)) (3.6)

Similarly it can be shown that H(Xj) ≥ HM (Xj)− ε(3 + 3HM (Xj)). The result then follows by combining the
above and using the fact that binary entropies are upper bounded by 1.

We will now give a general lemma on Markov models which gives a bound on the difference between the
information of edges and the information between non-edges.

Lemma 6. Let X1 −X2 −X3 be a Markov chain with binary variables. Assume that 0 < µi < 1 for i = 1, 2, 3.
Then for k = 1, 3 it holds that: (

µ2(1− µ2)

|αk2|

)
I(X1;X3) ≤ I(X2;Xk) (3.7)

Proof: Using the definition of αij it can be shown that if α23 < 0 then ∂H(X3|X1)
∂α23

≤ ∂H(X3|X2)
∂α23

|α12|
µ2(1−µ2) and if

α23 > 0 then ∂H(X3|X1)
∂α23

> ∂H(X3|X2)
∂α23

|α12|
µ2(1−µ2) (the derivative is negative).

Denote H(X3|X1) = f(α23), H(X3|X2) = g(α23) and a = |α12|
µ2(1−µ2) . Note that f(0) = g(0) = H(X3).

By the fundamental theorem of calculus we have f(x)− f(0) =
∫ x

0
f ′(x) hence for α23 > 0:

f(α23)− f(0) =

∫ α23

0

f ′(y)dy ≥
∫ α23

0

ag′(y)dy = a

∫ α23

0

g′(y)dy

Since g(x)− g(0) =
∫ x

0
g′(x) we have

f(α23)− f(0) ≥ a (g(α23)− g(0))

1

a
(f(α23)− f(0)) ≥ g(α23)− g(0)

1

a
I(X1;X3) ≤ I(X2;X3)

The other results follow similarly.

Corollary 2. If the condition of Lemma 6 holds and I(X1, X3) > x then

I(X1, X3) ≤ I(X1, X2)− x
(
µ2(1− µ2)

|αk2|
− 1

)
(3.8)

Proof: From Lemma 6 we have

I(X1, X2) ≥
(
µ2(1− µ2)

|αk2|

)
I(X1, X3) = I(X1, X3) +

(
µ2(1− µ2)

|αk2|
− 1

)
I(X1, X3)

≥ I(X1, X3) +

(
µ2(1− µ2)

|αk2|
− 1

)
x

switching sides and we have the result.

Using Lemma 5 and Corollary 2 above we will prove Lemma 4 in the main text.
Proof: First note that the conditions of Lemma 5 hold for all i,j with distance less then b g−1

2 c. Second, by
assumption I(Xi, Xj) > 13ε and so using Lemma 5 we can conclude IM (Xi, Xj) > ε. Next we prove the
desired result via induction on q, the length of the path.

For the base case q = 3, by Lemma 5 we have I(Xp1 ;Xp3) ≤ IM (Xp1 ;Xp3) + 12ε . Note that α12

for both probabilities is equal, and we can use Lemma 10 to bound α12. Now using Corollary 2 and the
bound on IM (Xp1 , Xp3) we have IM (Xp1 ;Xp3) ≤ IM (Xp1 ;Xp2) − 15ε. So we can conclude I(Xp1 ;Xp3) ≤
IM (Xp1 ;Xp2)− 3ε. Since I(Xp1 ;Xp2) = IM (Xp1 ;Xp2) we have I(Xp1 ;Xp3) ≤ I(Xp1 ;Xp2)− 3ε.

For the induction step, assume that I(Xi, Xj) + 3ε ≤ I(Xpi , Xpi+1
) where 2 < i ≤ q − 1 for all edges ij of

length q−1. We next prove the result for length q. Note, thatXp1−Xp2−Xpq fulfill the conditions of Lemma 6. So
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if we prove that |α2,q| ≤ |α2,3| by exactly the same argument as above we have I(Xp1 , Xpq ) + 3ε ≤ I(Xp1 , Ip2)
and I(Xp1 , Xpq ) + 3ε ≤ I(Xp2 , Ipq ) but since the distance between p2 and pq is q − 1 we can use the induction
assumption to complete the proof.

We are left to prove |α2,q| ≤ |α2,3|. The conditional p(xpq |xp2) can be treated exactly as in Eq. 3.5 resulting in
p(xpq |xp2)p(xp2) ≤ (1 + 3ε)

∑
xp3

p(xp3 |xp2)p(xpq |xp3). The same argument can be repeated for xp4 , . . . xq−1.
so we have

p(xpq |xp2)p(xp2) ≤ (1 + 3ε)q−3
∑

xp3
,...xpq−1

q−1∏
s=3

p(xps+1
|xps)p(xp3 |xp2)p(xp2) = (1 + 3ε)q−3pM (xp2 , xpq )

(3.9)
Looking at how α is calculated in Markov chain, one can see that each factor p(xps+1 |xps) contributes to αp2,pq a
factor of αs+1,s

µs(1−µs) so we can write:

|αp2,pq | ≤ (1 + ε)q−3

q−1∏
s=3

|αps,ps+1
|

µps(1− µps)
|αp2,p3 | ≤ |αp2,p3| (3.10)

where the last inequality is by Lemma 10 we can conclude µps (1−µps )
|αps,ps+1

| > 1 + 3ε.

3.3 Proof of Theorem 1 in the main text - Structure Consistency for Infinite Data
The next theorem deals with the infinite data case, where the empirical mutual information is equal to the true
information Iθ(Xi;Xj).

Theorem 1. Let (G∗,θ∗) be an Ising model satisfying assumptions Aε. Denote the model graph by G =
(V ∗, E∗). Then running ECL with mutual informations Iθ∗(Xi;Xj) calculated from p(x;θ∗) and the true girth
of G, will result in a set of edges E such that:

• If ij ∈ E∗ then ij ∈ E. Namely, E contains all edges in E∗.

• If ij ∈ E \E∗ then Iθ∗(Xi;Xj) ≤ 13ε. Namely, E contains no redundant edges except possibly those with
mutual information less than 13ε.

Proof: We prove by induction on n, the number of edges in E after the kth step of the ECL procedure. For n = 1
we will need to prove that the pair ij with the maximum information Iθ(Xi;Xj)

3 satisfies ij ∈ E∗. We will
prove by contradiction. By the assumption of contradiction Iθ(Xi;Xj) > ε, and hence by Lemma 3 we conclude
that j ∈ Bl(ik). Let k be a neighbor of i in the path to j (j 6= k by contradiction). But by Lemma 4 we know that
I(Xi;Xk) > I(Xi;Xj) in contradiction to the optimality of I(Xi, Xj).

By the induction assumption we assume that all edges inE with information greater or equal to the information
on the n−1 edge are in the graph. If the information of the nth edge is less than 13ε the result follows. Otherwise
let ij be the next edge to be added.

By the algorithm definition ij is a legal edge (i.e., there is no path in E shorter than g − 1 between i, j) with
the maximal information from all legal edges not in E. Now assume ij /∈ E∗. From Lemma 3 and the fact that
I(Xi;Xj) > 13ε we can conclude that j ∈ Bl(ik). Hence, there is a path in E∗ with length q smaller then
q ≤ b g−1

2 c. The edge ij satisfies the condition of Lemma 4, and hence we have I(Xi;Xj) + 3ε ≤ I(Xps ;Xps+1
)

for all s = 1, . . . , q − 1 where Xps are the vertices along the shortest path between i and j. So all edges in the
path have information greater then I(Xi, Xj). But note that one edge in the path is not in E from the legality of
ij. We reach a contradiction to the fact that ij is the edge with maximal information from all legal edges not in E.

3.4 Proof of Theorem 2 in the main text - Structure Consistency for Finite Samples
Here we consider the case where the mutual informations used by ECL are calculated from a finite sample.
Intuitively, as more data becomes available the information estimates should improve and we should be able to
find the correct structure with high probability. The following theorem quantifies the number of samples.

3In other words Iθ(Xi;Xj) ≥ Iθ(Xk;Xl) ∀k, l ∈ V (including of course pairs that are not in E∗).
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Theorem 2. Assume an IID sample of size n is generated from a model (G∗,θ∗) satisfying Aε. For any δ > 0 let
n satisfy n > N0 where:

N0 =
C0 log p log 1

δ

ε3
(3.11)

and C0 is a constant. Then with probability greater than 1− δ ECL will recover E∗ as in Theorem 1.

Proof: First, recall that the Chernoff bound (Mitzenmacher and Upfal, 2005, Theorem 4.4,4.5) with relative error
can be written as:

P

(
(1− γ) <

µ̄ij(xi, xj)

µij(xi, xj)
< (1 + γ)

)
≤ exp{−γ

2µij(xi, xj)n

3
} (3.12)

We start by bounding the empirical error of the mutual information. Denote by µ̄ the empirical marginals, and µ
the true marginals. Given a γ such that (1− γ) ≤ µ̄ij(xi,xj)

µij(xi,xj) ≤ (1 + γ) we can write:

Iµ̄(Xi;Xj) =
∑
xi,xj

µ̄ij(xi, xj) log
µ̄ij(xi, xj)

µ̄i(xi)µ̄j(xj)

≤
∑
xi,xj

µ̄ij(xi, xj) log
µij(xi, xj)(1 + γ)

µi(xi)µj(xj)(1− γ)2

≤
∑
xi,xj

µ̄ij(xi, xj) log
µij(xi, xj)

µi(xi)µj(xj)
+ 4γ

≤
∑
xi,xj

µij(xi, xj)(1 + γ) log
µij(xi, xj)

µi(xi)µj(xj)
+ 4γ

≤ Iµ(Xi;Xj)(1 + γ) + 4γ

Using the fact that the information in the binary case is upper bounded by 1 we conclude that |Iµ̄ij
(Xi;Xj) −

Iµ(Xi;Xj)| < 5γ.
From Theorem 1 we know that as long as the relative order of the mutual informations is preserved, the

algorithm will recover the correct E. Now by Lemma 4 we know that I(Xi;Xj) + 3ε < I(Xps ;Xps+1) for all
1 ≤ s ≤ q − 1 so if the mistake is less than ε the relative order of the informations will be preserved with high
probability. Thus the ECL algorithm will recover the true graph (as in Theorem 1) despite the noisy marginals.

To ensure that the statistical error in the information is smaller than ε, we need to have at most γ = ε
5 . By

Eq. (3.12)

P

(
µ̄ij(xi, xj)

µij(xi, xj)
> (1− ε

5
)

)
≤ exp

{
−ε3n

75

}
≤ δ (3.13)

where we use Lemma 11 for replacing µ with ε.
The above guaranteed ε accurate mutual informations for a single marginal. To get the bound for all edges and

vertices a union bound can be used resulting in:

N0 >
a log(p) log 1

δ

ε3
(3.14)

for some constant a and the result follows.

4 Parameter Consistency
Here we prove that the parameters learned by ECL achieve a likelihood that is ε close to optimal.

The result relies on the connection between the true partition function Z(θ) and its approximation calculated
using the Bethe variation approximation ZB(θ). Recall that the Bethe approximation of the partition function is
given by (e.g., see Heinemann and Globerson, 2011):

logZB(θ) = max
µ∈ML

µ · θ +HB(µ) (4.1)
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where ML is the local marginal polytope which is the set of consistent pairwise marginals, and HB(θ) is the
Bethe entropy given by:

HB(µ) =
∑
i

H(Xi)−
∑
ij∈E

I(Xi;Xj) (4.2)

The entropy and informations above are calculated using the singleton and pairwise marginals in µ. Similarly we
can define the Bethe likelihood by replacing the exact partition function with its Bethe approximation:

LB(θ) = µ · θ + logZB(θ) (4.3)

Lemma 7. Assume a model with parameters θ satisfies Aε. Then

| logZ(θ)− logZB(θ)| < (|E| − p)ε2 (4.4)

Proof: We know (e.g., see Sudderth et al., 2008) that logZ(θ) − logZ(θc(τ )) = logZB(θ). Where τ are the
Bethe marginals for parameters θ. Consider the case where θ is a tree. In this case logZ(θc(τ )) = 0 and indeed
the Bethe partition function is exact.

Now consider a model identical to θ except the ij edge is removed. Denote the corresponding parameter by
θij , and its exact marginals by pij . Furthermore let Zij(xi, xj) denote the partition function of θij when the
variables i, j are assigned xi, xj . By the definition of the partition function we have

Z(θc(τ )) =
∑
xi,xj

Zij(xi, xj)

(
τij(xi, xj)

τi(xi)τj(xj)

)

= Zij(θc(τ ))
∑
xi,xj

pij(xi, xj)

(
τij(xi, xj)

τi(xi)τj(xj)

)

= Zij(θc(τ ))
∑
xi,xj

pij(xi, xj)

(
1 +

(−1)
xi−xj αij

τi(xi)τj(xj)

)

= Zij(θc(τ ))

1 +
∑
xi,xj

(−1)
xi−xj pij(xi, xj)αij
τi(xi)τj(xj)


Using arguments as in Section 2 it can be shown that |pij(xi, xj) − τi(xi)τj(xj)| ≤ 2ε2. Plugging this into the
above yields:

Z(θc(τ ))

Zij(θc(τ ))
≤ 1 +

∑
xi,xj

ε2αij
τi(xi)τj(xj)

≤ 1 + ε2 (4.5)

where the last inequality is due to Lemma 10.
Repeating this argument recursively for all edges, until a tree is reached, we have the result.

Recall the parameters we are learning are θc. In order to prove approximation results, we will use the fact that
θc ∈ LGε, as the following result states.

Lemma 8. Assume a model θ satisfies Aε. Now assume that θc are calculated using the marginals of p(x;θ).
Then θc ∈ LGε.

Proof: The result follows by deriving the Ising model form of θc, and showing that its maximal Jij implies that
θc ∈ LGε.

4.1 Proof of Theorem 3 in the main text
We assume as in Section 3.3 that the data size goes to infinity and thus we measure the true information Iθ(Xi;Xj)
on all edges.
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Theorem 3. Assume a sample is generated IID from a model (G∗,θ∗) satisfying Aε where ε < 1
|E∗|−p . Then as

n→∞ ECL will return (G,θ) such that

L∗(θ∗, E∗)− L∗(θ,E) < 2ε (4.6)

where L∗ is the generalization likelihood.

Proof: Using Lemma 8 and Section 2 we have θc,θ ∈ LGε. Now by Lemma 7 we can bound | logZ(θ) −
logZB(θ)| < (|E∗| − p)ε2. By assumption ε < 1

|E∗|−p so that | logZ(θ)− logZB(θ)| < ε and we conclude,

L∗(θ, E) = θE∗ · µ̄− logZ(θE∗)

≤ θE∗ · µ̄− logZB(θE∗) + ε

≤ θcE∗ · µ̄− logZB(θcE∗) + ε

≤ θcE · µ̄− logZB(θcE) + ε

≤ θcE · µ̄− logZ(θcE) + 2ε

= L∗(θc, E) + 2ε

The second inequality is due to the optimality of the canonical parameters in maximizing the Bethe likelihood
(see Heinemann and Globerson (2011)) when µ̄ is learnable (as in our case). The third inequality is due to the
consistency of ECL and the fact that additional edges only increase the Bethe likelihood and we have the result.

Theorem 4. Assume an IID sample of size n is generated from a model (G∗,θ∗) satisfying Aε where ε < 1
|E∗|−p .

For any α > 0, δ > 0, let n satisfy n > N1 where:

N1 =
C1|E∗| log 1

δ

ε3α2
. (4.7)

and C1 is a constant. Then ECL will return a model that satisfies the following with probability greater than 1−δ:

L∗(θ∗, E∗)− L∗(θ,E) < 3ε+ α , (4.8)

where L∗ is the generalization likelihood.

Proof: We want to show that the bound on the ratio between the empirical marginals µ̄ and the exact marginals
µ results in a bound on the likelihood. Simple calculation shows that if (1 − α

32(|E∗|+p) ) ≤ µ̄ij(xi,xj)
µij(xi,xj) ≤ (1 +

α
32(|E∗|+p) ) then |θc(µ̄ij) − θc(µij)| ≤ α

8(|E∗|+p) . This is true for all parameters (singleton and pairwise). Sum-
ming over all parameters yields |θc(µ̄)− θc(µ)| ≤ α

2 . Remember that the Lipschitz constant of the likelihood of
bounded parameter model is 2 (see lemma 19 in Honorio, 2012). We thus have |L∗(θc(µ), E∗)−L∗(θc(µ̄, E∗)| <
α. Using Theorem 3 we see that if (1 − α

32(|E∗|+p) ) ≤ µ̄ij(xi,xj)
µij(xi,xj) ≤ (1 + α

32(|E∗|+p) ) we guarantee Eq. 4.8. To
obtain the desired sample complexity we now use Eq. (3.12):

P

(
(1− α

32(|E∗|+ p)
) ≤ µ̄ij(xi, xj)

µij(xi, xj)
≤ (1 +

α

32(|E∗|+ p)
)

)
≤ exp

{
α2εn

C2(|E∗|+ p)2

}
≤ δ (4.9)

were we use Lemma 11 for bounding µ̄ij(xi, xj).
Using the union bound for the structure learning part and the above, and solving for n gives the result.

5 Proof of Theorem 5 in the main text - Learning Bounded Parameters
Since we are interested in bounding the Ising interaction parameters Jij we need to understand how they are
related to canonical parameters θc. Assume we have such canonical parameters calculated from marginals with
given µi, µj , αij . Then it can be shown that the Ising parameter Jij is given by:

Jij =
1

4

(
θcij(1, 1) + θcij(0, 0)− θcij(1, 0)− θcij(0, 1)

)
(5.1)
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For a given value of µi and µj , we write Jij as a function of αij via:

Jij = ψ(αij ;µi, µj) =
1

4
log

(
1 +

αij
(µi(1− µj)− αij)((1− µi)µj − αij)

)
(5.2)

For our parameter update, we will need a function mapping from Jij , µi, µj to αij . We define:

φ(Jij , µi, µj) ≡ ψ−1(Jij ;µi, µj) (5.3)

Namely φ(Jij , µi, µj) returns an αij such that Jij = ψ(αij ;µi, µj). In other words, αij is such that the canonical
parameters θc calculated from µi, µj , αij have an Ising interaction parameter of Jij .

Although φ is not given in closed form, for any given µi, µj it is an inverse of a scalar function and can thus
be evaluated numerically with high precision.

Theorem 5. Assume we are given a set of empirical marginals µ̄, and a tree structured graph G = (V,E). Then
the parameters θ∗ that maximize the likelihood under constraints |Jij | ≤ ζ are as follows. Define:

ᾱij = µ̄ij(1, 1)− µ̄i(1)µ̄j(1)

λ+
ij = 4 max{0, ᾱij − φ(ζ, µ̄i, µ̄j)}
λ−ij = 4 max{0,−ᾱij + φ(−ζ, µ̄i, µ̄j)}

where φ is the function defined in Section 5 of the supplementary file. Use these to define a new set of marginals
˜̄µ(xi, xj) given as follows:4


µ̄ij(xi, xj) |αij | ≤ φ(ζ, µ̄iµ̄j)
µ̄ij(xi, xj)− 1

4λ
+
ij xi = xj and αij > φ(ζ, µ̄i, µ̄j)

µ̄ij(xi, xj) + 1
4λ

+
ij xi 6= xj and αij > φ(ζ, µ̄i, µ̄j)

µ̄ij(xi, xj) + 1
4λ
−
ij xi = xj and αij < φ(−ζ, µ̄i, µ̄j)

µ̄ij(xi, xj)− 1
4λ
−
ij xi 6= xj and αij < φ(−ζ, µ̄i, µ̄j)

(5.4)

Then θ∗ are the canonical parameters calculated from marginals ˜̄µ, namely θ∗ = θc(˜̄µ).

Proof: Given parameters Jij(xi, xj) the interaction parameter in the equivalent Ising model is given by Eq. (5.1).
Therefore we would like to solve:

max L(µ̄,θ)

s.t |1
4

(θij(1, 1) + θij(0, 0)− θij(1, 0)− θij(0, 1))| < ζ

The Lagrangian can be written as

L(µ̄,θ,λ+,λ−) = L(µ̄,θ) −
∑
ij

λ+
ij(

1

4
(θij(1, 1) + θij(0, 0)− θij(1, 0)− θij(0, 1))− ζ)

+
∑
ij

λ−ij(
1

4
(θij(1, 1) + θij(0, 0)− θij(1, 0)− θij(0, 1)) + ζ)

It can be verified that the proposed solution indeed satisfies the KKT conditions for this problem and is thus
optimal.5 Taking the derivative respect to θij(xi, xj) will result in

µ̄ij(xi, xj)− τθij(xi, xj)∓
1

4
λ+ ± 1

4
λ− (5.5)

Where τθ are the Bethe marginals (we know that we have a unique solution). and ± is + for xi = xj and − for
xi 6= xj and the other way around for ∓.

4Note that these will be consistent and feasible by construction.
5See Yang and Ravikumar (2011) for a related derivation.
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When the interaction is not “too strong”, namely |αij | ≤ φ(ζ, µ̄i, µ̄j), we have λ+ = λ− = 0 and τij(xi, xj) =
µ̄ij(xi, xj) so indeed the derivative equals zero. Next we consider the case |αij | > φ(ζ, µ̄i, µ̄j) and show that
indeed the derivative is zero in the xi = xj = 1 and αij > 0 case. The other cases follow similarly.

= µ̄ij(1, 1)− τθij(1, 1)− 1

4
λ+ +

1

4
λ−

= µ̄ij(1, 1)− ˜̄µij(1, 1)− 1

4
λ+

= µ̄ij(1, 1)− µ̄ij(1, 1) +
1

4
λ+ − 1

4
λ+

= 0

6 Auxiliary Lemmas
Our first result provides useful bounds on the α measure.

Lemma 9. Let p(x;θ) be an Ising model with maximum interaction parameter Jmax = maxij∈E |Jij |. Denote
the maximum magnitude of αij for this model by αmax = maxij∈E |αij |. Then:

αmax ≤
1

4
tanh Jmax (6.1)

Proof: Following (Anandkumar and Valluvan, 2013, Fact 1 supplementary), we can write

αij =
sinh(2Jij)

2(eJij cosh(hi + hj) + e−Jij cosh(hi − hj))2

The denominator is maximized when hi = hj = 0 so that

|αij | ≤
e2|Jij | − e−2|Jij |

4(e|Jij | + e−|Jij |)2

=
e|Jij | − e−|Jij |

4(e|Jij | + e−|Jij |)

=
1

4
tanh(|Jij |)

Lemma 10. Let θ satisfy Aε then for all ij ∈ E

αij <
1

32
min{(1− µi)(1− µj), µi(1− µj), (1− µi)µj , µiµj , µi(1− µi), µj(1− µj)} (6.2)

Proof: By Lemma 9 and the bound on θmax we have

αij ≤
1

4
tanh θmax ≤

1

8dmax
η2 ≤ 1

16
η2 (6.3)

Using the definition of η and the bound on hi, it is easy to show that η ≤ µi ≤ 1− η for all i. Insert it to the above
equation and we have the result.

Lemma 11. Let θ satisfy Aε then for all ij ∈ E

p(xi, xj) ≥ ε (6.4)

Proof: Using the minimal representation for p(xi, xj) we can write it as a function of the singleton and α.

p(xi, xj) ≥ η2 − α ≥ 15

16
η2 ≥ ε (6.5)

Where the second inequality is Lemma 10 and the third is by the definition of η.
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