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Abstract
Unsupervised learning of graphical models is
an important task in many domains. Although
maximum likelihood learning is computation-
ally hard, there do exist consistent learning algo-
rithms (e.g., psuedo-likelihood and its variants).
However, inference in the learned models is still
hard, and thus they are not directly usable. In
other words, given a probabilistic query they are
not guaranteed to provide an answer that is close
to the true one.

In the current paper, we provide a learning al-
gorithm that is guaranteed to provide approxi-
mately correct probabilistic inference. We fo-
cus on a particular class of models, namely high
girth graphs in the correlation decay regime. It is
well known that approximate inference (e.g, us-
ing loopy BP) in such models yields marginals
that are close to the true ones. Motivated by
this, we propose an algorithm that always returns
models of this type, and hence in the models it
returns inference is approximately correct. We
derive finite sample results guaranteeing that be-
yond a certain sample size, the resulting mod-
els will answer probabilistic queries with a high
level of accuracy.

Results on synthetic data show that the models
we learn indeed outperform those obtained by
other algorithms, which do not return high girth
graphs.

1. Introduction
Graphical models are a highly useful tool for describ-
ing multivariate distributions (Koller and Friedman, 2009).
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Such models assume that the distribution can be written as
a product of functions, each defined over a small set of pa-
rameters. When these functions are pairwise, the structure
of the model can be described via the edges of a graph.

To fully describe a graphical model , one must specify both
its structure and parameters. In principle, once these are
available, one can answer probabilistic queries such as:
“what is the probability that X1 = 0 given that X5 =
0, X6 = 0”. Indeed the power of graphical models lies
in their ability to answer any such probabilistic inference
query. Unfortunately, for most models of interest these in-
ference queries are computationally intractable (e.g., #P
hard). The common approach to this state of affairs is to ei-
ther use approximate inference algorithms (e.g., sampling,
loopy belief propagation, mean field) or to focus on fam-
ilies where inference is tractable or can be well approxi-
mated (e.g., low tree width graph, or high girth graphs as
we focus on here).

The situation is further complicated by the fact that in most
cases the graph structure and parameters are not known a
priori, and need to be learned from data. Ideally, we would
like inference in the learned model to agree with inference
in the true underlying distribution. In other words, if the
true model is p∗(x) we would like the learned model to
answer the probabilistic query P [X1 = 0|X5 = 0, X6 = 0]
with a number that is close to p∗(x1 = 0|x5 = 0, x6 = 0).1

If inference in the learned model cannot be performed ex-
actly, one needs to consider the interplay between learning
and inference, which has recently been referred to as “In-
ferning”.2

The above goal of making accurate inferences in the
learned model is quite ambitious, and is indeed not
achieved by most current learning methods, including ones
which have otherwise strong theoretical guarantees. For
example the psueodlikelihood method for parameter esti-
mation (Besag, 1975) and various recent methods for struc-

1We slightly abuse notation of the PMF by not including in-
dices indicating which conditional distribution is considered.

2See: http://inferning.cs.umass.edu/2012.

http://inferning.cs.umass.edu/2012
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ture learning (Ravikumar et al., 2010; Jalali et al., 2011) are
known to be consistent (i.e., they recover correct structure
and parameters as n → ∞). However, inference in the
models they learn is generally intractable, and thus there is
no reason to expect that it will come close to inference in
p∗(x).3

One way to make progress towards our goal is to assume
that p∗(x) has structure and parameters that facilitate exact
or approximately correct inference. In this setting it makes
sense to expect that the learned model will inherit these
properties (at least asymptotically) and thus yield inference
that is close to p∗(x). Perhaps the most elegant illustration
of this approach is the celebrated Chow Liu (CL) algorithm
(Chow and Liu, 1968) which learns a tree structured graph-
ical model. CL can also be shown to be consistent for both
parameter and structure learning (Tan et al., 2011). Since
inference in trees is tractable, inference in the learned tree
models will approach that of the true model.

However, CL is limited in that it can only use tree struc-
tured models, and these are often not sufficient for describ-
ing complex dependencies that arise in real data. The next
natural step is to look for model classes where inference is
not tractable, but approximate inference with approxima-
tion bounds is possible. Here we focus on such a class,
namely, models with high girth and correlation decay (or
HGCD). These models are “tree-like” in the sense of hav-
ing long cycles, but they exhibit much richer properties.
For example, in LDPC codes, high girth structures can be
used to approach capacity (Richardson et al., 2001). An
attractive property of HGCD is that inference, despite be-
ing intractable, can be ε approximated (with ε depending
on the HGCD structure and parameters) using loopy belief
propagation (Mezard and Montanari, 2009).

Given the above, there is clear motivation for learning a
graphical model that is a HGCD. It is important to em-
phasize that our goal is not to asymptotically learn such
a model, but to return such a model for any given finite
sample. This will guarantee that inference in our learned
HGCD is ε approximate. In turn, it will let us show that
if the true distribution p∗(x) is an HGCD, then inference
in the learned model will be O(ε) close to p∗(x) given a
sufficiently large but finite training sample.

Our contribution is thus as follows: we describe an algo-
rithm that takes as input a sample generated by an HGCD
p∗ with graph G. The algorithm returns another HGCD
with graph Ḡ, which has the following desirable properties
as n → ∞: it is guaranteed (whp) to include the edges of

3We note that many methods learn models that match certain
marginals of the empirical data (corresponding to edges of the
graph), and are thus guaranteed to accurately recover this small
set of marginals. However no guarantees are available for other
probabilistic queries. See for example (Wainwright, 2006).

G, it is guaranteed to achieve test likelihood that is close
to the best possible, and, most importantly, inference in the
learned model is guaranteed to be close to inference in p∗.

The algorithm we propose is very simple, and generalizes
Chow Liu in a very natural way. It proceeds as follows: for
every pair of variables (i, j) setwi,j to be the empirical mu-
tual information between these variables. Now construct G
by greedily adding the edges with the highest weight, as
long as G has the required girth. After having learned the
model structure, we set the parameters in a similar way to
CL, while ensuring they are in the HGCD regime.

After describing the algorithm and proving its properties,
we illustrate its performance on synthetic data. We show
that it indeed performs more accurate predictions than
models that are not restricted to high girth.

2. Problem Formulation
Graphical models are used to compactly describe multivari-
ate distributions over p random variables X1, . . . , Xp (e.g.,
see Koller and Friedman, 2009). We use x = (x1, . . . , xp)
to denote an assignment to the p variables. The model
(G,θ) is parameterized via a set of edges E, and functions
θij(xi, xj) for each ij ∈ E. The distribution is given by:

p(x;θ) =
1

Z(θ)
e
∑

ij∈E θij(xi,xj)+
∑

i θi(xi) (2.1)

where Z(θ) is the partition function that normalizes the
distribution.

To simplify presentation and analysis we focus on the case
where Xi ∈ {−1,+1} are binary variables. In this case we
obtain the Ising model, which can be parameterized in the
following way (here Jij , hi are scalars):

p(x;θ) =
1

Z(θ)
e
∑

ij∈E Jijxixj+
∑

i hixi (2.2)

Thus for the Ising model we have:

θi(xi) =

[
−hi
hi

]
, θij(xi, xj) =

[
Jij −Jij
−Jij Jij

]
(2.3)

Given a sample D = x(1), . . . ,x(n) of n assignments sam-
pled IID from the true distribution p∗(x), we wish to ap-
proximate p∗ with a graphical model. The classic approach
to learning parametric models from data is by maximizing
the likelihood, which in our case would be

L(θ, E) =
1

n

n∑
i=1

log p(x(i);θ) (2.4)

where it is implied that θ is restricted to the edges E. For
general models, this function is hard to optimize and even
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evaluate (since it requires the evaluation of the log parti-
tion function). Note that what we would actually like to
maximize is the generalization likelihood, namely the ex-
pected likelihood according to the true distribution (e.g.,
see Dudı́k et al., 2007):

L∗(θ, E) =
∑
x

p∗(x) log p(x;θ) (2.5)

However, since we don’t know p∗ this cannot be maxi-
mized directly. One option is to instead maximize the em-
pirical likelihood Eq. 2.4. However this is often computa-
tionally hard, and other methods such as pseudo likelihood
may be used. The method presented here also does not
maximize the empirical likelihood directly, but is still con-
sistent.

If E is restricted to tree graphs, then the likelihood in
Eq. 2.4 can be exactly maximized using the Chow Liu al-
gorithm. CL uses two simple facts. The first is that for any
tree E, the optimal values of θ are given by the so called
canonical parameters:

θci (xi) = log µi(xi) , θci (xi, xj) = log
µij(xi, xj)

µi(xi)µj(xj)
(2.6)

where µi, µij are the singleton and pairwise marginals cal-
culated from the data. We will denote the set of all canoni-
cal parameters by θc or θc(µ) to highlight their dependence
on the marginals µ. Second, for these parameters the like-
lihood turns out to be:

L(θc, E) =
∑
ij∈E

ID(Xi;Xj) +
∑
i

HD(Xi) (2.7)

where ID(Xi;Xj) is the empirical mutual information be-
tween the two variables, and HD(Xi) is the empirical en-
tropy. The final observation is that the E that maximizes
Eq. 2.7 is the maximum weight spanning tree where edge
weights are given by:

wij = ID(Xi;Xj) (2.8)

As mentioned earlier our focus is on high-girth graphs. Re-
call that a girth of the graph is the length of its shortest
cycle. Our goal will be to learn an E that has girth at least
g, for some fixed g (we refer to this as a girth bounded
graph, implicitly meaning that it is a lower bound). Note
that this significantly complicates likelihood maximization,
since even if the likelihood can be approximated as a sum of
edge weights, finding the maximum weight bounded girth
graph is NP hard (Kortsarz et al., 2008). Thus, we proceed
using a different approach, as explained next.

3. The Extended Chow Liu Algorithm
We first present our algorithm for learning bounded girth
models. Our Extended Chow Liu algorithm (ECL) first

learns a structure E and then assigns parameters θ, as ex-
plained next.

The structure learning part is a simple extension of CL to
graphs with bounded girth. The first stage is to calculate
the weights wij as in Eq. 2.8. Next, the learned E is con-
structed by greedily adding the edges with largest wij , as
long as the graph has girth lower bounded by g. The pro-
cedure is described in Figure 1. Note that if g = p + 1, it
reduces to standard CL, but otherwise it is different from
CL since it does not return a tree. Computationally, ECL
requires keeping track of paths in the graph, such that gen-
eration of a cycle shorter than g can be efficiently identi-
fied. By using standard graph search algorithms, this can
be implemented in O(p3).4

Once the structure E has been determined, we turn to set-
ting the parameters θ. If there is no constraint on the in-
teraction strength we set θ = θc for the edges in Ē, as in
Eq. 2.6. In other words, the parameters are set exactly as in
the Chow Liu algorithm.

In some cases we may want to further constrain the param-
eters, so that interaction strength is bounded, and we are in
the correlation decay regime. This is addressed in Section
6. However, note that most of our theoretical results for
learning parameters and structure hold even if we do not
return a model with these bounded interactions. The rea-
son is that given enough data our learned parameters will
satisfy the bound automatically.

Algorithm 1 Extended Chow Liu
Require: D, g

1: E = ∅
2: Calculate wij = ID(Xi;Xj) for all ij
3: loop
4: Set S to be all e /∈ E that satisfy girth(E ∪ e) > g.
5: If S = ∅ break.
6: Find e ∈ S with max we and set E = E ∪ e.
7: end loop
8: Set θ = θc (see Eq. 2.6).
9: return E,θ

4. Model Assumptions
To provide theoretical guarantees on ECL, we need to make
several assumptions about the true underlying distribution.
These pertain to both the structure and parameters of the
model, as is standard in results of this type.

The following definitions will be needed in what follows.

Definition 1. For a graph G and nodes i, j, define Bl(ij)
to be the set of nodes in G that are at distance less

4When p is large the complexity is O(d2lmax).
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than or equal to l from i or j. Namely: Bl(ij) =
{k ∈ V |min{d(i, k), d(j, k)} ≤ l} (e.g., see Anandku-
mar and Valluvan, 2013). Furthermore, define ∂Bl(ij)
to be the boundary of Bl(ij), so that: ∂Bl(ij) = {k ∈
V |min{d(i, k), d(j, k)} = l}
Definition 2. Given an ε > 0 let LGε define a class of
graphical models where there exists an l ∈ N such that for
all i ∈ V ,and all j ∈ nei(i),

1− ε <
p(xi, xj |x∂Bl(ij);θ)

p(xi, xj ;θ)
< 1 + ε (4.1)

and Bl(ij) is a tree.

Thus LGε are models where the effect of neighbors beyond
l is small, and the l neighborhood is tree structured. In other
words, the models in LGε are locally tree like and exhibit
correlation decay. Similar assumption appear in the litera-
ture on belief propagation (Mezard and Montanari, 2009).5

Our assumptions on the learned model are as follows (we
will soon see that they imply the model is in LGε). Given
an 0 < ε < 0.01 we say that (G,θ) satisfies the Aε as-
sumptions if:

A1: For all i ∈ V the parameter hi satisfies:

|hi| ≤ hmax ≤
1

2
ln(ε−

1
2 − 1)− 1 (4.2)

A2: Denote l = b g−12 c, where g is the girth ofG and η =
1

1+e2hmax+2 . Then ∀ij ∈ E, the parameters Jij satisfy:

|Jij | ≤ Jmax ≡ tanh−1
(

1

2dmax
ε2/lη2

)
(4.3)

where dmax is the maximum degree of the graph.

A3: All edges ij ∈ E satisfy Iθ(Xi;Xj) ≥ 13ε.

The assumptions above are similar to those used elsewhere
(e.g., see Ravikumar et al., 2010; Anandkumar and Vallu-
van, 2013). They basically rule out interactions that are too
strong or too weak, as well as singleton marginals that are
too peaked. The scale for the interaction strength is deter-
mined with respect to the girth of the graph. As the girth
increases the Jij become less constrained.

The key property of the models that satisfy the above is that
inference can be performed with accuracy ε using the belief
propagation algorithm. This result has appeared in several
variants in the past (Mezard and Montanari, 2009) and is
given below.

5Note that this is a different definition from (Anandkumar and
Valluvan, 2013), since we require a multiplicative factor and they
require an additive one.

Lemma 1. Assume the model (G,θ) satisfies Aε. Then
running belief propagation on the model will converge to
marginals τij(xi, xj) such that for all ij ∈ E:

|p(xi, xj ;θ)− τij(xi, xj)| ≤ ε2 (4.4)

See proof in Section 1 of the supplementary file.

The above restrictions on (G,θ) imply that the model is
in the correlation decay regime, as the following lemma
states.
Lemma 2. If (G,θ) satisfies the Aε assumptions above,
then the model is in LGε.

See proof in Section 2 of the supplementary file.

5. Theoretical Analysis
The goal of this section is to show that ECL results in a
model that is close to optimal in terms of the generalization
likelihood Eq. 2.5. In other words, it learns a model whose
likelihood is close to the likelihood obtained by the true
model. Our Theorem 3 will state that for all ε, if the true
model satisfies Aε, then we can get ε close to the optimal
likelihood. We perform the analysis in both the n → ∞
sample size limit and for finite samples (e.g., see Tan et al.,
2011, for related results).

We proceed in two steps. First, we show that the graph
learned by the model will contain the true graph (see Sec-
tion 5.1). Next, assuming that the graph is correct, we show
that the learned parameters will results in a likelihood that
is at worse ε suboptimal.

5.1. Structure Consistency

We first address the question of finding the correct graph
structure of the Ising model using ECL. We begin with the
case of n→∞ IID samples, and show the structure can be
exactly recovered, up to errors on low information edges.6

In the infinite data setting, ECL will receive as input the
correct mutual information values Iθ(Xi;Xj). The ques-
tion then becomes whether this greedy procedure will re-
cover the correct structure given the correct model infor-
mation. The result is provided in the following theorem.
Theorem 1. Let (G∗,θ∗) be an Ising model satisfying as-
sumptions Aε. Denote the model graph by G = (V ∗, E∗).
Then running ECL with mutual informations Iθ∗(Xi;Xj)
calculated from p(x;θ∗) and the true girth of G, will result
in a set of edges E such that:

• If ij ∈ E∗ then ij ∈ E. Namely, E contains all edges
in E∗.

6If our goal is structure learning, we can discard these edges
by thresholding their information. However this is not our focus
here.
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• If ij ∈ E \ E∗ then Iθ∗(Xi;Xj) ≤ 13ε. Namely,
E contains no redundant edges except possibly those
with mutual information less than 13ε.

The proof is based on the following two lemmas. The first
states that edges from i to outsideBl(ij) indeed have small
information. See proof in Section 3.1 of the supplementary
file.
Lemma 3. Assume (G,θ) satisfiesAε. Then for all ij ∈ E
and k /∈ Bl(ij) it holds that Iθ(Xi;Xk) ≤ ε2.

The following lemma facilitates the greedy ECL algorithm.
It states that in our model the information between non-
edges is always less than the information of all edges on
the path between them. See proof in Section 3.2 of the
supplementary file.
Lemma 4. Assume (G,θ) satisfies Aε. Let ij /∈ E be
two nodes whose distance in G is q < b g−12 c. Let P ij =
{xi = xp1 , . . . , xpq = xj} be a shortest path in the graph
between i and j. Then:

Iθ(Xi;Xj)+3ε < Iθ(Xps ;Xps+1
) ∀1 ≤ s ≤ q−1 (5.1)

We can now intuitively see why Theorem 1 holds. The
ECL algorithm greedily adds edges as long as they do not
form cycles that violate the girth constraint. According to
Lemma 3 above, edges outside the tree neighborhood of
a node have low information and thus will not be added
(since edges in the tree neighborhoods will have larger in-
formation). Within the tree neighborhood Lemma 4 states
that edges that “shortcut” paths in the tree will have lower
information than edges in the path, and thus these “non-
tree” edges will also not be chosen. A more formal proof is
given in the supplementary file.

5.2. Structure Estimation from Finite Samples

Next we consider the case where the mutual informations
used by ECL are calculated from a finite sample. Intu-
itively, as more data becomes available the information es-
timates should improve and we should be able to find the
correct structure with high probability. The following theo-
rem quantifies the number of samples. See proof in Section
3.4 of the supplementary file.
Theorem 2. Assume an IID sample of size n is generated
from a model (G∗,θ∗) satisfying Aε. For any δ > 0 let n
satisfy n > N0 where:

N0 =
C0 log p log 1

δ

ε3
(5.2)

and C0 is a constant. Then with probability greater than
1− δ ECL will recover E∗ as in Theorem 1.

The proof uses Chernoff bounds to verify that the empiri-
cal mutual informations are sufficiently close to their true

values, and Lemma 4 which bounds the difference between
different informations, and thus determines the level of res-
olution required in estimating these.

5.3. Likelihood Optimality

We have thus far proven that the learned graph will contain
the true graph with high probability. However, our goal
is to obtain a complete model where inference can be per-
formed. Thus, we need to also ask how well the parameters
can be learned . Theorem 3 below states that the likelihood
of the learned model will not be too far from the optimal
one. See proof in Section 4.1 of the supplementary file.
Theorem 3. Assume a sample is generated IID from a
model (G∗,θ∗) satisfying Aε where ε < 1

|E∗|−p . Then as
n→∞ ECL will return (G,θ) such that

L∗(θ∗, E∗)− L∗(θ,E) < 2ε (5.3)

where L∗ is the generalization likelihood (see Eq. 2.5).

Note that the above is equivalent to the Kullback Leibler
divergence between p∗ and the learned model being small.
Namely:

DKL[p(x; θ∗)|p(x; θ)] ≤ 2ε (5.4)

Informally, Theorem 3 follows from the following facts:

• The canonical parameters used by ECL maximize the
Bethe likelihood (e.g., see Heinemann and Globerson,
2011).7

• The canonical parameters also satisfyAε, and are thus
in LGε.

• For models in LGε the true likelihood and Bethe like-
lihood are ε close.

5.4. Likelihood Optimality from Finite Samples

As in the structure learning case, we can obtain finite sam-
ple bounds that guarantee the result in Theorem 3 with high
probability. The following theorem provides such a bound.
Theorem 4. Assume an IID sample of size n is generated
from a model (G∗,θ∗) satisfying Aε where ε < 1

|E∗|−p .
For any α > 0, δ > 0, let n satisfy n > N1 where:

N1 =
C1|E∗| log 1

δ

ε3α2
. (5.5)

and C1 is a constant. Then ECL will return a model that
satisfies the following with probability greater than 1− δ:

L∗(θ∗, E∗)− L∗(θ,E) < 3ε+ α , (5.6)

where L∗ is the generalization likelihood (see Eq. 2.5).

7Generally canonical parameters are not guaranteed to max-
imize the Bethe likelihood, but here they do because of the as-
sumptions Aε.
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We note that there are other methods for consistently learn-
ing the parameters of the model. For example, pseudo like-
lihood can learn the correct parameters given that n→∞.
Pseudo likelihood in fact has better n→∞ behavior, since
it is not ε suboptimal like our method (e.g., see Bradley
and Guestrin, 2012). However, several factors make our
canonical parameter approach more attractive in practice.
First, the sample complexity of psuedo-likelihood is infe-
rior to ours since the former needs a reliable estimate of
the Markov blanket of each node. Indeed, our experiments
show that ECL requires less data to learn. Second, the
canonical parameters are evaluated simply and in closed
form from the empirical marginals, and do not require an
optimization procedure like pseudo-likelihood. Finally, in
the model learned by pseudo-likelihood there are no guar-
antees on inference quality since they are not HGCD.

6. ECL with correlation decay parameters
Our original motivation was that high girth models in the
correlation decay regime can yield high accuracy inference.
However, until now we only made sure to return bounded
girth models, but with no guarantee on correlation decay.
Here we show how ECL can be further modified so that it
is guaranteed to return such models.

Recall that a model is guaranteed to be in LGε if its param-
eters satisfy |Jij | < ζ, for an appropriately defined ζ (as
in assumption Aε). We would thus like to return such a set
of parameters. It turns out we can learn such a model and
preserve all other properties of our algorithm.

The parameter estimates in ECL (i.e., the canonical param-
eters in Eq. 2.6) are inspired by the parameters that max-
imize the likelihood for tree structured models. It thus
makes sense to ask what are the parameters that maximize
likelihood for tree models under the constraint |Jij | < ζ. It
turns out that there is a closed form expression for these, as
described next. See proof in Section 5 of the supplementary
file.

Theorem 5. Assume we are given a set of empirical
marginals µ̄, and a tree structured graph G = (V,E).
Then the parameters θ∗ that maximize the likelihood under
constraints |Jij | ≤ ζ are as follows. Define:

ᾱij = µ̄ij(1, 1)− µ̄i(1)µ̄j(1)

λ+ij = max{0, ᾱij − φ(ζ, µ̄i, µ̄j)}
λ−ij = max{0,−ᾱij + φ(−ζ, µ̄i, µ̄j)}

where φ is the function defined in Section 5 of the supple-
mentary file. Use these to define a new set of marginals

˜̄µ(xi, xj) given as follows:8


µ̄ij(xi, xj) |αij | ≤ φ(ζ, µ̄iµ̄j)
µ̄ij(xi, xj)− λ+ij xi = xj and αij > φ(ζ, µ̄i, µ̄j)

µ̄ij(xi, xj) + λ+ij xi 6= xj and αij > φ(ζ, µ̄i, µ̄j)

µ̄ij(xi, xj) + λ−ij xi = xj and αij < φ(−ζ, µ̄i, µ̄j)
µ̄ij(xi, xj)− λ−ij xi 6= xj and αij < φ(−ζ, µ̄i, µ̄j)

(6.1)
Then θ∗ are the canonical parameters calculated from
marginals ˜̄µ, namely θ∗ = θc(˜̄µ).

Thus, if we want ECL to return parameters bounded by
ζ will simply use the above parameters instead of θc(µ̄).
Assuming the true parameters satisfy this upper bound (as
in assumption Aε) then it’s easy to see that all the results
proven so far will still hold (i.e., structure and parameter
consistency).

The advantage of the above scheme is that it will result
in models in LGε and thus guarantee ε approximate infer-
ence using loopy BP. On the other hand, in cases where the
model does not satisfy assumption Aε it may be too strict a
constraint to limit ζ as it will limit the correlation that can
be modeled using the learned model.

We denote the ECL algorithm with the above parameter
bounding scheme by ECLB.

7. Accuracy on Probabilistic Queries
As mentioned in Section 1, the end goal of learning is to an-
swer probabilistic queries. Of course we would like these
answers to be close to the answer of the same query when
performed on the true distribution p∗(x). Next we show
that this can indeed be achieved by our method, as the fol-
lowing theorem states.

Theorem 6. Assume a sample of size n is generated IID
from a model (G∗,θ∗) satisfying Aε where ε < 1

|E∗|−p . A
parameter θ is learned using the ECLB algorithm with this
sample. To answer the probabilistic query P [xi|xo] we run
loopy BP on p(x;θ) and denote the resulting probability by
τi(xi|xo;θ). Then for every α > 0 if n > N1 (see Eq. 5.5)
the following holds with probability greater than 1− δ:

IEp(xo;θ∗)[DKL[p(xi|xo;θ∗)|τi(xi|xo;θ)]] ≤ 4ε+ 2α
(7.1)

The above states that the inferred probabilities are close in
DKL to the true ones, when averaging over the evidence
xo using the true distribution. This averaging is sensible
since if some xo is unlikely to appear which do not want
to penalize for inference errors in this case. Note that we
have provided the result for inferring the probability of a

8Note that these will be consistent and feasible by construc-
tion.
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single variable xi given a set of variables xo of arbitrary
size. It’s possible to give a similar result for inference on
larger sets of variables. We now turn to the proof, which
simply follows from the previous results.

Proof: By Theorem 3 we have that
DKL[p(x;θ∗)|p(x;θ)] ≤ 2ε. Since conditioning
and marginalization only reduce the DKL we have that
IEp(xo;θ∗)[DKL[p(xi|xo;θ∗)|p(xi|xo;θ)]] ≤ 2ε. Per-
forming inference using evidence xo is equivalent to
generating a new, smaller, model from p(x;θ) with the
evidence “folded” in. We will need to prove that this new
smaller model is also in LGε, so that inference in it is
well approximated using LBP. Looking at the proof of
Lemma 2 we can see that a model is in LGε even if we
remove the restriction on the singletons. Hence the new
model is indeed in LGε since the original model satisfies
Aε. By a similar argument to the proof of Lemma 1 we
have that 1 − ε ≤ p(xi)

τi(xi)
≤ 1 + ε. Using the inequality

−log(1− ε) ≤ 2ε for ε < 0.5 we have the result.

8. Experiments
Recall that our goal was to learn models that allow more
accurate inference (although not exact) on arbitrary test
queries. In this section we compare ECL to other learn-
ing algorithms with respect to this performance measure.
The following baselines are evaluated:

• The structure learning algorithm of (Ravikumar et al.,
2010). This uses L1 regularization and logistic regres-
sion to learn the structure of a graphical model. After
learning the model structure, we use psuedo-likelihood
to learn its parameters. For inference we use loopy
BP. We also experimented with using the canonical pa-
rameters θc on the learned structure, but the psuedo-
likelihood parameters performed better (possibly since
the learned structured is not constrained to be high girth).
We denote this method by L1.

• The structure learning algorithm of Anandkumar and
Valluvan (2013). This procedure constructs tree neigh-
borhoods for each variable and takes their union. It is
guaranteed to be consistent under similar conditions to
our approach, namely high girth graphs with correlation
decay. Similar to the L1 baseline, we use psuedolikeli-
hood to learn the model parameters, and then use loopy
BP for inference. Here again using canonical parameters
resulted in worse performance. The method requires a
parameter r which depends on the true parameters. Since
we run on synthetic models, we provide it with the true
value of r. We call this the TU (for tree union) baseline.

We compare the above two methods to our ECL approach.
The ECL algorithm requires a single parameter, namely a
lower bound g on the girth of the graph. As with the TU
method, since we are using synthetic data, we provided the
correct value of this parameter.9 For ECL, we used the
structure learning algorithm Figure 1, and used loopy be-
lief propagation for inference.

Our focus is inference quality in the learned model, rather
than learning its model structure. Thus, we evaluate on the
accuracy with which the models perform inference. Specif-
ically, we generate 100 random queries as follows: take 5
variables, set their values randomly, and calculate the pos-
terior singleton marginals of the remaining variables. Since
we use relatively small models, we can compare the results
to the correct posterior marginals.

All the models considered have p = 20 variables, so as
to allow exact inference for comparisons. The underlying
graphs were constrained to have a girth of g = 8. This
was done by starting with a random tree structure and then
adding random edges until the girth was achieved. The field
parameters hi were drawn from a uniform distribution on
[−0.1, 0.1]. The scale of the interaction parameters Jij var-
ied, as described next. Note that generally for these mod-
els, the assumption Aε does not hold. Thus, we are in fact
operating in the harder “agnostic” setting.

In what follows we discuss results with respect to the effect
of sample size and model parameters.

8.1. Effect of Sample Size

All the baselines considered are known to converge to the
correct structure given enough data and assumptions on the
true model (the L1 method works under more general con-
ditions than the first two). The psuedolikelihood parame-
ters we use for L1 and TU are also consistent. The param-
eters used by ECL are O(ε) optimal under our Aε assump-
tions. Here we study the effect of sample size on the quality
of the inferred marginals. The parameters Jij were drawn
from a uniform distribution on [−1.1, 1.1].

Figure 1 shows accuracy as a function of sample size. It
can be seen that ECL outperforms the other baselines con-
sistently for all sample sizes considered. Furthermore, as
expected, performance improves with sample size.

8.2. Effect of Interaction Parameter

To test the effect of model parameters, we vary the range of
the Ising interaction parameters Jij . Specifically, their val-

9However, we have noticed in many cases that one can search
for g by trying different values, and finding ones for which the
learned model reproduces the marginals of the data. In other
words, it achieves moment matching. See (Heinemann and
Globerson, 2011).
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Figure 1. Inference accuracy of learned model as a function of
sample size.

ues are drawn uniformly from [−c, c] and different values
of c are explored. The graph structure is as in the previous
sections, and the number of samples is always n = 3200.

Figure 2 shows that ECL consistently outperforms the
baselines across all parameter values. For small interaction
values, the model is close to independent and the baselines
all perform similarly. However, as interaction grows, infer-
ence in the learned models becomes harder, and thus our
high girth models are likely to perform better.

9. Discussion
Our motivation for this work was to learn graphical models
that can provide accurate inference at test time. We noted
that despite the existence of consistent algorithms for pa-
rameter and structure learning, most of these return models
that cannot be used for reliable inference.

As an instance of this general approach of learning usable
models, we showed how one can learn high girth models
with bounded parameters. The advantage is that inference
in these models is theoretically guaranteed to provide an-
swers that are close to exact (with closeness being mea-
sured by ε in the Aε assumptions). We provided consis-
tency results which show that the method both returns high
girth models, and is guaranteed to find the correct model
structure as well as come close to the optimal likelihood
and perform accurate inferences, when the true model is
also an HGCD.

Our empirical results demonstrate the utility of our method,
which indeed provides better test time inference perfor-
mance than other baselines with consistency properties.

One limitation of the analysis presented here is that it as-
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Figure 2. Inference accuracy of learned model as a function of the
scale of the interaction parameter.

sumes the true distribution is an HGCD model. However,
it seems like if one wants to obtain guarantees on test time
accuracy such a restriction must be made. For example, if
the true distribution is not constrained, inference in it will
be intractable and it is unlikely that any method will be able
to approximate it well. Indeed, most methods that provide
guarantees on structure learning make assumptions on the
true distribution (e.g., see Anandkumar et al., 2012).

The above “inferning” approach can be extended in many
ways. Basically, any model class that has theoretical ap-
proximation guarantees may be the goal of such an ap-
proach. One exciting candidate class are expander graphs,
which also exhibit nice theoretical properties for inference
(e.g., see Sipser and Spielman, 1996; Burshtein and Miller,
2001). Learning these may turn out to be harder than the
high girth case, since it is harder to test for expansion. An-
other interesting family is fast mixing models (Domke and
Liu, 2013). It seems natural to design algorithms which re-
turn such models, resulting in guarantees similar to what
we presented here.
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