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Abstract

Fully observed large binary matrices appear in a
wide variety of contexts. To model them, proba-
bilistic matrix factorization (PMF) methods are
an attractive solution. However, current batch
algorithms for PMF can be inefficient because
they need to analyze the entire data matrix be-
fore producing any parameter updates. We de-
rive an efficient stochastic inference algorithm
for PMF models of fully observed binary ma-
trices. Our method exhibits faster convergence
rates than more expensive batch approaches and
has better predictive performance than scalable
alternatives. The proposed method includes new
data subsampling strategies which produce large
gains over standard uniform subsampling. We
also address the task of automatically selecting
the size of the minibatches of data used by our
method. For this, we derive an algorithm that ad-
justs this hyper-parameter online.

1. Introduction

Many machine learning methods have been developed for
modeling matrices with a large number of missing entries.
Amongst these, matrix factorization (MF) approaches (Sre-
bro et al., 2005; Koren, 2008) are probably the most suc-
cessful because of their simplicity and often superior pre-
dictive performance. These methods assume that the par-
tially observed data matrix X is well approximated by a
low rank matrix UVT. The objective is then to find the
two matrices U and V given X. There is extensive liter-
ature on MF methods, so in this paper we focus on prob-
abilistic approaches. Probabilistic methods are an attrac-
tive solution to the MF problem because i) they are robust
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to overfitting (Salakhutdinov & Mnih, 2008), ii) they can
account for non-continuous matrix entries such as ordinal
values (Stern et al., 2009; Paquet et al., 2012) and iii) they
can produce estimates of uncertainty in their predictions.
Fast approximate inference is usually implemented using
variational Bayes (Lim & Teh, 2007; Raiko et al., 2007;
Nakajima et al., 2010). These variational algorithms are
computationally efficient because their cost depends only
on the number of entries observed in X, which is usually
low, and not on the size of X which can be large.

Many real-world datasets are binary, that is, the entries of
X take values in {0,1}. Some examples include market
basket data, click-stream data, network data or file data in
complex software systems. In these cases X is fully ob-
served and the aforementioned probabilistic approaches for
solving the MF problem are infeasible in practice. This is
because these methods are based on batch variational algo-
rithms that require processing all the entries in X before
producing even a single update to the variational parame-
ters. An alternative is to use a likelihood function for con-
tinuous data instead of one for binary data (Nakajima et al.,
2010). In this case, an analytic solution exists which scales
with the number of ones in X. However, this solution is
restricted to zero-mean spherical priors on U and V and
homoscedatic Gaussian likelihood functions for X. These
restrictions lead to poor predictions when X is binary.

We address the problem of scalable learning with proba-
bilistic MF models that are accurate enough to produce
state-of-the-art predictions on large binary matrices. To
meet this challenge we propose a novel stochastic infer-
ence algorithm. Stochastic methods have the advantage
that, with large datasets, they can make reasonably good
predictions before a batch algorithm has generated a sin-
gle parameter update. Our approach is based on stochastic
variational inference (SVI) (Hoffman et al., 2013). Exist-
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ing implementations of SVI do not directly extend to MF
models, which present specific challenges that are not en-
countered in models currently addressed by this inference
algorithm, such as topic models. This is because in MF
models we subsample individual matrix entries instead of
complete data instances, e.g. an entire document in a topic
model. In standard SVI all the variational parameters are
updated each time a data instance is subsampled. With
matrices, we have different parameters for each row and
column in X and each time we subsample a matrix en-
try, we update only the variational parameters associated
with the corresponding row and column. This makes the
data sub-sampling strategy important because it determines
which parameters are updated and how often. Therefore
we develop novel data subsampling strategies with differ-
ent sampling probabilities across the rows and columns of
X. These methods outperform standard uniform subsam-
pling. Furthermore, parameter estimates in MF models of-
ten exhibit heavy-tailed empirical distributions (Lakshmi-
narayanan et al., 2011). These heavy-tails can significantly
reduce the convergence rate of stochastic algorithms. A
solution is to use minibatches to reduce the effect of out-
liers in the noisy estimates of the gradients. However, the
best minibatch size S can be dataset-dependent. To avoid
having to hand-tune S to each dataset, which is common
practice (Orr & Miiller, 1998), we propose a method that
adjusts the value of S online.

We scale probabilistic MF methods to large binary matri-
ces whilst maintaining strong empirical performance. We
validate our method experimentally, demonstrating faster
convergence than batch alternatives (Raiko et al., 2007)
and yielding more accurate solutions than existing scal-
able variational methods (Nakajima et al., 2010; Seeger
& Bouchard, 2012; Paquet & Koenigstein, 2013). While
we focus on improving the state-of-the-art in probabilis-
tic MF methods, we also compare to one of the best non-
probabilistic techniques for MF (Rendle et al., 2009). Al-
though we do not attempt to beat every possible solution,
our method also performs favorably. In summary, our al-
gorithm has the following advantages:

1. We handle fully observed matrices and learn by sub-
sampling individual matrix entries.

2. We use likelihood functions for binary data and not
for continuous data.

3. Flexible priors and additional bias parameters can be
easily incorporated with our method.

4. We use improved subsampling strategies and propose
a rule to automatically select the minibatch size.

2. A Probabilistic Model for Binary Matrices

We describe a probabilistic model for an L x M sparse
binary matrix X. A common approach in matrix modeling

is to assume a matrix factorization model (Salakhutdinov
& Mnih, 2008). Let U € REXP and V € RM*P e two
low-rank matrices, where D < min(L, M). Then X =
O[UVT + 2 + E|, where O[] applies the Heaviside step
function to each entry of a matrix, z € R is a global bias
parameter and E is an L x M additive noise matrix whose
entries e;; are i.i.d. with c.d.f. given by the logistic function
o(z) = 1/[1 + exp(—x)]. The likelihood function is then

L M
p(X[U,V,2) = [[[[ p(ilui v, 2)
i=1j=1
L M
= H H [U(u,’va +2)" o (—uv) — z)l_”j] , (D
i=1j=1
where u; and v are the i-th and j-th rows of U and V. We
use fully factorized Gaussian priors for U, V and z:

L D
p(U) = H HN(Ui,dW?,d,ﬂ?,d) )

i=1d=1

M D
p(V) =[] TN ;.al05.4,75.0)
j=1d=1
and p(z) = N (2|29, 2°). N(:|m,v) denotes a Gaussian
density with mean m and variance v. In our experiments
we used priors with zero-mean and unit variance. We also
incorporate a local bias to each row and column by fixing
one column in each of U and V to a vector of ones. The
posterior distribution for U, V and z is

p(X[U, V, 2)p(U)p(V)p(z)
U,V,z|X) = . 2
p( 1X) 2(X) 2
We can make predictions about the possible value z7 ; that

an entry x; ; in X could have taken during the generation
of X from U, V, b and E. For this, we use

p(zi,;|X) = / [U(ui"jT +2)"h o (—wv] — Z)liz;'j]
p(U,V, 2|X) dUdVd: . 3)

Equations (2) and (3) are intractable and approximations
must be used. We now show how to use variational Bayes
(Jordan et al., 1998) for computing approximations to (2)
and (3).

2.1. Variational Bayes for Binary Matrices

Variational Bayes approximates the exact posterior (2) with
a simpler, tractable distribution ¢(U,V,z). We choose
q(U,V, 2) to be a fully factorized Gaussian,

q(U, V, Z) = |:H H /\/’(uivd\ﬂiyd, ’ai,d):|

s
Il
—
[y
Il
-

M D
x { HN('Uj,d’Uj,d,'[)j,d):| N(zlz,2), &
i

where ® = {{{@ia,Wi.a, Y121, {Vj.a,0j.a} L0 Y1) 20 2}
are variational parameters that are adjusted so that
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q(U,V,z2) is as similar as possible to p(U,V, z|X) by
minimizing the KL divergence between (4) and (2). Once
q(U, V, 2) has been optimized, we approximate (3) by first
approximating the posterior distribution of uiv} + z with
a Gaussian with mean p; ; = Y, 4, 40;,4 + Z, and vari-
ance s7; = Y, U7 4Uj.d + ﬂ@d@id + U7 40j.4 + Z. Then
we approximate the logistic function with a rescaled probit
function that has the same slope at the origin as the logistic
function o (-) (MacKay, 1992). This yields

p(h,|X) ~ / ol(2at,; — 1)alN (alps g, 52;) da

~ olp(st w225, — 1)), (&)

where p(z) = (1 + 7x/8)~1/2,

Equivalently, in variational Bayes ¢(U,V,z) is opti-
mized by maximizing the evidence lower bound or ELBO,
L(P) = Eq [logp(U, V., 2, X)] — Eq [logq(U, V, 2)].
However, E, [logp(U, V, 2z, X)] is analytically intractable.
To address this we use the Gaussian lower bound on the lo-
gistic function described in (Jaakkola & Jordan, 1997). We
choose this approximation because it yields Gaussian com-
plete conditional distributions. A complete conditional is
the conditional distribution of a variable given all of the
other variables and observations. Exponential family com-
plete conditionals will allow us to use stochastic inference
methods based on natural gradients, which improves con-
vergence rates (Hoffman et al., 2013). We lower bound
o(a)®i - o(—a)t =% in (1) with

(0, €) = e"hig(g)e” T HAOE ) ©)

where A(§) = (0.5 —0(£))/(2£) and £ is adjusted to make
the lower bound tight at a = +£. When we replace each
p(xi ju;, vy, z) in (1) with an instantiation of (6) that in-
cludes its own parameter ; ;, we obtain a new lower bound

L M L

D M D
L(®,E) = Zzai,j+zz,(3i,d+227j,d+ﬁ, @)

i=1 j=1 i=1 d=1 j=1d=1

where = = {{{fiyj}iL:I jﬂi1 )

pii (1= 2235) + &5

ai; =logo(&i;) — 5 +
&) iy + st —€5),
/Bi,d :p(ai,d» ﬁ(i),d7 ﬂi7d7 ﬂi,d)a
-0 0
Yid =p(Vj,d, Vj.a, Vj,d» Uja),
S = 20 -0
k=p(2,2,Z2,2Z")

and p(a, b, c,d) = —0.5—0.5log a/b+[(c—d)?+a][2b] .
One could tune ¢ by the alternative maximization of £’ with
respect to ® and =. Given @, = is optimized by setting

€ig = iy + 500" ®)
Given =, ® can be optimized by doing an iteration of gra-
dient descent (Raiko et al., 2007). This work contains a

state-of-the-art batch algorithm for the optimization of the
ELBO in MF models with Gaussian likelihood. Although
effective with small datasets, the resulting batch algorithm
is infeasible when X is very large because each iteration re-
quires the examination of all of the entries in X before up-
dating any parameters. For massive matrices, we propose
to use stochastic optimization (Robbins & Monro, 1951).
These techniques can produce parameter updates after ex-
amining only a reduced fraction of the data. The following
section describes a stochastic method for optimizing £’ in
(7) based on stochastic variational inference (SVI) (Hoff-
man et al., 2013).

2.2. SVI for Binary Matrices

Stochastic optimization methods follow noisy estimates of
the gradient of the target function. This function is of-
ten constructed by summing over a large number of terms.
Noise in the gradient arises because the target function is
approximated by a cheaper, noisy estimate which is ob-
tained by summing over a reduced set of randomly sub-
sampled terms. To optimize the correct objective function
the subsampled terms must be re-scaled so that the expec-
tation of the gradient of the noisy estimate is equal to the
gradient of the original target function.

We apply stochastic optimization to L'(D) =
maxz L'(®,=Z). For this, we iterate over the following
steps. Firstly, we randomly select indexes ¢ € {1,...,L}

and j € {1,..., M} with probability p(i,j). Secondly,
we optimize &; ; by setting & ; = [u? ; + s7;]°° as in (8).
Thirdly, we compute a noisy estimate of £'(®P):

D D
Lhoisy (@) = [e85] iy + > Bia+ Y vatr, O
d=1 d=1

(0%
where ¢,

(I)iyj = {{ﬂi,dv ﬂ,i’d, Vj.d, 'lN)j’d}dDzl, {5, 2}} by making a
small step in the direction of the gradient of (9). Intuitively,
(9) is an appropriately re-scaled version of (7) that includes
only those terms which have the same indexes ¢ and 7 as the
subsampled matrix entry z; ;. Importantly, the constant cf’;
is chosen to guarantee that the expectation under the data-
sampling strategy p(i, j) of the gradient of (9) with respect
to the elements of ®; ; is the same as the gradient of £'(®).
That is, when we update @; g or @; 4 we set cf'; = p(jli).
For v 4 or 04 we set ¢f'; = p(i|j) and for Z or Z we set
Cia’ j =D (Za J ) .

Instead of standard gradients, one can achieve much faster
convergence using natural gradients (Amari, 1998). For
this, we work with the natural parameters of (4):

is a re-scaling constant. Finally, we update

Uid = Ui,d/Uid s Uia = 1/Uia,

and similarly for v; 4, ¥; 4, 2 and 2. Let @, ¢ = (3,4, ts,a)
and let VL' (u; 4) denote the natural gradient of (9) with
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Figure 1. Binary matrix obtained by selecting randomly 250 rows
with at least 10 ones and the 500 columns with the most ones
from the BMS-POS dataset. This matrix is very sparse and has
different frequencies of ones across rows and columns.

respect to 1; 4. When the model has exponential family
complete conditionals (as provided by the Gaussian ap-
proximation in (6)) then VL' (0; 4) = u;‘ 4 — Wi.q4, where
u;, = (U] 4,17 4) is the value of 1; 4 that maximizes (9)
when all the other natural parameters are fixed at their cur-
rent values. Note that i}, is a noisy estimate of the max-
imizer of the exact ELBO (7) with respect to 0; q. The

resulting stochastic update for Q; 4 is

)y = a0 + pi VL (a)
= (1 - p)ads + piaf 4, (10)

where pj' is the size of the step taken in the direction of the
natural gradient. The corresponding updates for v; 4 and 2
are similar, see the supplementary material for details.

The resulting Stochastic Inference method for Binary Ma-
trices (SIBM) iterates over the following two steps: i) ran-
domly subsample an entry x; ; from X with probability
p(i,7) and ii) make a small update to the variational pa-
rameters that approximate the posterior distribution of the
i-th row of U, the j-th row of V and the global bias z. In
practice, each time we sample the indices ¢ and j, we first
update 2z, then all the v, ¢ and finally all the 1; 4. Each
of these operations is performed using the updated param-
eter values produced by the previous operations. We also
recompute the optimal value for &; ; whenever any of the
natural parameters change.

2.3. The Sampling Distribution

We investigate the performance of different choices of
p(i,7), the probability distribution used to subsample the
entries of X. A common objective for binary matrix fac-
torization is to predict the location of entries in X that
would have taken value one but were flipped to value zero
by the additive noise matrix E. Real-world binary matrices
are usually sparse, as illustrated in Figure 1. This means
that when the sampling strategy p(i, j) is uniform (denoted

S-Uniform), p(i,7) = 1/(LM), most of the sampled en-
tries x; ; will take value zero. As a result, SIBM may take
many iterations to converge to a good solution. We propose
smarter strategies that subsample the more useful entries of
X so that the model converges rapidly. This resembles ‘ac-
tive learning’ (Settles, 2010). However, unlike in active
learning, we must eliminate the bias introduced by our spe-
cific choice of p(4, j), that is, we must select cf; in (9) so
that the expected gradient of (9) is the same as the gradi-
ent of (7). Therefore, we propose two simple strategies for
which we can compute the appropriate rescaling c5' ;.

To ensure that we see enough ones, a better alternative (S-
Balanced) is to sample zeros and ones with equal probabil-
ity, regardless of the empirical frequencies in X,

where I[] is the indicator function. Now, each time that an
entry is sampled we obtain a zero or a one with equal proba-
bility. However, another characteristic of real-world binary
matrices is that the frequency of ones and zeros can vary
considerably across the rows and columns. For example,
the matrix in Figure 1 presents a few columns with a large
number of ones and many with very few ones. A similar
pattern is observed in the rows, although in this matrix the
effect is smaller. In practice, it takes SIBM longer to model
accurately the ones located in rows or columns with many
zeros. Any entry sampled from these rows/columns will
usually take value zero which is unlikely to be useful be-
cause SIBM can learn quickly that these rows/columns are
very sparse. Therefore, we propose a strategy (S-Biased)
to account for this by biasing S-Balanced so that the prob-
ability of sampling a one at location (i, j) is proportional
to i) the number of zeros found in the i-th row and ii) the
number of zeros found in the j-th column. An equivalent
bias is introduced for the zeros. The result is the sampling
distribution

T’,El_zi’j)ci-l—z’i’j)
= 11—z, 11—z, ’
2L M My = waplrs ey TR

(0) 1

% i

p(i, J)

where r; ’ and r; "’ are the number of zeros and ones in the

i-th row of X and cgp) and c;l) are the number of zeros and
ones in the j-th column. These counts are thresholded to

take a minimum value of 1 so that p(i, j) # 0.

2.4. Minibatches, Learning Rates and Minibatch Size

Stochastic methods often use minibatches to reduce the
variance of the noisy estimates of the gradient and help the
algorithm converge faster. Instead of updating the varia-
tional parameters after subsampling a single matrix entry,
the updates are averaged over a minibatch of data. When
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using a minibatch of size S, we first subsample S entries
from X. Then for each subsampled entry x; ;, we store the
parameter values u} ; and v ; that would have been pro-
duced during the execution of SIBM without minibatches.
After subsampling S entries, we update each 1, 4 if at least
one of the entries in the minibatch belongs to the ¢-th row
of X. The minibatch update rule follows from (10),

i = (1—pi)ada +piay®, (D
1 (2)
where ;7" = ﬁ Z u;y (12)

n(7) is the number of entries in the ¢-th row found in the
minibatch and ] is the value of i} ; produced when the
s-th of those entries appearing in the ¢-th row is subsam-
pled. The minibatch update rule for ¥V 4 is similar.

An important question is how to choose the minibatch size
S. The value of S is particularly important when work-
ing with matrix factorization models where parameter dis-
tributions are often heavy tailed (Lakshminarayanan et al.,
2011). In our stochastic method this results in heavy tailed
noisy estimates of the natural gradients. The choice of S
governs a trade-off between reducing these heavy tails and
slow convergence due to excessively large minibatches. To
avoid having to hand-tune S to each dataset or run expen-
sive cross validation searches, we propose an algorithm that
selects S appropriately to the statistics of the data during
learning. In particular, we choose S so that we bound the
magnitude of the error in the noisy estimate of the optimum
of the ELBO. Let ﬁ*; be the value of 0; 4 that maximizes
the exact ELBO (7). We obtain a probabilistic bound on
the relative error of ;5" in (11) with respect to the global
maximizer of the ELBO, u:; , using Markov’s inequality,

u;yt -y E[|a;5® —a
N (LA RO i+
a3 all3
[Varft; q]llx [L} ~ ”Var[uz alllh
OIE[;JIZ  Ln())] — 6Sp()IER] I3

where Var[] | is a vector with the variances of the entries
ina} 4, p(¢) is the probability of sampling an element from
the i-th row of X, that is, p(i) = >_;p(i,j). We have ap-
proximated E [1/n(:)] by 1/[p(i)S] and we have used the
fact that @)} = E[w;7;"*]. We now solve for S and obtain
a minibatch size that approximately limits the probability
that the relative error of w;";"® is larger than 6:

S = || Varlixt I [69p() [
Intuitively, the minibatch size increases with the inverse of
the signal to noise ratio (SNR) in the estimate u* T d of the
global maximizer of the exact ELBO in (7). If the SNR
decreases, (13) chooses large minibatches to mitigate the
large relative errors.

AIBTH a3

This approach requires choosing a single dataset-
independent parameter, the product of 6 and ¢, as opposed
to hand-tuning S to each dataset. By making 66 small we
limit the expected deviation of @; ;" from @;’;. Note that
(13) requires knowing E[u} ] and Var[u} .. We estimate
these quantities online usmg exponent1ally weighted mov-
ing averages. Equation (13) provides a different minibatch
size for each of the 0; 4 and the rule for each of the v, 4
is similar. Therefore we select S to be the mean minibatch
size selected for each 0; 4 and V; g, details are in the sup-
plementary material. The contribution of Z to the minibatch
size S is very small and so is ignored in practice.

The step sizes p;', pj and p, should be reduced each time
4, 4, Vjq and z are updated. For this, we use a simple
Robbins-Monro schedule (Robbins & Monro, 1951). The
full SIBM routine is summarized in Algorithm 1.

Algorithm 1 Stochastic Inference for Binary Matrices

Input: matrix X, initial parameters ®, # samples 1T'
fort =1to 7 do
select minibatch size S (see Section 2.4)
for s = 1to S do
sample row and column indices (3, j)
save lc:li71, ey luli’D, 6]’,17 ey
update &; ; using (8)
compute z* and update z using (10)
update z**# using (12)
ford =1to D do
update &; ; using (8)
compute v} ; and update v; 4 using (10)

~ p(i,])
v;,p and z

update v’ avg using (12)
end for
similarly, update @} 1,...,0; p
restore U 1,. .., WD, Vj1,...,V;p and z
end for

for any row 7 sampled in the last minibatch do
compute step size p;’ using Robbins-Monro
update 0; 1, ...,0;,p using (11)
end for
similarly, update v, 1,...,V;p
compute step size p® using Robbins-Monro
update z using (11)
end for
Output: {1, 1,...

o L o o M o
,Wip}it1, {Vj1,...,V;p}jo, and z

3. Related Work

SVI has been applied to other probabilistic models (Hoff-
man et al., 2010; Wang et al., 2011; Bryant & Sudderth,
2012). In these cases there is a clear distinction between
local and global variational parameters. Local parameters
are updated only when a particular data point is subsam-
pled. Global parameters are updated whenever any data
point is subsampled. In MF models, we have variational
parameters that are partially global, that is, they are only
updated when elements in the corresponding row or col-
umn are subsampled. This makes the data sub-sampling
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strategy more important because it determines which pa-
rameters are updated and how often. Other non-uniform
sampling strategies have been proposed for networks, an
instance of binary matrices, (Gopalan & Blei, 2013). The
stochastic blockmodel for networks used here differs to our
general binary MF model.

An alternative stochastic MF algorithm just subsamples
the zeros (Paquet & Koenigstein, 2013). However, unlike
SIBM, this method does not correct for the bias introduced
by the subsampling process and hence yields poorer solu-
tions. Instead of stochastic schemes one could use the an-
alytic solution described in (Nakajima et al., 2010). How-
ever, this is only applicable when 1) the likelihood (1) is
Gaussian with equal variance across matrix entries, ii) U
and V have zero-mean isotropic priors, and iii) there are
no bias parameters. These constraints have a large nega-
tive effect in predictive performance. An iterative scheme
has been proposed to extend this approach to logistic like-
lihoods (Seeger & Bouchard, 2012) at the cost of making
crude approximations to the logistic likelihood function.
In practice, this method tends to produce only small gains
with respect to (Nakajima et al., 2010) with binary matri-
ces. Very recently, an MF model with a Poisson likelihood
has been proposed (Gopalan et al., 2014). This algorithm is
applicable to binary matrices and scales with the number of
ones, although the Poisson likelihood is less specific than
the logistic function for binary data.

A large number of alternative non-probabilistic algorithms
have been proposed for MF. One of the best performing
is Bayesian Personalized Ranking (BPR) which optimizes
a ranking loss function. BPR has shown state-of-the-art
results on item recommendation tasks (Rendle et al., 2009;
Dror et al., 2012).

Our minibatch size .S selection algorithm is similar to one
in (Byrd et al., 2012). However, their method selects .S to
be inversely proportional to the SNR of the noisy estimate
of the gradient. Since the gradient tends to zero at con-
vergence, the value of S selected by their method quickly
diverges. We do not have this problem because we use the
SNR of the noisy estimate of the global maximizer of (7),
which does not converge to zero.

4. Experiments

SIBM is evaluated in experiments with synthetic and real-
world binary matrices. All the code and data used is pub-
licly available'. We consider six datasets that include a syn-
thetic dataset generated by sampling X from the generative
model assumed by SIBM. We fix D = 10 and generate
U and V by sampling all the u; 4 and v; 4 independently
from N(0,1). The global bias is fixed to z = —7.5, yield-

"http://jmhl.org

ing binary matrices with about 98% sparsity. We consider
two real-world datasets from the FIMI repository: purchase
data from a retail store (retail) (Brijs et al., 1999) and click
data from an online news portal (Kosarak). We include
two datasets from the 2000 KDD Cup (Kohavi et al., 2000;
Zheng et al., 2001), point of sale data from a retailer (POS,
originally BMS-POS) and click data from an e-commerce
website (WebView, originally BMS-WebView-2). Finally,
we include the Netflix data, treating 4-5 star ratings as ones.
We pre-process the original datasets so that we can com-
pare to the computationally expensive batch approach. We
keep the 1000 columns with the highest number of ones and
discard rows with fewer than 10 ones. We consider small
and large versions of each dataset. We subsample 2000
rows for the small and 40,000 rows for the large datasets,
except in retail and WebView, where we use approximately
the maximum number of rows for the large datasets, 10,000
and 5000, respectively.

Each matrix is randomly split into a training matrix and a
set of test entries with value one. The training matrix is
generated by randomly removing an entry with value one
from each row in the original matrix and adding it to the
test set. Predictive performance is evaluated using recall at
N, a popular metric for recommendation tasks (Gunawar-
dana & Shani, 2009) (equivalent to precision when a single
one is held out from each row). For this, we iterate over
the rows, using (3) to compute the probability of each zero
entry actually taking value one. We select the top N zero
entries with highest probability in that row. Recall is com-
puted as the average number of times that the test entry
appears in this list. We use N = 10 and repeat the experi-
ment 25 times on each small dataset, and 10 times on each
large one.

4.1. Sampling Strategies and Automatic Minibatch

The top of Figure 2 shows results for SIBM when using the
sampling strategies S-Uniform, S-Balanced and S-Biased
on the small Netflix dataset. To eliminate the dependence
of these strategies on the minibatch size, we select the value
of S for each strategy using cross-validation. We find that
S-Biased performs best, and both S-Biased and S-Balanced
improve over S-Uniform. Similar results are obtained on
the other datasets, see the supplementary material.

The plot in the bottom of Figure 2 shows the evolution of
the minibatch size S on each small dataset. We fixed 60 =
2 in (13) in all of our experiments. We fixed the minimum
value for S to max(L, M) = 2000. This value is selected
with the retail dataset. Similar results are obtained with
the large datasets. This plot shows that the optimal value
of S varies greatly across datasets. Interestingly, for some
datasets S grows as learning progresses, but for others it
shrinks.
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Figure 2. Top: average recall obtained for different sampling
strategies with the small Netflix dataset. Bottom: evolution of
the average minibatch size S selected in each small dataset.

4.2. Comparison with Batch and Alternative Methods

We compare the full SIBM algorithm that selects the mini-
batch size S automatically (SIBM-auto) to a version in
which S is selected via cross-validation to maximize re-
call on a validation set (SIBM-recall). We also compare to
a version of SIBM-recall that finds the Maximum a Posteri-
ori (MAP) solution using stochastic gradient ascent (MAP-
recall), see the supplementary material for details. On the
small datasets we compare to the batch algorithm (batch)
that maximizes (7) (Raiko et al., 2007). This method is too
expensive with the large datasets. In these cases, we run it
by subsampling zeros, keeping only 20 times as many zeros
as ones.

We compare our method to the analytic solution with a
Gaussian likelihood (Nakajima et al., 2010) (Nak10) and
the extension of this method to binary matrices (Seeger &
Bouchard, 2012) (Seel2). We also evaluate the scheme de-
scribed in (Paquet & Koenigstein, 2013) (Paq13). Finally,
we compare to one of the best performing non-variational
Bayesian algorithms, BPR (Rendle et al., 2009).

4.3. Results

Figure 3 shows the average recall obtained by each method
versus the number of entries from X that are observed

(sampled). Other than the analytic solutions (Nak10 and
Seel2), all algorithms have linear cost in the number of
observations. It is hard to quantify the number of entries
observed by Nak10 and Seel2 which are based on itera-
tive calls to an SVD subroutine. Therefore, we assume that
they run instantaneously and their performance is presented
as a constant line”. Tables 1 and 2 show the average recall
and average negative ELBO (7) (cost) after taking 107 sam-
ples with the small datasets and WebView and Retail large
datasets, and 108 on the others. With the large datasets
computing the ELBO is too expensive so we do not report
cost. Bold typeface indicates the best results (and those
statistically indistinguishable), underlining denotes the sec-
ond best. Tables 1, 2 show that in terms of recall, the best
method is SIBM-recall, with SIBM-auto coming close. Re-
garding the ELBO, SIBM-auto yields the best results.

Figure 3 shows that SIBM converges faster than batch and
sometimes to better solutions, such as with the WebView
dataset. SIBM-auto produces the greatest improvements
during the first iterations of learning. These first iterations
are the most relevant iterations for large scale learning.
With massive data, only a few passes over the available data
are possible. It is in these cases that stochastic methods are
most useful. The results of SIBM-auto are very close to
those of the gold-standard, SIBM-recall, and MAP-recall
performs worse in general than the variational methods
SIBM-auto and SIBM-recall. MAP-recall seems to overfit
since its performance sometimes deteriorates during later
iterations. The analytic algorithms (Nak10, Seel2) obtain
poor results due to the simplistic modelling assumptions
that they make. Paql3 can perform poorly because this
method subsamples the zeros and does not account for the
bias introduced by the subsampling process. As a result,
it converges to suboptimal solutions. BPR converges to
worse solutions than SIBM and batch. On the large datasets
the relative performances are similar, see the supplemen-
tary material.

Figure 4 shows recall versus wall-clock time for the small
Kosarak dataset. Plots for the other datasets are in the
supplementary material. This plot is implementation-
dependent (all methods are coded in C) and so is less ob-
jective than Figure 3 which uses the number of entries ob-
served. Nevertheless, the results for recall vs. time and
recall vs. number of observed entries are similar. The
main difference is that SIBM-recall, MAP-recall and BPR
are penalized due to the additional time required to run
cross validation searches for selecting the minibatch size
(SIBM-recall and MAP-recall) and regularization parame-
ters (BPR).

“This is a generous assumption for See12, see wall-clock times
in Figure 4 and in the supplementary material.
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Table 1. Small datasets, recall and cost after observing 107 samples.

Table 2. Large datasets, recall after observing 107 samples from
WebView, Retail and 108 from others.

Dataset SIBM SIBM batch MAP Paql13 BPR Nak10 Seel2
recall auto recall

Synthetic | 0.387 0.367 0.324 0.368 0.249 0.374 0.262 0.266

Netflix 0.203 0.193 0.190 0.192 0.146 0.190 0.190 0.199

Kosarak | 0.391 0.372 0.346 0.368 0.327 0.370 0.319 0.341

POS 0.373 0.368 0.348 0.352 0.352 0.374 0.289 0.347
WebView | 0.390 0.343 0.359 0.360 0.235 0.326 0.303 0.213
Retail 0.235 0.230 0.233 0.239 0.235 0.237 0.149 0.228

5. Conclusions

We have proposed a new stochastic inference method for
efficient factorization of large binary matrices. Our ap-
proach extends stochastic variational inference (SVI) to
matrix factorization models, a class of models not previ-
ously addressed by SVI. The proposed method has the fol-

Figure 4. Average recall for each method
on the small Kosarak dataset versus time.

lowing advantages with respect to existing probabilistic so-
lutions for binary matrix factorization: i) we can handle
fully observed matrices, ii) learning occurs by subsampling
the matrix entries, iii) we use likelihood functions for bi-
nary data instead of for continuous data, iv) flexible priors
and additional bias parameters can be incorporated into the
method easily. The resulting technique achieves faster con-
vergence than an alternative batch approach and has better
predictive performance than other state-of-the-art scalable
solutions or analytic methods based on the SVD decom-
position. Good performance in this domain requires smart
data subsampling mechanisms and the use of minibatches.
Therefore we have provided a novel non-uniform data sub-
sampling strategy and a technique to adjust the minibatch
size adaptively to the data. Our minibatch selection algo-
rithm could be used more generally with other SVI algo-
rithms.
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