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1 Hyper-parameter values in the complete data model

Recall that the priors for i) the base boundary variables b0 = (b0,1, . . . , b0,L−1) and ii) the factors γrowi and
γcolj for the noise variance are

p(b0) =

L−1∏
k=1

N (b0,k|mb0

k , v0) , p(γrowi ) = IG(γrowi |a0, b0) , p(γcolj ) = IG(γcolj |a0, b0) , (1)

where i = 1, . . . , n, j = 1, . . . , d, N (x|m, v) denotes a Gaussian density with mean m and variance v and

IG(x|a, b) =
ba

Γ(a)
x−a−1 exp

{
− b
x

}
(2)

denotes an inverse-gamma density with parameters a and b. We initialize the prior means mb0
1 , . . . ,mb0

L−1 to
form an evenly spaced grid in the interval [−6, 6] as suggested in Paquet et al. (2012). For example, when
L = 5, we have that mb0

1 = −6, mb0
2 = −2, mb0

3 = −2 and mb0
4 = −6. The prior variance v0 for each

component of b0 is initialized to v0 = 0.1. The hyper-parameters a0 and b0 for the priors on γrowi and γcolj

are initialized to a0 = 10/2 and b0 = 10
√

10/2. The strength of the resulting priors is then equivalent to
having seen for each of these random variables a random sample of size 10 with empirical variance

√
10. The

prior expectations for γrowi and γcolj are close to
√

10. This means that the product of γrowi and γcolj is close
on average to 10, which is the recommended noise level in the ordinal matrix factorization model described
in Paquet et al. (2012).

We use factorized standard Gaussian hyper-priors for the prior means mU = (mU
1 , . . . ,m

U
h ) and mV =

(mV
1 , . . . ,m

V
h ), that is,

p(mU) =

h∏
k=1

N (mU
k |0, 1) , p(mV) =

h∏
k=1

N (mV
k |0, 1) . (3)

Similarly, we use factorized inverse-gamma hyper-priors for the prior variances vU = (vU1 , . . . , v
U
h ) and

vV = (vV1 , . . . , v
V
h ), that is,

p(vU) =

h∏
k=1

IG(vUk |a′0, b′0) , p(vV) =

h∏
k=1

IG(vVk |a′0, b′0) . (4)

The hyper-parameters a′0 and b′0 are initialized to a′0 = 10/2 and b′0 = 10/2. The strength of the resulting
priors is then equivalent to having seen for each of these random variables a random sample of size 10 with
unit empirical variance.

2 Priors in the missing data model

We choose to use fully factorized Gaussian priors for all the parameters in the missing data model, that is,

p(E) =

n∏
i=1

h∏
k=1

N (ei,k|ē0i,k, ẽ0i,k) , (5)

p(F) =

d∏
j=1

h∏
k=1

N (fj,k|f̄0j,k, f̃0j,k) , (6)

p(Λrow) =

n∏
i=1

L∏
l=1

N (λrowi,l |λ̄row 0
i,l , λ̃row 0

i,l ) , (7)
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p(Ψcol) =

d∏
j=1

L∏
l=1

N (ψcol
j,l |ψ̄col 0

j,l , ψ̃col 0
j,l ) (8)

and p(z) = N (z|z̄0, z̃0). We fix these priors to have zero-mean and unit variance. We also incorporate a
local bias to each row and column. For example, the column h in F contains the biases for the columns of
X. In this case, ē0i,h = 1 and ẽ0i,h = ε, for i = 1, . . . , n, where ε is a small positive constant. Similarly, the

column h− 1 in E contains the biases for the rows and f̄0j,h−1 = 1 and f̃0j,h−1 = ε, for j = 1, . . . , d.

3 Description of each factor in the factor graph

We describe the form of each factor in the factor graph shown in Figure 1. This factor graph includes a total
of 19 different factors. The first 13 factors belong to the complete data model. The last 6 factors belong to
the missing data model. We first describe the factors for the complete data model. After that, we describe
the factors for the missing data model.

3.1 Factors for the complete data model

The complete data model is formed by factors 1 to 13. The first four factors are given by the hyper-priors
for the mean and variances of the Gaussian priors on the entries in the rows of U and V, that is,

f1,k(vVk ) = IG(vVk |a′0, b′0) , f2,k(vUk ) = IG(vUk |a′0, b′0) , (9)

f3,k(mV
k ) = N (mV

k |0, 1) , f4,k(mU
k ) = N (mU

k |0, 1) , (10)

for k = 1, . . . , h. Factors 5 and 6 are the priors for the factors γrowi and γcolj that form the variance of the
additive noise on ci,j , that is,

f5,j(γ
col
j ) = IG(γrowi |a0, b0) , f6,i(γ

row
i ) = IG(γcolj |a0, b0) , (11)

for i = 1, . . . , n and j = 1, . . . , d. Factor 7 is formed by the Gaussian prior for the base boundary variables
b0 = (b0,1, . . . , b0,L−1), that is,

f7,k(b0,k) = N (b0,k|mb0

k , v0) , (12)

for k = 1, . . . , L− 1. Factor 8 is given by the conditional Gaussian prior for the vector of boundary variables
bj = (bj,1, . . . bj,L−1), that is,

f8,j,k(bj,k, b0,k) = N (bj,k|b0,k, v0) , (13)

for j = 1, . . . , d, k = 1, . . . , L − 1. Factors 9 and 10 are the Gaussian priors for the entries of the low-rank
latent matrices U and V, namely

f9,j,k(vj,k,m
V
k , v

V
k ) = N (vj,k|mV

k , v
V
k ) , f10,i,k(ui,k,m

U
k , v

U
k ) = N (ui,k|mU

k , v
U
k ) , (14)

for i = 1, . . . , n, j = 1, . . . , d and k = 1, . . . , h. Factor 11 is formed by the delta functions that constrain each
ci,j to be equal to uiv

T
j , where ui is the i-th row of U and vj is the j-th row of V, that is,

f11,i,j(ci,j ,ui,vj) = δ(ci,j − uiv
T
j ) , (15)

for i = 1, . . . , n and j = 1, . . . , d. Factor 12 is the conditional prior for the variables ai,j . These variables are
obtained after adding Gaussian noise to ci,j with variance γrowi γcolj , that is,

f12,i,j(ai,j , ci,j , γ
row
i , γcolj ) = N (ai,j |ci,j , γrowi γcolj ) , (16)

for i = 1, . . . , n, j = 1, . . . , d. Finally, factor 13 is given by

f13,i,j,k(ri,j , ai,j , bj,k) = Θ [sign[ri,j − k − 0.5](ai,j − bj,k)] , (17)

where Θ is the Heaviside step function and sign[x] is the sign function, which returns −1 if x < 0 and 1
otherwise.
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Figure 1: Factor graph for our Matrix Factorization model with data Missing Not At Random (MF-MNAR).

3.2 Factors for the missing data model

The missing data model is formed by factors 14 to 19. The first five factors in this model are formed by the
Gaussian priors on the model parameters E, F, Λrow Ψcol and z, that is,

f14,i,k(ei,k) = N (ei,k|ē0i,k, ũ0i,k) , f15,j,k(fj,k) = N (fj,k|f̄0j,k, ṽ0j,k) , (18)

f16,i,l(λ
row
i,l ) = N (λrowi,l |λ̄row 0

i,l , λ̃row 0
i,l ) , f17,j,l(ψ

col
j,l ) = N (ψcol

j,l |ψ̄col 0
j,l , ψ̃col 0

j,l ) , (19)

f18(z) = N (z|z̄0, z̃0) , (20)

for i = 1, . . . , n, j = 1, . . . , d, k = 1, . . . , h, l = 1, . . . , L. Finally, factor 19 is given by the likelihood of the
missing data model, that is,

f19,i,j(ri,j , xi,j , ei, fj , z,λ
row
i ,ψcol

j ) = xi,jσ{eifTj + z +

L∑
l=1

(λrowi,l + ψcol
j,l )I[ri,j = l]}+

(1− xi,j)σ{−eif
T
j − z −

L∑
l=1

(λrowi,l + ψcol
j,l )I[ri,j = l]} , (21)

where i = 1, . . . , n, j = 1, . . . , d, ei and fj are the i-th and j-th rows of the latent low-rank matrices E and
F, respectively, λrow

i and ψcol
j are the are the i-th and j-th rows of matrices Λrow and Ψcol, respectively,

σ(x) = 1/(1 + exp(−x)) is the logistic function and I[·] is the indicator function that takes value 1 when its
argument is true and 0 otherwise.

4 Approximate Inference

We now describe how to perform approximate Bayesian inference in the proposed Matrix Factorization model
with data Missing Not At Random (MF-MNAR). Our approach is based on a combination of the methods
expectation propagation (EP) Minka (2001) and variational Bayes (VB) Ghahramani and Beal (2001).

We approximate the exact posterior in MF-MNAR, that is, p(Ω,Θ,R¬O|RO,X) given by Equation (8)
in the main document, with the parametric distribution Q(Θ,Ω,R¬O) = Q1(Θ)Q2(Ω)Q3(R¬O), where we
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assume that Q1, Q2 and Q3 are fully factorized distributions with inverse-gamma, Gaussian and multinomial
factors, namely

Q1(Θ) =

[
h∏
k=1

IG(vUk |av
U

k , av
U

k )

][
h∏
k=1

IG(vVk |av
V

k , bv
V

k )

][
d∏
i=1

L−1∏
k=1

N (bi,k|mb
i,k, v

b
i,k)

]
 n∏
i=1

d∏
j=1

N (ai,j |ma
i,j , v

a
i,j)

 n∏
i=1

d∏
j=1

N (ci,j |mc
i,j , v

c
i,j)

[ n∏
i=1

h∏
k=1

N (ui,k|mu
i,k, v

u
i,k

]
 d∏
j=1

h∏
k=1

N (vj,k|mv
j,k, v

v
j,k

[L−1∏
k=1

N (b0,k|mb0
k , v

b0
k )

][
h∏
k=1

N (mU
k |mmU

k , vm
U

k )

]
[

h∏
k=1

N (mV
k |mmV

k , vm
V

k )

][
n∏
i=1

IG(γrowi |a
γrow

i , bγ
row

i )

] d∏
j=1

IG(γrowj |a
γcol

j , bγ
col

j )

 , (22)

Q2(Ω) = N (z|mz, vz)

[
n∏
i=1

h∏
k=1

N (ei,k|me
i,k, v

e
i,k)

] d∏
j=1

h∏
k=1

N (fj,k|mf
j,k, v

f
j,k)


[
n∏
i=1

L∏
l=1

N (λrowi,l |mλrow

i,l , vλ
row

i,l )

] d∏
j=1

L∏
l=1

N (ψcol
j,l |m

ψcol

j,l , v
ψcol

j,l )

 , (23)

Q3(R¬O) =
∏

(i,j)/∈O

L∏
l=1

p
I[ri,j=l]
i,j,l , (24)

where
∑L
l=1 pi,j,l = 1. Ideally, we want to adjust the parameters of Q so that this approximation is as

close as possible to the exact posterior p(Ω,Θ,R¬O|RO,X). Recall that this posterior can be written, up
to its normalization constant, as the product of all the factors shown in the factor graph from Figure 1.
Section 3 contains a description of each of these factors. We will approximate each exact factor in the factor
graph with an approximate factor that has the same functional form as Q. For example, the exact factor
f12,i,j(ai,j , ci,j , γ

row
i , γcolj ) will be approximated with the approximate factor f̃12,i,j(Θ,Ω,R¬O) given by

f̃12,i,j(Θ,Ω,R¬O) =

[
h∏
k=1

IG(vUk |ã
vU,12,i,j
k , ãv

U,12,i,j
k )

][
h∏
k=1

IG(vVk |ã
vV,12,i,j
k , b̃v

V,12,i,j
k )

]
[
d∏
i=1

L−1∏
k=1

N (bi,k|m̃b,12,i,j
i,k , ṽb,12,i,ji,k )

] n∏
i=1

d∏
j=1

N (ai,j |m̃a,12,i,j
i,j , ṽa,12,i,ji,j )


 n∏
i=1

d∏
j=1

N (ci,j |m̃c,12,i,j
i,j , ṽc,12,i,ji,j )

[ n∏
i=1

h∏
k=1

N (ui,k|m̃u,12,i,j
i,k , ṽu,12,i,ji,k

]
 d∏
j=1

h∏
k=1

N (vj,k|m̃v,12,i,j
j,k , ṽv,12,i,jj,k

[L−1∏
k=1

N (b0,k|m̃b0,12,i,j
k , ṽb0,12,i,jk )

]
[

h∏
k=1

N (mU
k |m̃

mU,12,i,j
k , ṽm

U,12,i,j
k )

][
h∏
k=1

N (mV
k |m̃

mV,12,i,j
k , ṽm

V,12,i,j
k )

]
[
n∏
i=1

IG(γrowi |ã
γrow,12,i,j
i , b̃γ

row,12,i,j
i )

] d∏
j=1

IG(γrowj |ã
γcol,12,i,j
j , b̃γ

col,12,i,j
j )


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[
n∏
i=1

h∏
k=1

N (ei,k|m̃e,12,i,j
i,k , ṽe,12,i,ji,k )

] d∏
j=1

h∏
k=1

N (fj,k|m̃f
j,k, ṽ

f,12,i,j
j,k )


[
n∏
i=1

L∏
l=1

N (λrowi,l |m̃
λrow,12,i,j
i,l , ṽλ

row,12,i,j
i,l )

] d∏
j=1

L∏
l=1

N (ψcol
j,l |m̃

ψcol,12,i,j
j,l , ṽψ

col,12,i,j
j,l )


 ∏
(i,j)/∈O

L∏
l=1

[p̃12,i,ji,j,l ]I[ri,j=l]

N (z|m̃z,12,i,j , ṽz,12,i,j)s̃12,i,j , (25)

where
∑L
l=1 p̃

12,i,j
i,j,l and we have introduced the multiplicative constant s̃12,i,j because the approximate factors

may not be normalized. The notation that we have used for the parameters of f̃12,i,j is the same that we
used for the parameters of Q, but adding to each parameter the tilde symbol ˜ and the superscript 12, i, j
with the indexes of the approximate factor. Note hat Q and all the approximate factors belong to the family
of exponential distributions. This family is closed under the product operation. Therefore, the product of
all the approximate factors still has the same functional form as Q and can be readily normalized. The
exact posterior p(Ω,Θ,R¬O|RO,X) is the normalized product of all the exact factors in the factor graph
from Figure 1. Similarly, we define the posterior approximation Q to be the normalized product of all the
approximate factors. This means that, we can make Q be close to the exact posterior p(Ω,Θ,R¬O|RO,X)
by adjusting each approximate factor so that it is as close as possible to its corresponding exact factor in
the factor graph. This is the approach followed by the method expectation propagation (EP) Minka (2001)
and it will be the basis of our algorithm for approximate inference in MF-MNAR.

EP works by first, initializing all the approximate factors and Q to be non-informative or flat. This is
done by setting i) the mean and variance parameters of the Gaussians to be zero and infinite, respectively,
ii) the a and b parameters of the inverse gammas to be one and zero, respectively, and iii) the parameters of
the multinomials to be 1/L. After that, EP iteratively refines the parameters of the different approximate
factors. We now describe how EP performs each of these operations. For example, let us assume that EP
will refine the parameters of the approximate factor f̃12,i,j . For this, EP computes the ratio of Q and f̃12,i,j
and then normalizes the resulting distribution, which we denote by Q\12,i,j . Therefore, Q\12,i,j is equal to
the normalized product of all the approximate factors except f̃12,i,j . The functional form of Q\12,i,j is again
the same as Q and all the other approximate factors. In particular, we have that

Q\12,i,j(Θ,Ω,R¬O) =

[
h∏
k=1

IG(vUk |a
vU,\12,i,j
k , a

vU,\12,i,j
k )

][
h∏
k=1

IG(vVk |a
vV,\12,i,j
k , b

vV,\12,i,j
k )

]
[
d∏
i=1

L−1∏
k=1

N (bi,k|mb,\12,i,j
i,k , v

b,\12,i,j
i,k )

] n∏
i=1

d∏
j=1

N (ai,j |ma,\12,i,j
i,j , v

a,\12,i,j
i,j )


 n∏
i=1

d∏
j=1

N (ci,j |mc,\12,i,j
i,j , v

c,\12,i,j
i,j )

[ n∏
i=1

h∏
k=1

N (ui,k|mu,\12,i,j
i,k , v

u,\12,i,j
i,k

]
 d∏
j=1

h∏
k=1

N (vj,k|mv,\12,i,j
j,k , v

v,\12,i,j
j,k

[L−1∏
k=1

N (b0,k|mb0,\12,i,j
k , v

b0,\12,i,j
k )

]
[

h∏
k=1

N (mU
k |m

mU,\12,i,j
k , v

mU,\12,i,j
k )

][
h∏
k=1

N (mV
k |m

mV,\12,i,j
k , v

mV,\12,i,j
k )

]
[
n∏
i=1

IG(γrowi |a
γrow,\12,i,j
i , b

γrow,\12,i,j
i )

] d∏
j=1

IG(γrowj |a
γcol,\12,i,j
j , b

γcol,\12,i,j
j )


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[
n∏
i=1

h∏
k=1

N (ei,k|me,\12,i,j
i,k , v

e,\12,i,j
i,k )

] d∏
j=1

h∏
k=1

N (fj,k|mf
j,k, v

f,\12,i,j
j,k )


[
n∏
i=1

L∏
l=1

N (λrowi,l |m
λrow,\12,i,j
i,l , v

λrow,\12,i,j
i,l )

] d∏
j=1

L∏
l=1

N (ψcol
j,l |m

ψcol,\12,i,j
j,l , v

ψcol,\12,i,j
j,l )


 ∏
(i,j)/∈O

L∏
l=1

[p
\12,i,j
i,j,l ]I[ri,j=l]

N (z|mz,\12,i,j , vz,\12,i,j) , (26)

where notation for the parameters of Q\12,i,j is the same that we used for the parameters of Q, but adding
to each parameter the superscript \12, i, j with the indexes of the approximate factor that is removed
from Q to obtain Q\12,i,j . EP refines the parameters of f̃12,i,j by minimizing the Kullback-Leibler (KL)

divergence between Q\12,i,j(Θ,Ω,R¬O)f̃12,i,j(Θ,Ω,R¬O) and Q\12,i,j(Θ,Ω,R¬O)f12,i,j(ai,j , ci,j , γ
row
i , γcolj )

where f12,i,j is the exact factor in the factor graph that is been approximated by f̃12,i,j . In particular, EP

refines the parameters of f̃12,i,j by minimizing

DKL(Q\12,i,jf12,i,j‖Q\12,i,j f̃12,i,j) =∑
R¬O

∫ [
Q\12,i,jf12,i,j log

Q\12,i,jfl

Q\12,i,j f̃12,i,j
+Q\12,i,j f̃12,i,j −Q\12,i,jf12,i,j

]
dΦ dΩ , (27)

where the arguments to Q\12,i,jf12,i,j and Q\12,i,j f̃12,i,j have been omitted in the right-hand side of this
equation to improve readability. The divergence above is minimized when the expectation of the sufficient
statistics of Q\12,i,j f̃12,i,j with respect to Q\12,i,j f̃12,i,j is the same as the expectation of those sufficient

statistics with respect to Q\12,i,jf12,i,j . Note also that, when we refine the approximate factor f̃12,i,j , we will

only be modifying the parameters of f̃12,i,j that have an effect on the variables connected to the corresponding
exact factor f12,i,j in the factor graph from Figure 1, that is, ai,j , ci,j , γ

row
i , and γcolj . This means that most

of the parameters of f̃12,i,j will never be modified by EP and can be ignored.
The main loop of EP iterates over all the approximate factors, refining one after the other by minimizing

the corresponding KL divergence. To simplify the exposition, we describe first how EP approximates the
factors of the complete data model (factors 1 to 13 in Figure 1) when the data is assumed to be Missing At
Random (MAR).

4.1 Approximate Inference in the complete data model with MAR data

In this section we describe the operations performed by EP to refine the approximate factors for the complete
data model, that is, the approximate factors approximating the exact factors 1 to 13 in Figure 1. We will
assume here that the data is Missing At Random (MAR). In this case the dotted line connecting the complete
data model and the missing data model in Figure 1 does not exist and we can ignore the contribution of the
missing data model. Furthermore, we can also ignore all the exact factors f11,i,j , f12,i,j and f13,i,j,k with
(i, j) /∈ O since they do not have any effect in the posterior distribution in the MAR setting.

As described in Section 4, EP works by iteratively minimizing the KL divergence (27) with respect to
each approximate factor. In the following sections we show the form of the resulting EP update operations.

4.1.1 EP updates for f̃1,k

Recall that f1,k(vVk ) = IG(vVk |a′0, b′0), where k = 1, . . . , h. In this case, f1,k has the same functional form as

the inverse-gamma factor that specifies the distribution of vVk in f̃1,k. Therefore, the EP update for f̃1,k sets
the parameters of that inverse-gamma factor to be the same as the parameters of the the inverse-gamma

8



distribution in f1,k, namely

[ãv
V,1,k
k ]new = a′0 , [b̃v

V,1,k
k ]new = b′0 , (28)

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f̃1,k has to be refined only once, during the first iteration of the main loop of EP. After refining f̃1,k,
we update Q (which is initially uniform) by setting

[av
V

k ]new = a′0 , [bv
V

k ]new = b′0 . (29)

4.1.2 EP updates for f̃2,k

Recall that f2,k(vUk ) = IG(vUk |a′0, b′0), where k = 1, . . . , h. The EP update operations for f̃2,k are in this case

the same as for the approximate factor f̃1,k, namely,

[ãv
U,2,k
k ]new = a′0 , [b̃v

U,2,k
k ]new = b′0 , (30)

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f̃2,k has to be refined only once, during the first iteration of the main loop of EP. After refining f̃2,k,
we update Q by setting

[av
U

k ]new = a′0 , [bv
U

k ]new = b′0 . (31)

4.1.3 EP updates for f̃3,k

Recall that f3,k(mV
k ) = N (mV

k |0, 1), where k = 1, . . . , h. In this case, f3,k has the same functional form as

the Gaussian factor that specifies the distribution of mV
k in f̃3. Therefore, the EP update for f̃3,k sets the

parameters of that Gaussian factor to be the same as the parameters of the the Gaussian in f3,k, namely,

[m̃mV,3,k
k ]new = 0 , [ṽm

V,3,k
k ]new = 1 , (32)

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f̃3,k has to be refined only once, during the first iteration of the main loop of EP. After refining f̃3,k,
we update Q by setting

[mmV

k ]new = 0 , [vm
V

k ]new = 1 . (33)

4.1.4 EP updates for f̃4,k

Recall that f4,k(mU
k ) = N (mU

k |0, 1), where k = 1, . . . , h. The EP update operations for f̃4,k are in this case

the same as for the approximate factor f̃3,k, namely,

[m̃mU,4,k
k ]new = 0 , [ṽm

U,4,k
k ]new = 1 , (34)

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f̃4,k has to be refined only once, during the first iteration of the main loop of EP. After refining f̃4,k,
we update Q (which is initially uniform) by setting

[mmU

k ]new = 0 , [vm
U

k ]new = 1 . (35)
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4.1.5 EP updates for f̃5,j

Recall that f5,j(γ
col
j ) = IG(γrowi |a0, b0), where j = 1, . . . , d. In this case, f5,j has the same functional form

as the inverse-gamma factor that specifies the distribution of γcolj in f̃5,j . Therefore, the EP update for f̃5,j
sets the parameters of that inverse-gamma factor to be the same as the parameters of the the inverse gamma
in p(γcol), namely

[ãγ
col,5,j
j ]new = a0 , [b̃γ

col,5,j
j ]new = b0 , (36)

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f̃5,j has to be refined only once, during the first iteration of the main loop of EP. After refining f̃5,j , we
update Q by setting

[aγ
col

j ]new = a0 , [bγ
col

j ]new = b0 . (37)

4.1.6 EP updates for f̃6,i

Recall that f6,i(γ
row
i ) = IG(γcolj |a0, b0), where i = 1, . . . , n. The EP update operation for f̃6,i are in this case

the same as for the approximate factor f̃5,j , namely,

[ãγ
row,6,i
i ]new = a0 , [b̃γ

row,6,i
i ]new = b0 , (38)

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f̃6,i has to be refined only once, during the first iteration of the main loop of EP. After refining f̃6,i, we
update Q by setting

[aγ
row

i ]new = a0 , [bγ
row

i ]new = b0 . (39)

4.1.7 EP updates for f̃7,k

Recall that f7,k(b0,k) = N (b0,k|mb0

k , v0), where k = 1, . . . , L − 1. In this case, f7,k has the same functional

form as the Gaussian factor that specifies the distribution of b0,k in f̃7,k. Therefore, the EP update for f̃7,k
sets the parameters of that Gaussian factor to be the same as the parameters of the Gaussian in f7,k, namely

[m̃b0,7,k
k ]new = mb0

k , [ṽb0,7,kk ]new = v0 , (40)

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f̃7,k has to be refined only once, during the first iteration of the main loop of EP. After refining f̃7,k,
we update Q by setting

[mb0
k ]new = mb0

k , [vb0k ]new = v0 . (41)

4.1.8 EP updates for f̃8,j,k

Recall that f8,j,k(bj,k, b0,k) = N (bj,k|b0,k, v0), where j = 1, . . . , d and k = 1, . . . , L−1. In this case, we firstly

compute the parameters of Q\8,j,k, which is defined as the normalized ratio of Q and f̃8,j,k. This leads to

v
b0,\8,j,k
k =

[
[vb0k ]−1 − [ṽb0,8,j,kk ]−1

]−1
, m

b0,\8,j,k
k = v

b0,\8,j,k
k

[
mb0
k [vb0k ]−1 − m̃b0,8,j,k

k [ṽb0,8,j,kk ]−1
]
, (42)

v
b,\8,j,k
j,k =

[
[vbj,k]−1 − [ṽb,8,jj,k ]−1

]−1
, m

b,\8,j,k
j,k = v

b,\8,j,k
j,k

[
mb
j,k[vbj,k]−1 − m̃b,8,j,k

j,k [ṽb,8,j,kj,k ]−1
]
, (43)

After that, we refine f̃8,j,k by setting

[m̃b0,8,j,k
k ]new = m

b,\8,j,k
j,k , [ṽb0,8,j,kk ]new = v

b,\8,j,k
j,k + v0 , (44)

10



[m̃b,8,j,k
k ]new = m

b0,\8,j,k
k , [ṽb,8,j,kk ]new = v

b0,\8,j,k
k + v0 , (45)

These update equations guarantee that the normalized versions of Q\8,j,k(Θ,Ω,R¬O)f̃8,j,k(Θ,Ω,R¬O) and
Q\8,j,k(Θ,Ω,R¬O)N (bj,k|b0,k, v0) have the same expectations of sufficient statistics. Finally, we recompute

Q as the normalized product of the updated f̃8,j,k and Q\8,j,k, that is,

[vb0k ]new =
[
[v
b0,\8,j,k
k ]−1 + [ṽb0,8,j,kk ]−1

]−1
, (46)

[mb0
k ]new = [vb0k ]new

[
m
b0,\8,j,k
k [v

b0,\8,j,k
k ]−1 + m̃b0,8,j,k

k [ṽb0,8,j,kk ]−1
]
, (47)

[vbj,k]new =
[
[v
b,\8,j,k
j,k ]−1 + [ṽb,8,j,kj,k ]−1

]−1
, (48)

[mb
j,k]new = [vbj,k]new

[
m
b,\8,j,k
j,k [v

b,\8,j,k
j,k ]−1 + m̃b,8,j

j,k [ṽb,8,j,kj,k ]−1
]
. (49)

4.1.9 EP updates for f̃9,j,k

Recall that f9,j,k(vj,k,m
V
k , v

V
k ) = N (vj,k|mV

k , v
V
k ), where j = 1, . . . , d and k = 1, . . . , h. We firstly compute

the parameters of Q\9,j,k which is defined as the normalized ratio of Q and f̃9,j,k. This leads to

[v
mV,\9,j,k
k ]new =

[
[vm

V

k ]−1 − [ṽm
V,9,j,k

k ]−1
]−1

, (50)

[m
mV,\9,j,k
k ]new = [v

mV,\9,j,k
k ]new

[
mmV

k [vm
V

k ]−1 − m̃mV,9,j,k
k [ṽm

V,9,j,k
k ]−1

]
, (51)

[v
v,\9,j,k
j,k ]new =

[
[vvj,k]−1 − [ṽv,9,j,kj,k ]−1

]−1
, (52)

[m
v,\9,j,k
j,k ]new = [v

v,\9,j,k
j,k ]new

[
mv
j,k[vvj,k]−1 − m̃v,9,j,k

j,k [ṽv,9,j,kj,k ]−1
]
, (53)

[a
vV,\9,j,k
k ]new = av

V

k − ã
vV,9,j,k
k + 1 , (54)

[b
vV,\9,j,k
k ]new = bv

V

k − b̃
vV,9,j,k
k . (55)

After this, we refine the approximate factor f̃9,j,k. For this, we have to find the expectation of sufficient
statistics with respect to h(Θ,Ω,R¬O) = Q\9,j,k(Θ,Ω,R¬O)N (vj,k|mV

k , v
V
k ). After summing out R¬O and

integrating out Ω and Θ \ {vj,k,mV
k , v

V
k } in h, we obtain

h(vj,k,m
V
k , v

V
k ) = N (vj,k|mV

k , v
V
k )N (mV

k |m
mV,\9,j,k
k , v

mV,\9,j,k
k )

N (vj,k|mv,\9,j,k
j,k , v

v,\9,j,k
j,k )IG(vVk |a

vV,\9,j,k
k , b

vV,\9,j,k
k ) . (56)

The normalization constant of h(vj,k,m
V
k , v

V
k ) is then

Z =

∫
h(vj,k,m

V
k , v

V
k ) dvj,k dm

V
k dv

V
k (57)

=

∫
T (vj,k|mV

k ,
b
vV,\9,j,k
k

a
vV,\9,j,k
k

, 2a
vV,\9,j,k
k )

N (mV
k |m

mV,\9,j,k
k , v

mV,\9,j,k
k )N (vj,k|mv,\9,j,k

j,k , v
v,\9,j,k
j,k ) dvj,k dm

V
k (58)

≈
∫
N (vj,k|mV

k ,
2b
vV,\9,j,k
k

2a
vV,\9,j,k
k − 2

)

N (mV
k |m

mV,\9,j,k
k , v

mV,\9,j,k
k )N (vj,k|mv,\9,j,k

j,k , v
v,\9,j,k
j,k ) dvj,k dm

V
k (59)
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≈ N (m
mV,\9,j,k
k |mv,\9,j,k

j,k , v
v,\9,j,k
j,k + v

mV,\9,j,k
k +

2b
vV,\9,j,k
k

2a
vV,\9,j,k
k − 2

) , (60)

where

T (x|µ, λ, ν) =
Γ((ν + 1)/2)√
πνλΓ(ν/2)

[
1 +

(x− µ)2

λν

]−(ν+1)/2

(61)

denotes a Student’s t distribution with mean µ, variance parameter λ and degrees of freedom ν and in
equation (59) we have approximated a Student’s t distribution with a Gaussian distribution that has the
same mean and variance as the original Student’s t distribution. The expectation of the sufficient statistics
vj,k, [vj,k]2, mV

k , [mV
k ]2, vVk and [vVk ]2 with respect to h(vj,k,m

V
k , v

V
k ) can be approximated in a similar way

as the previous normalization constant. We describe below how to do this. For the random variable vVk , the
KL-divergence is actually minimized by matching the first moment and the expectation of log vVk . However,
matching the expectation of log vVk would require computing the inverse of the Digamma function, which
has no analytical solution. To avoid this, we match the first and second moments of vVk which is expected
to produce reasonably good results.

We approximate the moments of vVk using the following property of inverse gammas, see (2). Let H(a, b)
be the normalization constant of f(x)IG(x|a, b) for a particular f , that is, H(a, b) =

∫
f(x)IG(x|a, b) dx.

Then we have that
∫
xf(x)IG(x|a, b) dx = H(a + 1, b)a/b and

∫
x2IG(x|a, b) dx = H(a + 2, b)a(a + 1)/b2.

Thus, each moment can be easily approximated given a procedure to approximate the normalization constant
H(a, b). For this, we only have to replace H(a + 1, b) and H(a + 2, b) in the previous equations with their
corresponding approximations. In a similar way, we can compute approximations for the moments of vj,k
and mV

k . In particular, we use the following property of the Gaussian distribution. Let H(m, v) be the
normalization constant of f(x)N (x|m, v) for a particular function f , that is, H(m, v) =

∫
f(x)N (x|m, v) dx.

Then we have that [H(m, v)]−1
∫
xf(x)N (x|m, v) dx = m+v d logH(m,v)

dm and [H(m, v)]−1
∫
x2N (x|m, v) dx−

[[H(m, v)]−1
∫
xN (x|m, v) dx]2 = v − v2([d logH(m,v)

dm ]2 − 2d logH(m,v)
dv ).

The resulting updates for f̃9,j,k are

[ṽm
V,9,j,k

k ]new = 2b
vV,\9,j,k
k /(2a

vV,\9,j,k
k − 2) + v

v,\9,j,k
j,k , (62)

[m̃mV,9,j,k
k ]new = m

v,\9,j,k
j,k , (63)

[ṽv,9,j,kj,k ]new = 2b
vV,\9,j,k
k /(2a

vV,\9,j,k
k − 2) + v

mV,\9,j,k
k , (64)

[m̃v,9,j,k
j,k ]new = m

mV,\9,j,k
k , (65)

[ãv
V,9,j,k
k ]new = a′ − av

V,\9,j,k
k + 1 , (66)

[b̃v
V,9,j,k
k ]new = b′ − bv

V,\9,j,k
k , (67)

and we define a′ and b′ as

a′ =
a
vV,\9,j,k
k Z2

1

(a
vV,\9,j,k
k + 1)ZZ2 − av

V,\9,j,k
k Z2

1

, b′ =
b
vV,\9,j,k
k ZZ1

(a
vV,\9,j,k
k + 1)ZZ2 − av

V,\9,j,k
k Z2

1

, (68)

where Z1 and Z2 are obtained in the same way as Z, but increasing a
vV,\9,j,k
k in one and two units during

the computations, respectively. Once we have updated f̃9,j,k, we recompute Q using

[vm
V

k ]new =
[
[v
mV,\9,j,k
k ]−1 + [ṽm

V,9,j,k
k ]−1

]−1
, (69)

[mmV

k ]new = [vm
V

k ]new
[
m
mV,\9,j,k
k [v

mV,\9,j,k
k ]−1 + m̃mV,9,j,k

k [ṽm
V,9,j,k

k ]−1
]
, (70)
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[vvj,k]new =
[
[v
v,\9,j,k
j,k ]−1 + [ṽv,9,j,kj,k ]−1

]−1
, (71)

[mv
j,k]new = [vvj,k]new

[
m
v,\9,j,k
j,k [v

v,\9,j,k
j,k ]−1 + m̃v,9,j,k

j,k [ṽv,9,j,kj,k ]−1
]
, (72)

[av
V

k ]new = a
vV,\9,j,k
k + ãv

V,9,j,k
k − 1 , (73)

[bv
V

k ]new = b
vV,\9,j,k
k + b̃v

V,9,j,k
k , (74)

Finally, note that we only update f̃9,j,k when b
vV,\9,j,k
k > 0, 2a

vV,\9,j,k
k −2 > 0, v

V,\9,j,k
k > 0 and v

v,\9,j,k
j,k > 0.

4.1.10 EP updates for f̃10,i,k

Recall that f10,i,k(ui,k,m
U
k , v

U
k ) = N (ui,k|mU

k , v
U
k ), where i = 1, . . . , n, and k = 1, . . . , h. The EP update

equations for each f̃10,i,k are similar to those for each f̃9,j,k and therefore we do not include them here.

4.1.11 EP updates for f̃11,i,j

Recall that f11,i,j(ci,j ,ui,vj) = δ(ci,j − uiv
T
j ). Since we are assuming MAR data, we only have to consider

the factors f11,i,j corresponding to those entries of the rating matrix R that are actually observed, that is, the
factors f11,i,j such that (i, j) ∈ O. We approximate all these exact factors in a single step. For this, we work
with the extended exact factor f11(CO,U,V) =

∏
(i,j)∈O δ(ci,j−uiv

T
j ), where CO is the set of variables ci,j

such that (i, j) ∈ O. We approximate this exact factor with an approximate factor f̃11(Θ,Ω,R¬O) that has
the same functional form as the posterior approximation Q. We now show how to refine the parameters of
f̃11 so that it is as similar as possible to f11.

To refine f̃11 we do not follow the standard EP algorithm. The reason for this is that the extended exact
factor f11 is invariant to rotations or changes of sign in the matrices U and V. This creates multiple modes
in the posterior distribution and the KL divergence minimized by EP will attempt to cover the support of
those modes. Covering all the modes is undesirable. Ideally, we would like to focus on a single mode locally
to break the symmetry. To achieve this, we follow the approach used by Stern et al. (2009) and minimize the
KL divergence with the arguments swapped. For this, we first marginalize f11(CO,U,V)Q\11(Θ,Ω,R¬O)
with respect to Ω, R¬O and Θ \ {U,V}, where Q\11 is given by the ratio of Q and f̃11. The parameters of
Q\11 are obtained using

[v
v,\11
j,k ]new =

[
[vvj,k]−1 − [ṽv,11j,k ]−1

]−1
, (75)

[m
v,\11
j,k ]new = [v

v,\11
j,k ]new

[
mv
j,k[vvj,k]−1 − m̃v,11

j,k [ṽv,11j,k ]−1
]
, (76)

[v
u,\11
i,k ]new =

[
[vui,k]−1 − [ṽu,11i,k ]−1

]−1
, (77)

[m
u,\11
i,k ]new = [v

u,\11
i,k ]new

[
mu
i,k[vui,k]−1 − m̃u,11

i,k [ṽu,11i,k ]−1
]
, (78)

for i = 1, . . . , n, j = 1, . . . , d and k = 1, . . . , k and

[v
c,\11
i,j ]new =

[
[vci,j ]

−1 − [ṽc,11i,j ]−1
]−1

, (79)

[m
c,\11
i,j ]new = [v

c,\11
i,j ]new

[
mc
i,j [v

c
i,j ]
−1 − m̃c,11

i,j [ṽc,11i,j ]−1
]
, (80)

for (i, j) ∈ O. Let S(U,V) be the result of summing out R¬O and integrating out Ω and Θ \ {U,V} in
f11(CO,U,V)Q\11(Θ,Ω,R¬O). Then

S(U,V) =

∫ ∏
(i,j)∈O

δ(ci,j − uT
i vj)

 ∏
(i,j)∈O

N (ci,j |mc,\11
i,j , v

c,\11
i,j )


13



[
n∏
i=1

h∏
k=1

N (ui,k|mu,\11
i,k , v

u,\11
i,k )

] d∏
j=1

h∏
k=1

N (vj,k|mv,\11
j,k , v

v,\11
j,k )

 dCO (81)

=

 ∏
(i,j)∈O

N (uT
i vj |mc,\11

i,j , v
c,\11
i,j )

[ n∏
i=1

h∏
k=1

N (ui,k|mu,\11
i,k , v

u,\11
i,k )

]
 d∏
j=1

h∏
k=1

N (vj,k|mv,\11
j,k , v

v,\11
j,k )

 . (82)

Let QU,V be the posterior approximation Q after summing out R¬O and integrating out Ω and Θ\{U,V},
that is,

QU,V =

[
n∏
i=1

h∏
k=1

N (ui,k|mu
i,k, v

u
i,k)

] d∏
j=1

h∏
k=1

N (vj,k|mv
j,k, v

v
j,k)

 . (83)

The parameters of QU,V, that is, mu
i,k, vui,k, mv

j,k and vvj,k, for i = 1, . . . , n, j = 1, . . . , d and k = 1, . . . , h,
are then optimized to minimize KL(QU,V‖S). We describe how to do this in Section 4.1.14. Once QU,V

has been updated, we update the parameters of Q for U and V to be the same as those of QU,V. We also
update the parameters of Q for CO. To do this, we note that in the exact posterior ci,j is always equal to
uT
i vj because of the delta function δ(ci,j − uT

i vj). Therefore, we set the mean and variance of each ci,j
in Q with (i, j) ∈ O to be the same as the mean and variance of the corresponding uT

i vj according to the
newly updated Q. This leads to the update

[mc
i,j ]

new =

h∑
k=1

mu
i,km

v
j,k , [vci,j ]

new =

h∑
k=1

[mu
i,k]2vvj,k + vui,k[mv

j,k]2 + vui,kv
v
j,k . (84)

for (i, j) ∈ O. After updating Q, we refine f̃11 so that it is the ratio of Q and Q\11, that is,

[ṽv,11j,k ]new =
[
[vvj,k]−1 − [v

v,\11
j,k ]−1

]−1
, (85)

[m̃v,11
j,k ]new = [ṽv,11j,k ]new

[
mv
j,k[vvj,k]−1 −mv,\11

j,k [v
v,\11
j,k ]−1

]
, (86)

[ṽu,11i,k ]new =
[
[vui,k]−1 − [v

u,\11
i,k ]−1

]−1
, (87)

[m̃u,11
i,k ]new = [ṽu,11i,k ]new

[
mu
i,k[vui,k]−1 −mu,\11

i,k [v
u,\11
i,k ]−1

]
, (88)

for i = 1, . . . , n, j = 1, . . . , d and k = 1, . . . , k and

[ṽc,11i,j ]new =
[
[vci,j ]

−1 − [v
c,\11
i,j ]−1

]−1
, (89)

[m̃c,11
i,j ]new = [ṽc,11i,j ]new

[
mc
i,j [v

c
i,j ]
−1 −mc,\11

i,j [v
c,\11
i,j ]−1

]
, (90)

for (i, j) ∈ O. Note that, when performing these EP updates, some of the variances ṽv,11j,k , ṽu,11i,k and ṽc,11i,j

in f̃11 can become negative. In our experiments, this sometimes created problems when updating other
approximate factors. To avoid this, whenever one of the variances of a Gaussian factor in f̃11 is going to
become negative, we do not perform the EP update of that Gaussian factor. When this happens, we have
to eliminate the EP update in the corresponding factor of Q since we are first updating Q and then f̃11 as
a function of Q.
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4.1.12 EP updates for f̃12,i,j

Recall that f12,i,j(ai,j , ci,j , γ
row
i , γcolj ) = N (ai,j |ci,j , γrowi γcolj ). Since we are assuming MAR data, we only

have to consider the factors f12,i,j corresponding to those entries of the rating matrix R that are actually

observed, that is, the factors f12,i,j such that (i, j) ∈ O. To refine each f̃12,i,j such that (i, j) ∈ O we firstly

compute the parameters of Q\12,i,j . This distribution is defined as the normalized ratio of Q and f̃12,i,j .
This leads to

[v
a,\12,i,j
i,j ]new =

[
[vai,j ]

−1 − [ṽa,12,i,ji,j ]−1
]−1

, (91)

[m
a,\12,i,j
i,j ]new = [v

a,\12,i,j
i,j ]new

[
ma
i,j [v

a
i,j ]
−1 − m̃a,12,i,j

i,j [ṽa,12,i,ji,j ]−1
]
, (92)

[v
c,\12,i,j
i,j ]new =

[
[vci,j ]

−1 − [ṽc,12,i,ji,j ]−1
]−1

, (93)

[m
c,\12,i,j
i,j ]new = [v

c,\12,i,j
i,j ]new

[
mc
i,j [v

c
i,j ]
−1 − m̃c,12,i,j

i,j [ṽc,12,i,ji,j ]−1
]
, (94)

[a
γrow,\12,i,j
i ]new = aγ

row

i − ãγ
row,12,i,j
i + 1 , (95)

[b
γrow,\12,i,j
i ]new = bγ

row

i − b̃γ
row,12,i,j
i , (96)

[a
γcol,\12,i,j
j ]new = aγ

col

j − ãγ
col,12,i,j
j + 1 , (97)

[b
γcol,\12,i,j
j ]new = bγ

col

j − b̃γ
col,12,i,j
j . (98)

After this, to refine the approximate factor f̃12,i,j , we have to find the expectation of the sufficient statistics
with respect to h(Θ,Ω,R¬O) = Q\12,j,k(Θ,Ω,R¬O)N (ai,j |ci,j , γrowi γcolj ). After summing out R¬O and

integrating out Ω and Θ \ {ai,j , ci,j , γrowi , γcolj } in h, we obtain

h(ai,j , ci,j , γ
row
i , γcolj ) = N (ai,j |ci,j , γrowi γcolj )N (ai,j |ma,\12,i,j

i,j , v
a,\12,i,j
i,j )N (ci,j |mc,\12,i,j

i,j , v
c,\12,i,j
i,j )

IG(γrowi |a
γrow,\12,i,j
i , b

γrow,\12,i,j
i )IG(γcolj |a

γcol,\12,i,j
j , b

γcol,\12,i,j
j ) . (99)

The normalization constant of h(ai,j , ci,j , γ
row
i , γcolj ) is then

Z =

∫
h(ai,j , ci,j , γ

row
i , γcolj ) dai,j dci,j dγ

row
i dγcolj (100)

=

∫
N (m

a,\12,i,j
i,j |mc,\12,i,j

i,j , v
a,\12,i,j
i,j + v

c,\12,i,j
i,j + γrowi γcolj ) (101)

IG(γrowi |a
γrow,\12,i,j
i , b

γrow,\12,i,j
i )IG(γcolj |a

γcol,\12,i,j
j , b

γcol,\12,i,j
j )dγrowi dγcolj (102)

≈ N (m
a,\12,i,j
i,j |mc,\12,i,j

i,j , v
a,\12,i,j
i,j + v

c,\12,i,j
i,j +

b
γrow,\12,i,j
i b

γcol,\12,i,j
j /[(a

γrow,\12,i,j
i + 1)(a

γcol,\12,i,j
j + 1)]) , (103)

where in (103) we have approximated IG(γrowi |a
γrow,\12,i,j
i , b

γrow,\12,i,j
i ) and IG(γcolj |a

γcol,\12,i,j
j , b

γcol,\12,i,j
j )

with point probability masses located at the modes of these factors. The expectation of the sufficient
statistics ai,j , [ai,j ]

2, ci,j , [ci,j ]
2, γrowi , [γrowi ]2, γcolj and [γcolj ]2 with respect to h(ai,j , ci,j , γ

row
i , γcolj ) can

be approximated in a similar way as the previous normalization constant, as we describe below. For the
random variables γrowi and γcolj , the KL-divergence is actually minimized by matching the first moments and

the expectations of log γrowi and log γcolj . However, matching the expectation of log γrowi and log γcolj would
require computing the inverse of the Digamma function, which has no analytical solution. To avoid this, we
match the first and second moments of γrowi and γcolj , which is expected to produce reasonably good results.

We approximate the moments of the random variables γrowi and γcolj , using the following property of
inverse gammas, see (2). Let H(a, b) be the normalization constant of f(x)IG(x|a, b) for a function f , that is,
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H(a, b) =
∫
f(x)IG(x|a, b) dx. Then we have

∫
xf(x)IG(x|a, b) dx = H(a+ 1, b)a/b and

∫
x2IG(x|a, b) dx =

H(a+2, b)a(a+1)/b2. Therefore, each moment can be easily approximated given a procedure to approximate
the normalization constant H(a, b). For this, we only have to replace H(a + 1, b) and H(a + 2, b) in the
previous equations with their corresponding approximations. Following a similar approach, we can compute
approximations for the moments of ai,j and ci,j . In particular, we use the following property of the Gaussian
distribution. Let H(m, v) be the normalization constant of f(x)N (x|m, v) for a particular function f ,

that is, H(m, v) =
∫
f(x)N (x|m, v) dx. Then [H(m, v)]−1

∫
xf(x)N (x|m, v) dx = m + v d logH(m,v)

dm and

[H(m, v)]−1
∫
x2N (x|m, v) dx− [[H(m, v)]−1

∫
xN (x|m, v) dx]2 = v − v2([d logH(m,v)

dm ]2 − 2d logH(m,v)
dv ).

The updates for f̃12,i,j are then

[m̃a,12,i,j
i,j ]new = m

c,\12,i,j
i,j , (104)

[ṽa,12,i,ji,j ]new = v
c,\12,i,j
i,j + b

γrow,\12,i,j
i b

γcol,\12,i,j
j /[(a

γrow,\12,i,j
i + 1)(a

γcol,\12,i,j
j + 1)] , (105)

[m̃c,12,i,j
i,j ]new = m

a,\12,i,j
i,j , (106)

[ṽc,12,i,ji,j ]new = v
a,\12,i,j
i,j + b

γrow,\12,i,j
i b

γcol,\12,i,j
j /[(a

γrow,\12,i,j
i + 1)(a

γcol,\12,i,j
j + 1)] , (107)

[ãγ
row,12,i,j
i ]new = a′row − a

γrow,\12,i,j
i + 1 , (108)

[b̃γ
row,12,i,j
i ]new = b′row − b

γrow,\12,i,j
i , (109)

[ãγ
col,12,i,j
j ]new = a′col − a

γcol,\12,i,j
j + 1 , (110)

[b̃γ
col,12,i,j
j ]new = b′col − b

γcol,\12,i,j
j , (111)

where we define a′row, b′row, a′col, b
′
col as

a′row =
a
γrow,\12,i,j
i [Zrow

1 ]2

(a
γrow,\12,i,j
i + 1)ZZrow

2 − aγ
row,\12,i,j
i [Zrow

1 ]2
, (112)

b′row =
b
γrow,\12,i,j
i ZZrow

1

(a
γrow,\12,i,j
i + 1)ZZrow

2 − aγ
row,\12,i,j
i [Zrow

1 ]2
, (113)

a′col =
a
γcol,\12,i,j
j [Zcol

1 ]2

(a
γcol,\12,i,j
j + 1)ZZcol

2 − a
γcol,\12,i,j
j [Zcol

1 ]2
, (114)

b′col =
b
γcol,\12,i,j
j ZZcol

1

(a
γcol,\12,i,j
j + 1)ZZcol

2 − a
γcol,\12,i,j
j [Zcol

1 ]2
, (115)

Zrow
1 and Zrow

2 are obtained in the same way as the normalization constant Z, but increasing a
γrow,\12,i,j
i in

one and two units, respectively, and similarly, Zcol
1 and Zcol

2 are obtained by increasing a
γcol,\12,i,j
j in one

and two units, respectively.
Note that, in these EP update equations, some of the variances ṽa,12,i,ji,j and, ṽc,12,i,ji,j and can become

negative. To avoid this, whenever one of the variances of a Gaussian factor in f̃12,i,j is going to become
negative, we do not perform the EP update of that Gaussian factor. Furthermore, we only refine the

approximate factor f̃12,i,j if all the conditions a
γcol,\12,i,j
j > 2, b

γcol,\12,i,j
j > 0, a

γrow,\12,i,j
i > 2, b

γro,\12,i,j
i > 0,

v
a,\12,i,j
i,j > 0 and v

c,\12,i,j
i,j > 0 are satisfied.

Once we have updated f̃12,i,j , we recompute Q using

[vai,j ]
new =

[
[v
a,\12,i,j
i,j ]−1 + [ṽa,12,i,ji,j ]−1

]−1
, (116)

[ma
i,j ]

new = [vai,j ]
new

[
m
a,\12,i,j
i,j [v

a,\12,i,j
i,j ]−1 + m̃a,12,i,j

i,j [ṽa,12,i,ji,j ]−1
]
, (117)
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[vci,j ]
new =

[
[v
c,\12,i,j
i,j ]−1 + [ṽc,12,i,ji,j ]−1

]−1
, (118)

[mc
i,j ]

new = [vci,j ]
new

[
m
c,\12,i,j
i,j [v

c,\12,i,j
i,j ]−1 + m̃c,12,i,j

i,j [ṽc,12,i,ji,j ]−1
]
, (119)

[aγ
row

i ]new = a
γrow,\12,i,j
i + ãγ

row,12,i,j
i − 1 , (120)

[bγ
row

i ]new = b
γrow,\12,i,j
i + b̃γ

row,12,i,j
i , (121)

[aγ
col

j ]new = a
γcol,\12,i,j
j + ãγ

col,12,i,j
j − 1 , (122)

[bγ
col

j ]new = b
γcol,\12,i,j
j + b̃γ

col,12,i,j
j . (123)

In our experiments we observed that, if we refine the approximate factors f̃12,i,j during the first iterations
of EP, the proposed model gets stuck in solutions in which the the components of the noise variables γrow

and γcol take very large values. The reason for this is that during the first iterations of EP, the posterior
approximation for the latent variables U and V is not yet very good and consequently the EP update
equations explain this by assuming that there is large additive noise. The result is that the EP approximation
Q gets stuck in solutions in which the components of γrow and γcol are too large. To avoid this, we do not
refine the approximate factors f̃12,i,j during the second iteration of EP. Note that in the first iteration, when

we refine the approximate factors f̃12,i,j , we do not modify the factors of Q for γrow and γcol. This means

that we can always safely refine the approximate factors f̃12,i,j during the first EP iteration, even though
the current posterior approximation for U and V is not yet good.

4.1.13 EP updates for f̃13,i,j,k

Recall that f13,i,j,k(ri,j , ai,j , bj,k) = Θ [sign[ri,j − k − 0.5](ai,j − bj,k)]. Since we are assuming MAR data,
we only have to consider the factors f12,i,j corresponding to those entries of the rating matrix R that are

actually observed, that is, the factors f13,i,j,k such that (i, j) ∈ O. To refine each f̃13,i,j,k such that (i, j) ∈ O,
we firstly compute the parameters of Q\13,i,j,k. This distribution is defined as the normalized ratio of Q and
f̃13,i,j,k. This leads to

[v
b,\13,i,j,k
j,k ]new =

[
[vbj,k]−1 − [ṽb,13,i,j,kj,k ]−1

]−1
, (124)

[m
b,\13,i,j,k
j,k ]new = [v

b,\13,i,j,k
j,k ]new

[
mb
j,k[vbj,k]−1 − m̃b,13,i,j,k

j,k [ṽb,13,i,j,kj,k ]−1
]
, (125)

[v
a,\13,i,j,k
i,j ]new =

[
[vai,j ]

−1 − [ṽa,13,i,j,ki,j ]−1
]−1

, (126)

[m
a,\13,i,j,k
i,j ]new = [v

a,\13,i,j,k
i,j ]new

[
ma
i,j [v

a
i,j ]
−1 − m̃a,13,i,j,k

i,j [ṽa,13,i,j,ki,j ]−1
]
. (127)

After this, we update the approximate factor f̃13,i,j,k by matching expected sufficient statistics between

Q\13,i,j,k(Θ,Ω,R¬O)Θ [sign[ri,j − k − 0.5](ai,j − bj,k)] and Q\13,i,j,k(Θ,Ω,R¬O)f̃13,i,j,k(Θ,Ω,R¬O). This
leads to the updates

m̃b,13,i,j,k
j,k = m

b,\13,i,j,k
j,k + κ ṽb,13,i,j,kj,k = −vb,\13,i,j,kj,k − 1/β (128)

m̃a,13,i,j,k
i,j = m

a,\13,i,j,k
i,j − κ ṽa,13,i,j,ki,j = −va,\13,i,j,ki,j − 1/β (129)

where β and κ are given by

β = − φ(α)

Φ(α)

(
α+

φ(α)

Φ(α)

)[
v
a,\13,i,j,k
j,k + v

b,\13,i,j,k
j,k

]−1
, (130)

κ = − sign[ri,j − k − 0.5]√
v
a,\13,i,j,k
j,k + v

b,\13,i,j,k
j,k

[
α+

φ(α)

Φ(α)

]−1
, (131)
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with

α = sign[ri,j − k − 0.5]
m
a,\13,i,j,k
j,k −mb,\13,i,j,k

j,k√
v
a,\13,i,j,k
j,k + v

b,\13,i,j,k
j,k

(132)

and φ and Φ denote the standard Gaussian density and cdf functions, respectively.
Note that, when performing these EP updates, the variances ṽa,13,i,j,ki,j or ṽb,13,i,j,kj,k can become negative.

In our experiments, this sometimes created problems when updating other approximate factors. To avoid
this, whenever one of the variances of a Gaussian factor in f̃13,i,j,k is going to become negative, we do not

perform the EP update of that Gaussian factor. Similarly, we do not update f̃13,i,j,k when v
a,\13,i,j,k
i,j or

v
b,\13,i,j,k
j,k are negative.

Finally, once we have updated f̃13,i,j,k, we recompute Q by setting

[vbj,k]new =
[
[v
b,\13,i,j,k
j,k ]−1 + [ṽb,13,i,j,kj,k ]−1

]−1
, (133)

[mb
j,k]new = [vbj,k]new

[
m
b,\13,i,j,k
j,k [v

b,\13,i,j,k
j,k ]−1 + m̃b,13,i,j,k

j,k [ṽb,13,i,j,kj,k ]−1
]
, (134)

[vai,j ]
new =

[
[v
a,\13,i,j,k
i,j ]−1 + [ṽa,13,i,j,ki,j ]−1

]−1
, (135)

[ma
i,j ]

new = [vai,j ]
new

[
m
a,\13,i,j,k
i,j [v

a,\13,i,j,k
i,j ]−1 + m̃a,13,i,j,k

i,j [ṽa,13,i,j,ki,j ]−1
]
. (136)

4.1.14 Minimizing the reversed KL divergence when refining f̃11

In Section 4.1.11 we had to minimize KL(QU,V‖S), where

S(U,V) =

 ∏
(i,j)∈O

N (uT
i vj |mc,\11

i,j , v
c,\11
i,j )

[ n∏
i=1

h∏
k=1

N (ui,k|mu,\11
i,k , v

u,\11
i,k )

]
 d∏
j=1

h∏
k=1

N (vj,k|mv,\11
j,k , v

v,\11
j,k )

 . (137)

and

QU,V =

[
n∏
i=1

h∏
k=1

N (ui,k|mu
i,k, v

u
i,k)

] d∏
j=1

h∏
k=1

N (vj,k|mv
j,k, v

v
j,k)

 , (138)

with respect to the parameters of QU,V, that is, mu
i,k, vui,k, mv

j,k and vvj,k, for i = 1, . . . , n, j = 1, . . . , d
and k = 1, . . . , h, For this, we follow Paquet and Koenigstein (2013) and make use of the intermediate
approximation Q̂U,V that does not factorize across columns, where

Q̂U,V =

[
n∏
i=1

N (ui|m̂u
i , V̂

u
i )

] d∏
j=1

N (vj |m̂v
j , V̂

v
j )

 (139)

and m̂u
i and m̂v

j are the mean vectors for the i-th row of U and the j-th row of V, respectively, and Vu
i and

Vv
j are the corresponding covariance matrices. To update the variational parameters in QU,V for the i-th

row of U we first equate the gradient of KL(Q̂U,V‖S) with respect to the parameters m̂u
i and V̂u

i of the full

(not factorized) Gaussian approximation Q̂U,V to zero. Then we adjust QU,V so that KL(QU,V‖Q̂U,V) is
minimized with respect to the parameters mu

i,k and vui,k of QU,V, for k = 1, . . . , h. This is achieved when,
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for the i-th row of U, the means of QU,V match the means of Q̂U,V and the precisions of QU,V match the

diagonal precisions of Q̂U,V. Following Lim and Teh (2007), we update Q̂U,V with respect to m̂u
i and V̂u

i

by setting

[V̂u
i ]−1 = diag(v

u,\11
i,1 , . . . , v

u,\11
i,h )−1 +

∑
j:(i,j)∈O

EQU,V
[vT
j vj ]

v
c,\11
i,j

, (140)

m̂u
i [V̂u

i ]−1 = (m
u,\11
i,1 , . . . ,m

u,\11
i,h )diag(v

u,\11
i,1 , . . . , v

u,\11
i,h )−1 +

∑
j:(i,j)∈O

m
c,\11
i,j EQU,V

[vT
j ]

v
c,\11
i,j

. (141)

After this, we update QU,V by setting

mu
i,k = [m̂u

i ]k , vui,k = 1/{[V̂u
i ]−1}k,k , (142)

for k = 1, . . . , h. The corresponding parameters for the j-th row of V, that is, mv
j,k and vvj,k, where

k = 1, . . . , h, are updated in a similar way. In practice, we first iterate over i = 1, . . . , n, updating the mv
i,k

and vvj,k in QU,V for the i-th row of U, and then we iterate over j = 1, . . . , d, updating the mv
i,k and vvj,k

in QU,V for the j-th column of V. We repeat this process a total of 3 times each time we want to refine

the approximate factor f̃11. Furthermore, we use as initial solution for QU,V the value obtained during the
previous iteration of EP. On the first EP iteration, we initialize QU,V by randomly sampling all the mean
parameters mu

i,k and mv
j,k from a standard Gaussian distribution and then setting all the variance parameters

vui,k and vvj,k to one.

4.1.15 The predictive distribution of the complete data model

Once the parameters of Q have been fixed by running the EP method, we can use Q to estimate the posterior
probability that the entry in the i-th row and j-th column of the rating matrix R may have taken value r?i,j .
Here, we assume that the entry in the i-th row and j-th column of R is not contained in the set of observed
ratings RO. When the data is Missing At Random (MAR), the exact posterior distribution for r?i,j given

RO is then

p(r?i,j |RO) =

∫
p(r?i,,j |a?i,j ,bj)p(a?i,j |c?i,j , γrowi , γcolj )p(c?i,j |ui,vj)p(Θ|RO) dΘ da?i,j dc

?
i,j , (143)

with p(r?i,,j |a?i,j ,bj) =
∏L−1
k=1 Θ

[
sign[r?i,j − k − 0.5](a?i,j − bj,k)

]
, p(a?i,j |c?i,j , γrowi , γcolj ) = N (a?i,j |c?i,j , γrowi γcolj ),

p(c?i,j |ui,vj) = δ(c?i,j − uT
i vj) and p(Θ|RO) is the posterior distribution for Θ given RO in the complete

data model under the MAR assumption, that is,

p(Θ|RO) = p(RO|AO,B)p(AO|CO,γrow,γcol)p(CO|U,V)

p(U|mU,vU)p(V|mV,vV)p(B|b0)p(b0)

p(γrow)p(γcol)p(mU)p(mV)p(vU)p(vV)/p(RO) . (144)

where p(RO) is a normalization constant and

p(RO|AO,B) =
∏

(i,j)∈O

L−1∏
k=1

Θ [sign[ri,j − k − 0.5](ai,j − bj,k)] , (145)

p(AO|CO,γrow,γcol) =
∏

(i,j)∈O

N (ai,j |ci,j , γrowi γcolj ) , (146)

p(CO|U,V) =
∏

(i,j)∈O

δ(ci,j − uT
i vj) . (147)
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To obtain an approximation to (143) we first replace the exact posterior p(Θ|RO) in (143) with the EP
approximation Q. However, even after doing this approximation, the resulting integral is not analytical.
We therefore, perform an additional approximation. We replace

∫
δ(c?i,j − uT

i vj)Q(Θ) dΘ with a Gaussian

with mean mc,?
i,j =

∑h
k=1m

u
i,km

v
j,k and variance vc,?i,j =

∑h
k=1[mu

i,k]2vvj,k + vui,k[mv
j,k]2 + vui,kv

v
j,k. Note that

uT
i vj is a a random variable with mean mc,?

i,j and variance vc,?i,j under Q. Again, we still need to perform an

additional approximation. We replace
∫
N (a?i,j |c?i,j , γrowi γcolj )N (c?i,j |m

c,?
i,j , v

c,?
i,j )Q(Θ)dΘ with an additional

Gaussian with mean mc,?
i,j and variance vc,?i,j + vγi,j where vγi,j = [bγ

row

bγ
col

][(aγ
row

+ 1)(aγ
col

+ 1)]−1. In this

case, we are approximating the inverse-gamma factors for γrowi and γcolj in Q with point masses located at
the modes of those factors. The posterior distribution for r?i,j given by the complete data model (CDM)

once we have observed RO is then approximated by

p̃CDM (r?i,j |RO) =

∫ L−1∏
k=1

Θ
[
sign[r?i,j − k − 0.5](a?i,j − bj,k)

]
N (a?i,j |m

c,?
i,j , v

c,?
i,j + vγi,j)Q(Θ) dΘ da?i,j

= Φ
{
ζ(r?i,j)

}
− Φ

{
ζ(r?i,j − 1)

}
, (148)

where ζ(r?i,j) = (mb
i,r?i,j

−mc,?
i,j )(vc,?i,j + vbj,r?i,j + vγi,j)

−0.5 and Φ(·) is the standard Gaussian cdf.

4.2 Approximate Inference in the missing data model

In this section we describe the operations performed to approximate the exact factors for the missing data
model, that is, the exact factors 14 to 19 in Figure 1. We approximate all these factors in a single step. For
this, we define the extended factor for the missing data model (MDM) as

fMDM (Ω,R¬O) =

[
n∏
i=1

h∏
k=1

f14,i,k(ei,k)

] d∏
j=1

h∏
k=1

f15,j,k(fj,k)

[ n∏
i=1

L∏
k=1

f16,i,l(λ
row
i,l )

]
 d∏
j=1

L∏
k=1

f17,j,l(ψ
col
j,l )

 f18(z)

 n∏
i=1

d∏
j=1

f19,i,j(ri,j , xi,j , ei, fj , z,λ
row
i ,ψcol

j )

 , (149)

where Ω is the set of variables Ω = {E,F, z,Λrow,Ψcol} and R¬O denotes the set with the entries of the
raining matrix R that are not observed. We approximate the above extended factor with an approximate
factor f̃MDM (Θ,Ω,R¬O) that has the same functional form as the posterior approximation Q. We now
show how to refine the parameters of f̃MDM so that it is as similar as possible to fMDM . The first step is to
compute Q\MDM as the ratio between Q and f̃MDM . Note that the exact factor fMDM does not depend on
Θ. This means that we can ignore in Q\MDM any factor for any variable in Θ. Furthermore, the factors in
the complete data model, that is, factors 1 to 13 in Figure 1, do not depend on Ω. This means that Q\MDM

is uniform and non-informative on Ω and consequently we can ignore in Q\MDM any factor for any variable
in Ω. Therefore, we are only interested in knowing the parameters of the factors in Q\MDM for R¬O. In
particular, we have that the parameters of Q\MDM are

p
\MDM
i,j,l = p̃CDM (r?i,j = l|RO) , (150)

for (i, j) /∈ O and l = 1, . . . , L, where p̃CDM (r?i,j = l|RO) is given by (148), that is, the prediction of the
complete data model for the probability that the entry in the i-th row and j-th column of the rating matrix

R may have taken value l, where (i, j) /∈ O. In practice we do not store all the p
\MDM
i,j,l , for (i, j) /∈ O

and l = 1, . . . , L, in memory, since their number scales as nd − |O|. When n and d are very large, storing
all of them is infeasible. As a solution, we will compute them only when needed and we will discard them
afterwards.

The standard EP algorithm would minimize the KL-divergence between fMDM (Ω,R¬O)Q\MDM (R¬O)
and f̃MDM (Ω,R¬O)Q\MDM (R¬O), where Q\MDM (R¬O) is the marginal of Q\MDM on R¬O. However,
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this is infeasible in practice. Instead, we follow the approach used by Stern et al. (2009) and minimize
the KL divergence with the arguments swapped. That is, we minimize the KL divergence between Q and
fMDM (Ω,R¬O)Q\MDM (R¬O). The following section shows how to minimize this divergence with respect
to the parameters of Q.

Once we have adjusted Q, we would have to update f̃MDM so that it is the ratio of Q and Q\MDM .
However, in practice, this is not necessary since we always work with Q and never access f̃MDM directly.

4.2.1 The variational objective function

The KL divergence between Q and fMDM (Ω,R¬O)Q\MDM (R¬O) is minimized when we maximize the
following objective with respect to the parameters of Q

L = H[Q] +
∑
R¬O

∫
Q(Ω,R¬O) log

[
fMDM (Ω,R¬O)Q\MDM (R¬O)

]
dΩ , (151)

where H[·] denotes the entropy of a distribution. However, maximizing this objective is problematic because
we cannot analytically integrate the logarithm of the logistic functions in fMDM (Ω,R¬O). These logistic
functions have their origin in the exact factors f19,i,j from Figure 1. To solve this problem, we approximate
the logistic function with a Gaussian lower bound Jaakkola and Jordan (1997). In particular, we lower bound
xi,jσ(a) + (1− xi,j)σ(−a) in (21) with

τ(a, ξ) = σ(ξ) exp

{
−a(1− 2xi,j) + ξ

2
− λ(ξ)(a2 − ξ2)

}
, (152)

where λ(ξ) = (σ(ξ) − 0.5)/(2ξ), σ(x) = 1/(1 + exp(−1)) is the logistic function and ξ is adjusted to make
the lower bound tight at a = ±ξ. When we replace each f19,i,j in (21) with an instantiation of (152) that
includes its own variational parameter ξi,j , we obtain the new objective function

L′ =

n∑
i=1

d∑
j=1

αi,j +

n∑
i=1

h∑
k=1

βi,k +

d∑
j=1

h∑
k=1

γj,k + κ+
∑

(i,j)/∈O

L∑
l=1

ϕi,j,l , (153)

where

αi,j = log σ(ξi,j)−
µi,j(1− 2xi,j) + ξi,j

2
− λ(ξi,j)(µ

2
i,j + s2i,j − ξ2i,j) , (154)

ϕi,j,l = −pi,j,l log pi,j,l + pi,j,l log p
\MDM
i,j,l , (155)

βi,d = ρ(ẽi,d, ẽ
0
i,d, ēi,d, ē

0
i,d), γj,d = ρ(f̃j,d, f̃

0
j,d, f̄j,d, f̄

0
j,d), κ = ρ(z̃, z̃, z̄0, z̄0), we define ρ as ρ(a, b, c, d) =

−0.5− 0.5 log a/b+ [(c− d)2 + a][2b]−1 and

µi,j =


(∑h

k=1m
e
i,km

f
j,k

)
+mz +

∑L
l=1(mλrow

i,l +mψcol

j,l )pi,j,l : (i, j) /∈ O(∑h
k=1m

e
i,km

f
j,k

)
+mz + (mλrow

i,ri,j
+mψcol

j,ri,j
) : (i, j) ∈ O

(156)

s2i,j =


(∑h

k=1[me
i,k]2vfj,k + vei,k[mf

j,k]2 + vei,kv
f
j,k

)
+ vz +

∑L
l=1(vλ

row

i,l + vψ
col

j,l )pi,j,l : (i, j) /∈ O(∑h
k=1[me

i,k]2vfj,k + vei,k[mf
j,k]2 + vei,kv

f
j,k

)
+ vz + (vλ

row

i,ri,j
+ vψ

col

j,ri,j
) : (i, j) ∈ O

(157)

In the following section we show how to optimize the cost function (153) with respect to the parameters of
Q and the variational parameters ξi,j .
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4.2.2 Optimality conditions and batch inference

The cost function (153) is optimized with respect to ξi,j by setting

ξi,j =
√
µ2
i,j + s2i,j , (158)

where µi,j and s2i,j are given by (156) and (157). The optimal value for mz and vz are

[vz]−1 = [z̃0]−1 +

n∑
i=1

d∑
j=1

2λ(ξi,j) , (159)

mz[vz]−1 = z̄0[z̃0]−1 +

n∑
i=1

d∑
j=1

[xi,j − 0.5− 2λ(ξi,j)(µi,j −mz)] , (160)

The optimal value for mλrow

i,l and vλ
row

i,l are

[vλ
row

i,l ]−1 = [λ̃row 0]−1 +

d∑
j=1

2λ(ξi,j)p̂i,j,l , (161)

mλrow

i,l [vλ
row

i,l ]−1 = λ̄row 0[λ̃row 0]−1 +

d∑
j=1

[
xi,j − 0.5− 2λ(ξi,j)(µi,j −mλrow

i,l p̂i,j,l)
]
p̂i,j,l , (162)

where p̂i,j,l = pi,j,l if (i, j) /∈ O and p̂i,j,l = I[ri,j = l], otherwise, and I[ri,j = l] is the indicator function that

takes value 1 when ri,j = l and 0 otherwise. The optimal values for mψcol

j,l and vψ
col

j,l have similar expressions.

To obtain the optimal values for the mean and variance parameters me
i,k, vei,k, mf

i,k and vfi,k, for i =
1, . . . , n, j = 1, . . . , d and k = 1, . . . , h, we proceed as in Section 4.1.14. In particular, we follow Paquet
and Koenigstein (2013) and make use of the intermediate approximation Q̂E,F that does not factorize across
columns, where

Q̂E,F =

[
n∏
i=1

N (ei|m̂e
i , V̂

e
i )

] d∏
j=1

N (fj |m̂f
j , V̂

f
j )

 (163)

and m̂e
i and m̂f

j are the mean vectors for the i-th row of E and the j-th row of F, respectively, and Ve
i and

Vf
j are the corresponding covariance matrices. To update the variational parameters in Q for the i-th row

of E we first equate the gradient of the objective (153) with respect to the parameters m̂e
i and V̂e

i of the full

(not factorized) Gaussian approximation Q̂ to zero. Then we adjust Q so that KL(Q‖Q̂E,F) is minimized

with respect to the parameters me
i,k and vfi,k of Q, for k = 1, . . . , h. This is achieved when, for the i-th row

of E, the means of Q match the means of Q̂E,F and the precisions of Q match the diagonal precisions of

Q̂E,F. We update Q̂E,F with respect to m̂e
i and V̂e

i using

[V̂e
i ]
−1 = diag(ẽ0i,k, . . . , ẽ

0
i,k)−1 +

d∑
j=1

2λ(ξi,j)EQ[fTj fj ] , (164)

m̂e
i [V̂

e
i ]
−1 = (ē0i,1, . . . , ē

0
i,h)diag(ẽ0i,k, . . . , ẽ

0
i,k)−1+

d∑
j=1

[
xi,j − 0.5− 2λ(ξi,j)(µi,j −

h∑
k=1

me
i,km

f
j,k)

]
EQ[fTj ] . (165)

After this, we update Q by setting

me
i,k = [m̂e

i ]k , vei,k = 1/{[V̂e
i ]
−1}k,k , (166)
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for k = 1, . . . , h. The corresponding parameters for the j-th row of F, that is, mf
j,k and vfj,k, where k =

1, . . . , h, are updated in a similar way.
Unfortunately, there is no analytical solution for the optimal value of pi,j,l as a function of all the other

variational parameters. Because of this, when we refine f̃MDM , we do not fully optimize pi,j,l and instead,

just fix pi,j,l to be equal to p
\MDM
i,j,l , that is,

pi,j,l = p
\MDM
i,j,l , (167)

for l = 1, . . . , L. In practice, this approximation is expected to produce reasonably good results since
f19,i,j(ri,j , xi,j , ei, fj , z,λ

row
i ,ψcol

j ) will most of the times be rather flat as a function of ri,j . However, note
that at prediction time, we do adjust pi,j,l by using the prediction formula described in Section 4.5.

To optimize Q, we could follow the batch procedure described in Algorithm 1. However, this method is
infeasible in practice. For example, to update the variational parameters V̂e

1, . . . , V̂
e
n just once, we need to

examine the whole matrix X, which has dimension n × d. When n and d are massive, the computational
cost of that operation is to high. In practice X is a very sparse matrix since only a very reduced number of
the ratings in R are actually observed. Ideally, we would like to optimize Q using a method that scales with
the number of ones in X, that is, with the number of observed ratings. The following section describes an
stochastic optimization method that has this property.

Algorithm 1 Batch method for updating Q when refining f̃MDM .

Input: Current Q, Q\MDM and binary matrix X.
for t = 1 to T do
{Update the variational parameters for the rows and global bias.}
for i = 1 to n do

Update pi,1,1, . . . , pi,d,L using (167)
Update ξi,1, . . . , ξi,d using (158).

Update [V̂e
i ]
−1 and m̂e

i [V̂
e
i ]
−1 using (164) and (165).

Update me
i,1, . . . ,m

e
i,h and vei,1, . . . , v

e
i,h using (166).

Update mz and vz using (159) and (160).
Update mλrow

i,1 , . . . ,mλrow

i,h and vλ
row

i,1 , . . . , vλ
row

i,h using (161) and (162).
end for
{Update the variational parameters for the columns and global bias.}
for j = 1 to d do

Perform updates similar to the ones in the previous loop.
end for

end for
Output: Updated Q.

4.2.3 Stochastic inference in the missing data model

We describe how to minimize the KL divergence betweenQ and fMDM (Ω,R¬O)Q\MDM (R¬O) in an efficient
way. Our approach is based on the method stochastic variational inference (SVI) Hoffman et al. (2013). SVI
works by sub-sampling the data and doing small partial updates of the variational parameters. This allows
us to obtain an accurate approximation Q when we have only examined a reduced fraction of the entries in
X. Note that the SVI updates are performed on the natural parameters of distributions in the exponential
family Hoffman et al. (2013).

The SVI updates for [V̂e
i ]
−1 and m̂e

i [V̂
e
i ]
−1 at time t are given by

{[V̂e
i ]
−1}t = (1− ρei ){[V̂e

i ]
−1}t−1 + ρei{[V̂e

i ]
−1}noisy , (168)

{m̂e
i [V̂

e
i ]
−1}t−1 = (1− ρei ){m̂e

i [V̂
e
i ]
−1}t−1 + ρei{m̂e

i [V̂
e
i ]
−1}noisy , (169)

where the subscripts t−1, t and “noisy” denote, respectively, the previous value of the variational parameter,
the new value of the variational parameter and a noisy estimate of the optimal value for the variational
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parameter, that is, the optimal value given by (164) or (165). The parameter ρei ∈ [0, 1] is a learning rate
that should converge to zero as t increases. The value of ρei can be specified each time that we update

[V̂e
i ]
−1 and m̂e

i [V̂
e
i ]
−1 using a Robins-Monroe update schedule (Robbins and Monro, 1951), that is, ρei =

(1 + updateCounter)−κ where κ ∈ (0.5, 1] and “updateCounter” is the number of times that [V̂e
i ]
−1 and

m̂e
i [V̂

e
i ]
−1 have been updated so far. In our experiments, we fix κ = 0.7.

We compute the noisy estimates of (164) and (165) by considering all the entries xi,j with value one in
the i-th row of X and then randomly subsampling the same number of entries in that row with value zero.
In particular, we have that

{[V̂e
i ]
−1}noisy = diag(ẽ0i,k, . . . , ẽ

0
i,k)−1 +

∑
j∈Irow,1

i

2λ(ξi,j)EQ[fTj fj ] + ηei
∑

j∈Irow,0
i

2λ(ξi,j)EQ[fTj fj ] , (170)

{m̂e
i [V̂

e
i ]
−1}noisy = (ē0i,1, . . . , ē

0
i,h)diag(ẽ0i,k, . . . , ẽ

0
i,k)−1+∑

j∈Irow,1
i

[
xi,j − 0.5− 2λ(ξi,j)(µi,j −

h∑
k=1

me
i,km

f
j,k)

]
EQ[fTj ]+

ηei
∑

j∈Irow,0
i

[
xi,j − 0.5− 2λ(ξi,j)(µi,j −

h∑
k=1

me
i,km

f
j,k)

]
EQ[fTj ] , (171)

where Irow,1i is a deterministic set with the column indexes of the entries in the i-th row of X that take

value one, that is, Irow,1i = {j : j ∈ {1, . . . , d} and (i, j) ∈ O}, and Irow,0i is a random set with the column

indexes of some entries in the i-th row of X that take value zero. In particular, Irow,0i satisfies that a) for any

j ∈ Irow,0i we have that xi,j = 0, b) the size of Irow,0i is the number of variables xi,j with value one in the i-th

row of X and c) all the elements in Irow,0i are chosen randomly from the set {j : j ∈ {1, . . . , d} and (i, j) /∈ O}
with equal probability and with replacement. Note that |Irow,0i | = |Irow,1i |. Finally, the constant ηei takes

value ηei = (d − |Irow,0i |)/|Irow,0i |. This scaling constant guarantees that the expectations of {[V̂e
i ]
−1}noisy

and {m̂e
i [V̂

e
i ]
−1}noisy are the same as the exact optimal values given by (164) and (165), respectively.

The stochastic update for [V̂f
j ]−1 and m̂f

j [V̂f
j ]−1 at time t are computed in a similar way.

We will update [vz]−1 and mz[vz]−1 each time that we access the value of an entry in the binary matrix
X. The SVI updates for [vz]−1 and mz[vz]−1 are given by

{[vz]−1}t = (1− ρz){[vz]−1}t−1 + ρz{[vz]−1}noisy , (172)

{mz[vz]−1}t = (1− ρz){mz[vz]−1}t−1 + ρz{mz[vz]−1m
z [vz ]−1

}noisy , (173)

where ρz is specified in a similar way as ρei and {[vz]−1}noisy and {mz[vz]−1m
z [vz ]−1}noisy are given by

{[vz]−1}noisy = [z̃0]−1 + ηz2λ(ξi,j) , (174)

{mz[vz]−1}noisy = z̄0[z̃0]−1 + ηz [xi,j − 0.5− 2λ(ξi,j)(µi,j −mz)] , (175)

xi,j is the entry of X accessed during the update of [vz]−1 and mz[vz]−1 and the constant ηz takes value

ηz =

{
2|O| : xi,j = 1

4|O|/
[
|Irow,0i |/(d− |Irow,0i |) + |Icol,0j |/(n− |Icol,0j |)

]
: (i, j) /∈ O . (176)

This constant guarantees that the expectations of {[vz]−1}noisy and {mz[vz]−1m
z [vz ]−1}noisy are the same as

their optimal values given by (159) and (160).
The SVI updates for mλrow

i,l and vλ
row

i,l , for l = 1, . . . , L, are given by

{[vλ
row

i,l ]−1}t = (1− ρei ){[vλ
row

i,l ]−1}t−1 + ρei{[vλ
row

i,l ]−1}noisy , (177)
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Algorithm 2 Stochastic method for updating Q when refining f̃MDM .

Input: Current Q, Q\MDM and binary matrix X.
for t = 1 to T do
{Update the variational parameters for the rows and global bias.}
for i = 1 to n do

Initialize {[V̂e
i ]
−1}noisy, {m̂e

i [V̂
e
i ]
−1}noisy and {[vλrow

i,l ]−1}noisy and {mλrow

i,l [vλ
row

i,l ]−1}noisy, for l =
1, . . . , L, with the contribution from the prior.
Generate set of indexes Irow,1i .

for j ∈ Irow,1i do
Update pi,j,1, . . . , pi,j,L using (167).
Compute µi,j and s2i,j using (156) and (157).
Update ξi,j using (158).

Update {[V̂e
i ]
−1}noisy and {m̂e

i [V̂
e
i ]
−1}noisy using (170) and (171).

Update {[vλrow

i,l ]−1}noisy and {mλrow

i,l [vλ
row

i,l ]−1}noisy, for l = 1, . . . , L, using (179) and (180).

Update mz and vz using first (174), (175) and then (172) and (173).
end for
Generate set of indexes Irow,0j .

for j ∈ Irow,0i do
Update pi,j,1, . . . , pi,j,L using (167).
Compute µi,j and s2i,j using (156) and (157).
Update ξi,j using (158).

Update {[V̂e
i ]
−1}noisy and {m̂e

i [V̂
e
i ]
−1}noisy using (170) and (171).

Update {[vλrow

i,l ]−1}noisy and {mλrow

i,l [vλ
row

i,l ]−1}noisy, for l = 1, . . . , L, using (179) and (180).

Update mz and vz using first (174), (175) and then (172) and (173).
end for
Update [V̂e

i ]
−1 and m̂e

i [V̂
e
i ]
−1 using (168) and (169).

Update me
i,1, . . . ,m

e
i,h and vei,1, . . . , v

e
i,h using (166).

Update vλ
row

i,l and mλrow

i,l , for l = 1, . . . , L, using (177) and (178).

{Update the variational parameters for the columns and global bias.}
end for
for j = 1 to d do

Perform updates similar to the ones in the previous loop.
end for

end for
Output: Updated Q.

{mλrow

i,l [vλ
row

i,l ]−1}t = (1− ρei ){mλrow

i,l [vλ
row

i,l ]−1}t−1 + ρei{mλrow

i,l [vλ
row

i,l ]−1}noisy , (178)

where we are using the same learning rate ρei as for the stochastic updates of [V̂e
i ]
−1 and m̂e

i [V̂
e
i ]
−1 since we

will be updating all these parameters at the same time. We compute {[vλrow

i,l ]−1}noisy and {mλrow

i,l [vλ
row

i,l ]−1}noisy
in a similar way as {[V̂e

i ]
−1}noisy and {m̂e

i [V̂
e
i ]
−1}noisy, that is,

{[vλ
row

i,l ]−1}noisy = [λ̃row 0]−1 +
∑

j∈Irow,1
i

λ(ξi,j)p̂i,j,l + ηei
∑

j∈Irow,0
i

2λ(ξi,j)p̂i,j,l , (179)

{mλrow

i,l [vλ
row

i,l ]−1}noisy = λ̄row 0[λ̃row 0]−1 +
∑

j∈Irow,1
i

[
xi,j − 0.5− 2λ(ξi,j)(µi,j −mλrow

i,l p̂i,j,l)
]
p̂i,j,l+

ηei
∑

j∈Irow,0
i

[
xi,j − 0.5− 2λ(ξi,j)(µi,j −mλrow

i,l p̂i,j,l)
]
p̂i,j,l , (180)

The SVI updates for mψcol

j,l and vψ
col

j,l , for l = 1, . . . , L, are computed in a similar way.
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Finally, note that computing the optimal update for pi,j,l without using numerical methods is not feasible
in practice. As mentioned in the previous section, we do not fully optimize pi,j,l and instead, just fix pi,j,l

to be equal to p
\MDM
i,j,l , which is expected to produce reasonably good results.

Algorithm 2 shows our stochastic method for adjusting Q. The computational cost of this method scales
linearly with respect to |O|. This is a significant gain when n and d are very large but the number of observed
entries from R is small. In practice, we do not keep in memory all the variables ξi,j , µi,j , s

2
i,j or pi,j,l. We

compute them when needed and then, we discard them afterwards.

4.2.4 The predictive distribution of the missing data model

Once Q as been updated to incorporate the contribution of the extended factor for the missing data model
(MDM) fMDM (Ω,R¬O), that is, (149), we can use Q to compute the approximation p̃MDM

i,j,l (xi,j) to the

posterior probability pMDM
i,j,l (xi,j) that the entry in the i-th row and j-th column of the rating matrix R has

taken value l, as a function of xi,j . This posterior probability is computed ignoring the contribution from
the complete data model. In particular, we have that

p̃MDM
i,j,l (xi,j) ∝

∫
f19,i,j(ri,j = l, xi,j , ei, fj , z,λ

row
i ,ψcol

j )Q(Ω) dΩ

∝ σ
{

(2xi,j − 1)
[
eif

T
j + z + λrowi,l + ψcol

j,l

]}
Q(Ω) dΩ . (181)

We can approximate the integral above by replacing the logistic function with a rescaled probit function that
has the same slope at the origin as the logistic function σ(·) MacKay (1992). This leads to

p̃MDM
i,j,l (xi,j) ∝ σ{(2xi,j − 1)ϕ(s2i,j,l)µi,j,l} , (182)

where ϕ(x) = (1 + πx/8)−1/2 and

µi,j,l =

(
h∑
k=1

me
i,km

f
j,k

)
+mz +mλrow

i,l +mψcol

j,l , (183)

s2i,j,l =

(
h∑
k=1

[me
i,k]2vfj,k + vei,k[mf

j,k]2 + vei,kv
f
j,k

)
+ vz + vλ

row

i,l + vψ
col

j,l . (184)

4.3 Approximate Inference in the complete data model with MNAR data

With MNAR data, approximate inference in the complete data model is challenging. The reason for this is
that we now have to deal with the exact factors f11,i,j , f12,i,j and f13,i,j,k for which (i, j) /∈ O. Ideally, we
would approximate each of these exact factors with an approximate factor that would be iteratively refined
by EP. However, keeping all those approximate factors in memory is infeasible in practice since their number
scales as nd−|O|, where n and d can be very large. Instead, we will just generate an approximation to these
exact factors that will be computed when needed and then discarded afterwards. Whenever we have to find
an approximation to any of the f11,i,j , f12,i,j and f13,i,j,k with (i, j) /∈ O, we proceed as follows. First, we
approximate f11,i,j with a Gaussian factor on ci,j . Given this approximation, we then approximate f12,i,j
with another Gaussian factor on ai,j . After this, we approximate f13,i,j,k with an additional Gaussian factor
on ai,j and finally, we approximate again f13,i,j,k with a Gaussian factor on ci,j . The following sections
describe how to do this.

4.3.1 Approximating f11,i,j as a function of ci,j

Recall that f11,i,j(ci,j ,ui,vj) = δ(ci,j − uiv
T
j ). We can easily approximate this exact factor as a function

ci,j with an approximate factor f̃11,i,j . For this, we only have to compute the marginal mean and variance
of ci,j with respect to f11,i,j(ci,j ,ui,vj)Q(Θ,Ω,R¬O). Note that we are using Q and not Q\11,i,j (the ratio
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between Q and the approximation to f11,i,j) to compute the aforementioned marginal. The reason for this

is that we do not store any of the f̃11,i,j in memory and furthermore, we never include the contribution of
any of these approximate factors, as a function of ci,j , into Q, where (i, j) /∈ O. The EP update for the

parameters of the Gaussian factor for ci,j in f̃11,i,j is then given by the mean and variance of ci,j with respect
to f11,i,j(ci,j ,ui,vj)Q(Θ,Ω,R¬O) (because Q is uniform on ci,j for (i, j) /∈ O for the reasons mentioned
above), that is,

[m̃c,11,i,j
i,j ]new =

h∑
k=1

mu
i,km

v
j,k , [ṽc,11,i,ji,j ]new =

h∑
k=1

[mu
i,k]2vvj,k + vui,k[mv

j,k]2 + vui,kv
v
j,k . (185)

4.3.2 Approximating f12,i,j as a function of ai,j

Recall that f12,i,j(ai,j , ci,j , γ
row
i , γcolj ) = N (ai,j |ci,j , γrowi γcolj ). Furthermore, recall that Q is uniform in ai,j

for (i, j) /∈ O because we do not store any of the f̃12,i,j or f̃13,i,j with (i, j) /∈ O in memory and never

include the contribution of these approximate factors into Q. To update f̃12,i,j we only have to compute the

mean and variance of the marginal of f12,i,j(ai,j , ci,j , γ
row
i , γcolj )Q(Θ,Ω,R¬O)f̃11,i,j(ci,j ,ui,vj) with respect

to ai,j . This marginal is given by∑
R¬O

∫
f12,i,j(ai,j , ci,j , γ

row
i , γcolj )Q(Θ,Ω,R¬O)f̃11,i,j(ci,j ,ui,vj) dci,j dΘ dΩ =

=

∫
N (ai,j |ci,j , γrowi γcolj )N (ci,j |m̃c,11,i,j

i,j , ṽc,11,i,ji,j )

IG(γrowi |a
γrow

i , bγ
row

i )IG(γrowj |a
γcol

j , bγ
col

j ) dci,j , dγ
row
i dγcolj

≈ N (ai,j |m̃c,11,i,j
i,j , ṽc,11,i,ji,j + bγ

row

i bγ
col

j /[(aγ
row

i + 1)(aγ
col

j + 1)]) , (186)

where in (186) we have approximated IG(γrowi |a
γrow

i , bγ
row

i ) and IG(γcolj |a
γcol

j , bγ
col

j ) with point probability
masses located at the modes of these factors.

The resulting update for f̃12,i,j is then

[m̃a,12,i,j
i,j ]new = m̃c,11,i,j

i,j , [ṽa,12,i,ji,j ]new = ṽc,11,i,ji,j + bγ
row

i bγ
col

j /[(aγ
row

i + 1)(aγ
col

j + 1)] . (187)

4.3.3 Approximating f13,i,j as a function of ai,j

We now approximate the extended factor f13,i,j(ri,j , ai,j ,bj) =
∏L−1
k=1 f13,i,j,k(ri,j , ai,j , bj,k) as a function of

ai,j , when ri,j and bj are marginalized out. For this, we need to match the marginal mean and variance of ai,j
between f13,i,j(ri,j , ai,j ,bj)Q(Θ,Ω,R¬O)f̃12,i,j(ai,j) and f̃13,i,j(ri,j , ai,j ,bj)Q(Θ,Ω,R¬O)f̃12,i,j(ai,j). The

first step is to compute the normalization constant of f13,i,j(ri,j , ai,j ,bj)Q(Θ,Ω,R¬O)f̃12,i,j(ai,j). Let Z be
such normalization constant. Then, it can be shown that

Z =
∑
ri,j

∫ L−1∏
k=1

Θ [sign[ri,j − k − 0.5](ai,j − bj,k)]

[
L∏
l=1

[p̃MDM
i,j,l (xi,j)]

I[ri,j=l]

]
[
L−1∏
k=1

N (bi,k|mb
i,k, v

b
i,k)

]
N (ai,j |m̃a,12,i,j

i,j , ṽa,12,i,ji,j ) dai,j dci,j dbj

=

L∑
l=1

p̃MDM
i,j,l (xi,j) [Φ(αl−1)− Φ(αl)] , (188)

27



where Φ is the standard Gaussian cdf, αl = (m̃a,12,i,j
i,j − mb

i,l)(ṽ
a,12,i,j
i,j + vbi,l)

−0.5, we define α0 = ∞ and

αL = −∞ and p̃MDM
i,j,1 (xi,j), . . . , p̃

MDM
i,j,L (xi,j) are the probabilistic predictions for ri,j given by the missing data

model, see Section 4.2.4.
The EP updates for f̃13,i,j(ri,j , ai,j ,bj) are then given by

[ṽa,13,i,ji,j ]new = −

[
d2 logZ

d[m̃a,12,i,j
i,j ]2

]−1
− ṽa,12,i,ji,j , (189)

[m̃a,13,i,j
i,j ]new = m̃a,12,i,j

i,j −

[
d logZ

dm̃a,12,i,j
i,j

][
d2 logZ

d[m̃a,12,i,j
i,j ]2

]−1
. (190)

where

d logZ

dm̃a,12,i,j
i,j

= Z−1
L∑
l=1

p̃MDM
i,j,l

[
φ(αl−1)√
βl−1

− φ(αl)√
βl

]
, (191)

d2 logZ

d[m̃a,12,i,j
i,j ]2

= Z−1
L∑
l=1

p̃MDM
i,j,l

[
φ(αl−1)αl−1

βl−1
− φ(αl)αl

βl

]
, (192)

and β0 = 1, βL = 1 and βl = ṽa,12,i,ji,j + vbi,l, for l = 1, . . . , L− 1.

4.3.4 Approximating f12,i,j as a function of ci,j

Recall that f12,i,j(ai,j , ci,j , γ
row
i , γcolj ) = N (ai,j |ci,j , γrowi γcolj ). To update f̃12,i,j we only have to compute the

mean and variance of the marginal of f12,i,j(ai,j , ci,j , γ
row
i , γcolj )Q(Θ,Ω,R¬O)f̃13,i,j(ai,j) with respect to ai,j .

This marginal is given by∑
R¬O

∫
f12,i,j(ai,j , ci,j , γ

row
i , γcolj )Q(Θ,Ω,R¬O)f̃13,i,j(ai,j) dai,j dΘ dΩ =

=

∫
N (ai,j |ci,j , γrowi γcolj )N (ai,j |m̃a,13,i,j

i,j , ṽa,13,i,ji,j )

IG(γrowi |a
γrow

i , bγ
row

i )IG(γrowj |a
γcol

j , bγ
col

j ) dai,j , dγ
row
i dγcolj

≈ N (ci,j |m̃a,13,i,j
i,j , ṽa,13,i,ji,j + bγ

row

i bγ
col

j /[(aγ
row

i + 1)(aγ
col

j + 1)]) , (193)

where in (193) we have approximated IG(γrowi |a
γrow

i , bγ
row

i ) and IG(γcolj |a
γcol

j , bγ
col

j ) with point probability
masses located at the modes of these factors.

The resulting update for f̃12,i,j is then

[m̃c,12,i,j
i,j ]new = m̃a,13,i,j

i,j , [ṽc,12,i,ji,j ]new = ṽa,13,i,ji,j + bγ
row

i bγ
col

j /[(aγ
row

i + 1)(aγ
col

j + 1)] . (194)

4.3.5 Batch minimization of the reversed KL divergence when refining f̃11

Recall that in Section 4.1.11 we had to minimize KL(QU,V‖S). The procedure for doing this with MAR data
was described in Section 4.1.14. With MNAR data, we still have to perform the same operation. However
S now includes a product of factors over all possible values of i and j and not only over those (i, j) ∈ O. In
particular, we have that S is now

S(U,V) =

 n∏
i=1

d∏
j=1

N (uT
i vj |mc,\11

i,j , v
c,\11
i,j )

[ n∏
i=1

h∏
k=1

N (ui,k|mu,\11
i,k , v

u,\11
i,k )

]
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 d∏
j=1

h∏
k=1

N (vj,k|mv,\11
j,k , v

v,\11
j,k )

 , (195)

where m
c,\11
i,j and v

c,\11
i,j , for (i, j) /∈ O, are now given by

m
c,\11
i,j = m̃c,12,i,j

i,j , v
c,\11
i,j = ṽc,12,i,ji,j . (196)

and m̃c,12,i,j
i,j and ṽc,12,i,ji,j can be computed when needed following the steps described in sections 4.3.1, 4.3.2

4.3.3 and 4.3.4.
To minimize KL(QU,V‖S) with MNAR data, that is, when S is given by (195) and not (137), we again

follow Paquet and Koenigstein (2013) and make use of the intermediate approximation Q̂U,V that does not
factorize across columns, where

Q̂U,V =

[
n∏
i=1

N (ui|m̂u
i , V̂

u
i )

] d∏
j=1

N (vj |m̂v
j , V̂

v
j )

 (197)

and m̂u
i and m̂v

j are the mean vectors for the i-th row of U and the j-th row of V, respectively, and Vu
i and

Vv
j are the corresponding covariance matrices. To update the variational parameters in QU,V for the i-th

row of U we first equate the gradient of KL( ˆQU,V‖S) with respect to the parameters m̂u
i and V̂u

i of the full

(not factorized) Gaussian approximation Q̂U,V to zero. Then we adjust QU,V so that KL(QU,V‖Q̂U,V) is
minimized with respect to the parameters mu

i,k and vui,k of QU,V, for k = 1, . . . , h. This is achieved when,

for the i-th row of U, the means of QU,V match the means of Q̂U,V and the precisions of QU,V match the

diagonal precisions of Q̂U,V. We update Q̂U,V with respect to m̂u
i and V̂u

i by setting

[V̂u
i ]−1 = diag(v

u,\11
i,1 , . . . , v

u,\11
i,h )−1 +

d∑
j=1

EQU,V
[vT
j vj ]

v
c,\11
i,j

, (198)

m̂u
i [V̂u

i ]−1 = (m
u,\11
i,1 , . . . ,m

u,\11
i,h )diag(v

u,\11
i,1 , . . . , v

u,\11
i,h )−1 +

d∑
j=1

m
c,\11
i,j EQU,V

[vT
j ]

v
c,\11
i,j

. (199)

After this, we update QU,V by setting

mu
i,k = [m̂u

i ]k , vui,k = 1/{[V̂u
i ]−1}k,k , (200)

for k = 1, . . . , h. The corresponding parameters for the j-th row of V, that is, mv
j,k and vvj,k, where

k = 1, . . . , h, can be updated in a similar way.
Note, however, that the update equations (198) and (199) include now a sum over j = 1, . . . , d, while the

corresponding update equations in Section (4.1.14) included only a sum over only the j such that (i, j) ∈ O.
This last set of column indexes is usually much smaller than d since the number of observed entries in the
rating matrix is often very small. The consequence is that minimizing KL(QU,V‖S) with MNAR data has
a cost that scales as nd instead of as |O|. When n and d are very large, minimizing the divergence with
MNAR data using the batch update equations (198) and (199) is infeasible in practice. Ideally, we would
like to minimize KL(QU,V‖S) using a method that scales with |O|, that is, with the number of observed
ratings. In the following section we describe an stochastic optimization method that has this property. In
Section 4.2.3 we used a similar approach to approximate the exact factors in Figure 1 for the missing data
model.

4.3.6 Stochastic minimization of the reversed KL divergence when refining f̃11

We now describe how to minimize KL(QU,V‖S) in an efficient way. Our approach is based on the method
stochastic variational inference (SVI) Hoffman et al. (2013). SVI works by sub-sampling the data and doing
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small partial updates of the variational parameters. This allows us to obtain an accurate approximation

QU,V when we have only examined a reduced fraction of the nd factors N (uT
i vj |mc,\11

i,j , v
c,\11
i,j ) that are

included in S in (195). The SVI updates for [V̂u
i ]−1 and m̂u

i [V̂u
i ]−1 at time t are given by

{[V̂u
i ]−1}t = (1− ρui ){[V̂u

i ]−1}t−1 + ρui {[V̂u
i ]−1}noisy , (201)

{m̂u
i [V̂u

i ]−1}t = (1− ρui ){m̂u
i [V̂u

i ]−1}t−1 + ρui {m̂u
i [V̂u

i ]−1}noisy , (202)

where the subscripts t−1, t and “noisy” denote, respectively, the previous value of the variational parameter,
the new value of the variational parameter and a noisy estimate of the optimal value for the variational
parameter, that is, the optimal value given by (198) or (199). The parameter ρui ∈ [0, 1] is a learning
rate that should converge to zero as t increases. The value of ρui can be specified each time that we

update [V̂u
i ]−1 and m̂u

i [V̂u
i ]−1 using a Robins-Monroe update schedule (Robbins and Monro, 1951), that is,

ρui = (1 + updateCounter)−κ where κ ∈ (0.5, 1] and “updateCounter” is the number of times that [V̂u
i ]−1

and m̂u
i [V̂u

i ]−1 have been updated so far. In our experiments, we fix κ = 0.7.

We compute the estimates {[V̂u
i ]−1}noisy and {m̂u

i [V̂u
i ]−1}noisy of (198) and (199) by considering only a

reduced fraction of the factors N (uT
i vj |mc,\11

i,j , v
c,\11
i,j ) (j = 1, . . . , d), instead of all of them, as it is actually

done in (198) and (199). In particular, for each value of i, we only consider the factorsN (uT
i vj |mc,\11

i,j , v
c,\11
i,j )

such that (i, j) ∈ O and a random subset of the factors with indexes (i, j) such that (i, j) /∈ O, where the
two subsets of factors have the same size. In particular, we have that

{[V̂u
i ]−1}noisy = diag(v

u,\11
i,1 , . . . , v

u,\11
i,h )−1 +

∑
j∈Irow,1

i

EQU,V
[vT
j vj ]

v
c,\11
i,j

+ ηui
∑

j∈Irow,0
i

EQU,V
[vT
j vj ]

v
c,\11
i,j

, (203)

{m̂u
i [V̂u

i ]−1}noisy = (m
u,\11
i,1 , . . . ,m

u,\11
i,h )diag(v

u,\11
i,1 , . . . , v

u,\11
i,h )−1+∑

j∈Irow,1
i

m
c,\11
i,j EQU,V

[vT
j ]

v
c,\11
i,j

+ ηui
∑

j∈Irow,0
i

m
c,\11
i,j EQU,V

[vT
j ]

v
c,\11
i,j

, (204)

where Irow,1i is a deterministic set with the column indexes of the observed entries in the i-th row of R, that

is, Irow,1i = {j : j ∈ {1, . . . , d} and (i, j) ∈ O}, and Irow,0i is a random set with the column indexes of some

entries in the i-th row of R that are not observed. In particular, Irow,0i satisfies that a) for any j ∈ Irow,0i

we have that xi,j = 0, b) the size of Irow,0i is the number of variables xi,j with value one in the i-th row

of X and c) all the elements in Irow,0i are chosen randomly from the set {j : j ∈ {1, . . . , d} and (i, j) /∈ O}
with equal probability and with replacement. Note that |Irow,0i | = |Irow,1i |. Finally, the constant ηui takes

value ηui = (d − |Irow,0i |)/|Irow,0i |. This scaling constant guarantees that the expectations of {[V̂u
i ]−1}noisy

and {m̂u
i [V̂u

i ]−1}noisy are the same as the exact optimal values given by (198) and (199), respectively.

Once we have updated [V̂u
i ]−1 and m̂u

i [V̂u
i ]−1 using (203) and (204), and (201) and (202), we update

QU,V by setting

mu
i,k = [m̂u

i ]k , vui,k = 1/{[V̂u
i ]−1}k,k , (205)

for k = 1, . . . , h.
The corresponding stochastic updates for [V̂v

j ]−1 and m̂v
j [V̂

v
j ]−1 in Q̂U,V and the mv

i,k and vvi,k with
k = 1, . . . , h in QU,V, are computed in a similar way.

Algorithm 3 shows our stochastic method for minimizing KL(QU,V‖S). The computational cost of this
method scales linearly with respect to |O|. This is a significant gain when n and d are very large but the

number |O| of observed rating entries is small. In practice, we only keep in memory the variables m
c,\11
i,j and

v
c,\11
i,j with (i, j) ∈ O. All the other variables m

c,\11
i,j and v

c,\11
i,j with (i, j) /∈ O are computed when needed,

as described in Sections 4.3.1, 4.3.2, 4.3.3 and 4.3.4, and then discarded afterwards.
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Algorithm 3 Stochastic method for minimizing KL(QU,V‖S).

Input: Current QU,V, Q\11 and binary matrix X.
for t = 1 to 3 do
{Update the variational parameters for U.}
for i = 1 to n do

Initialize {[V̂u
i ]−1}noisy and {m̂u

i [V̂u
i ]−1}noisy with contribution from the prior.

Generate set of indexes Irow,1i .

for j ∈ Irow,1i do

Extract m
c,\11
i,j and v

c,\11
i,j from Q\11.

Update {[V̂u
i ]−1}noisy and {m̂u

i [V̂u
i ]−1}noisy using (203) and (204).

end for
Generate set of indexes Irow,0j .

for j ∈ Irow,0i do

Compute m
c,\11
i,j and v

c,\11
i,j from Q\11 as described in sections 4.3.1, 4.3.2, 4.3.3 and 4.3.4.

Update {[V̂u
i ]−1}noisy and {m̂u

i [V̂u
i ]−1}noisy using (203) and (204).

end for
Update [V̂u

i ]−1 and m̂e
i [V̂

u
i ]−1 using (168) and (169).

Update mu
i,1, . . . ,m

u
i,h and vui,1, . . . , v

u
i,h using (205).

end for
{Update the variational parameters for V.}
for j = 1 to d do

Perform updates similar to the ones in the previous loop.
end for

end for
Output: Updated QU,V.

We first iterate over i = 1, . . . , n, doing stochastic updates on the mv
i,k and vvj,k in QU,V for the i-th row

of U, and then we iterate over j = 1, . . . , d, doing stochastic updates for the mv
i,k and vvj,k in QU,V for the

j-th column of V. We repeat this process a total of 3 times each time we want to refine the approximate
factor f̃11. We always use as initial solution for QU,V and Q̂U,V the value obtained during the previous
iteration of EP. Furthermore, the counter updateCounter that we use to compute the learning rates ρui counts
the number of updates done during the whole execution of EP, not only during the individual executions of
Algorithm 3.

4.4 Approximate Inference in the joint model

We describe how to perform approximate inference in the joint model formed by the combination of the
complete data model (CDM) and the missing data model (MDM). Our algorithm first performs approximate
inference in each of these models independently. First, we approximate the factors for the CDM assuming
MAR data. For this, we run the expectation propagation (EP) method described in Section 4.1 for 40
iterations. Next, we approximate the factors for the MDM assuming that the predictions of the CDM are
non-informative, that is, we assume that p̃CDM (r?i,j = l|RO) in (148) is uniform across rating values. This
disconnects the MDM from the CDM. The MDM is adjusted by running the stochastic variational inference
(SVI) method described in Section 4.2.3 for 120 iterations. After this initial adjustment, we iterate refining
the posterior of each model by taking into account the predictions of the other one. In this case, we adjust
the MDM by running the SVI method from Section 4.2.3 again for 120 iterations, but this time without
assuming that the predictions of the CDM are non-informative. Finally, the CDM is adjusted by running
the EP-SVI method from Section (4.1) for 40 iterations. Algorithm 4 shows all the steps of our inference
procedure.
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Algorithm 4 Approximate Inference in the Joint Model

Input: Rating dataset D.
Adjust Q by running EP on CDM with MAR data (Section 4.1).
Adjust Q by running SVI on MDM assuming CDM is uniform (Section 4.2.3).
for i = 1 to 2 do

Adjust Q by running SVI on MDM (Section 4.2.3).
Adjust Q by running EP-SVI on CDM with MNAR data (Section 4.3).

end for
Output: Posterior approximation Q.

4.5 The predictive distribution of the joint model

Once we have adjusted Q by running the approximate inference method shown in Algorithm 4, we can use
Q to make predictions. In particular, we can approximate the posterior probability pJMi,j,l(xi,j) that the entry
in the i-th row and j-th column of the rating matrix R may have taken value l, while conditioning to any
specific value of xi,j . When we fix xi,j = 0, we assume that the entry was not selected by the missing
data mechanism and it is actually missing. When we fix xi,j = 1, we assume that the entry was selected
by the missing data mechanism and should have been observed, but for some reason its value is unknown.
The probability pJMi,j,l(xi,j) is approximated by combining the predictions of the CDM and the MDM. In
particular,

p̃JMi,j,l(xi,j) ∝ p̃CDM (r?i,j = l|RO)p̃MDM
i,j,l (xi,j) , (206)

where p̃CDM (r?i,j = l|RO) is given by (148) and p̃MDM
i,j,l (xi,j) is given by (182).

5 Evaluation Using Other Metrics Besides Log-likelihood

In the main document, we have evaluated the performance of MF-MNAR by computing its average predictive
log-likelihood (LL) on the standard and special test sets. In this section we report the results obtained by
MF-MNAR using other evaluation metrics such as root mean squared error (RMSE), mean absolute error
(MAS) and predictive accuracy (PA). The loss function used by PA takes value 1 if the predicted rating
value is the same as the one actually found in the test set and 0 otherwise.

In the main document, we use LL as an evaluation metric because

1. LL is invariant to the arbitrary assignment of real values to ordinal ratings, while RMSE or MAE are
not. For example, if we have three possible ordinal ratings with values ”1”, ”2” and ”3”, these ratings
could also have been labelled ”low”, ”medium” and ”high”. In this latter case, it is not clear how to
compute RMSE or MAE.

2. LL evaluates the quality of the whole predictive distribution. In this sense LL is more complete than
RMSE, MAE or PA, which only evaluate the quality of point predictions. Having accurate predictive
distributions, as measured by LL, can be very useful in practice, for example, to generate confidence
intervals in the predictions.

3. LL is a better indicator of how accurately the method models the data. For example, RMSE is
less sensitive than LL to how well the model captures the heteroskedasticity present in the data. In
heteroskedastic and homoskedastic models the predictive means (used to minimize RMSE) are often
very similar, while the predictive variances are not. In this sense, LL is a better performance metric
than RMSE.

Tables 1 and 2 show the average test PA in the standard and special test sets, respectively. The best
performing method is highlighted in bold and those results statistically indistinguishable according to a paired
t-test are underlined. The results obtained for PA are similar to the ones shown in the main document for
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LL. Regarding the standard test sets, MF-MNAR is on average the best method on the real-world datasets.
Furthermore, in accordance with intuition, MF-MNAR is better than MF-MAR in the synthetic datasets
with MNAR data, while the the opposite result occurs in the synthetic datasets with MAR data. Regarding
the special test sets, Table 2 shows again that MF-MNAR is better than MF-MAR in the synthetic datasets
with MNAR data. This table also shows that in the SMF-MAR and SRH-MAR datasets MF-MAR is better
than MF-MNAR, as expected.

Tables 3 and 5 show for each method the average test MAE and RMSE in the standard test sets,
respectively. MF-MNAR is on average the best method on the real-world datasets with respect to the MAE
metric. However, the RMSE metric seems to favor Paquet’s method which performs in this case better.
Furthermore, in accordance with intuition, MF-MNAR is overall better than MF-MAR in the synthetic
datasets with MNAR data, while the the opposite result occurs in the synthetic datasets with MAR data.
Finally, tables 4 and 6 show the average test MAE and RMSE in the special test sets, respectively. In this
case, we can observe that MF-MNAR is better than MF-MAR in the synthetic datasets with MNAR data,
while the opposite results is obtained in the synthetic datasets with MAR data.

MF MF MM CTPv Logitvd Paquet Oracle
Dataset MNAR MAR MAR MNAR MNAR MAR
ML100K 0.479 0.476 0.346 0.370 0.374 0.465 0.335
ML1M 0.499 0.495 0.416 0.397 0.400 0.486 0.348
MTweet 0.603 0.603 0.547 0.515 0.530 0.589 0.492
NIPS 0.612 0.609 0.455 0.495 0.494 0.594 0.398
Yahoo 0.536 0.522 0.493 0.437 0.481 0.503 0.314
SMF-MNAR 0.638 0.632 0.438 0.467 0.464 0.554 0.448
SMF-MAR 0.829 0.835 0.424 0.439 0.437 0.819 0.464
SRH-MNAR 0.477 0.476 0.492 0.474 0.480 0.475 0.318
SRH-MAR 0.419 0.430 0.422 0.419 0.416 0.446 0.293

Table 1: Average Test PA in Standard Test Sets.

MF MF MM CTPv Logitvd Paquet Oracle
Dataset MNAR MAR MAR MNAR MNAR MAR
Yahoo 0.400 0.403 0.363 0.454 0.341 0.425 0.526
SMF-MNAR 0.427 0.390 0.222 0.148 0.166 0.467 0.479
SMF-MAR 0.824 0.825 0.427 0.123 0.141 0.805 0.468
SRH-MNAR 0.318 0.300 0.306 0.180 0.183 0.264 0.245
SRH-MAR 0.438 0.440 0.426 0.354 0.341 0.448 0.252

Table 2: Average Test PA in Special Test Sets.

MF MF MM CTPv Logitvd Paquet Oracle
Dataset MNAR MAR MAR MNAR MNAR MAR
ML100K 0.639 0.642 0.826 0.806 0.801 0.645 0.900
ML1M 0.595 0.598 0.716 0.768 0.752 0.598 0.872
MTweet 0.451 0.451 0.534 0.553 0.540 0.457 0.593
NIPS 0.532 0.544 0.776 0.713 0.707 0.548 1.011
Yahoo 0.814 0.825 0.903 1.126 0.944 0.800 1.401
SMF-MNAR 0.435 0.459 0.832 0.824 0.819 0.466 0.935
SMF-MAR 0.170 0.165 0.675 0.623 0.620 0.183 0.602
SRH-MNAR 0.713 0.701 0.717 0.689 0.684 0.698 1.447
SRH-MAR 0.808 0.793 0.818 0.819 0.823 0.782 1.401

Table 3: Average Test MAE in Standard Test Sets.

MF MF MM CTPv Logitvd Paquet Oracle
Dataset MNAR MAR MAR MNAR MNAR MAR
Yahoo 1.180 1.177 1.249 0.770 0.881 1.094 0.819
SMF-MNAR 0.613 0.685 1.074 1.038 0.982 0.604 0.562
SMF-MAR 0.176 0.175 0.675 1.405 1.328 0.195 0.597
SRH-MNAR 1.253 1.318 1.231 1.206 1.205 1.310 1.427
SRH-MAR 0.801 0.797 0.816 0.847 0.869 0.799 1.450

Table 4: Average Test MAE in Special Test Sets.

MF MF MM CTPv Logitvd Paquet Oracle
Dataset MNAR MAR MAR MNAR MNAR MAR
ML100K 0.883 0.885 1.069 1.056 1.046 0.884 1.127
ML1M 0.828 0.829 0.954 1.025 0.997 0.827 1.117
MTweet 0.690 0.690 0.806 0.800 0.792 0.692 0.879
NIPS 0.832 0.834 1.014 0.968 0.963 0.837 1.163
Yahoo 1.180 1.186 1.265 1.427 1.286 1.159 1.583
SMF-MNAR 0.693 0.717 1.056 1.045 1.042 0.659 1.095
SMF-MAR 0.351 0.349 0.911 0.820 0.820 0.371 0.819
SRH-MNAR 0.949 0.957 0.903 0.896 0.896 0.937 1.604
SRH-MAR 1.136 1.129 1.134 1.134 1.134 1.096 1.552

Table 5: Average Test RMSE in Standard Test Sets.

MF MF MM CTPv Logitvd Paquet Oracle
Dataset MNAR MAR MAR MNAR MNAR MAR
Yahoo 1.483 1.480 1.500 1.056 1.141 1.404 1.057
SMF-MNAR- 0.793 0.857 1.163 1.181 1.152 0.812 0.775
SMF-MAR 0.362 0.360 0.912 1.402 1.350 0.385 0.816
SRH-MNAR 1.519 1.562 1.463 1.430 1.430 1.547 1.550
SRH-MAR 1.140 1.130 1.135 1.169 1.172 1.101 1.566

Table 6: Average Test RMSE in Special Test Sets.
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