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1 Hyper-parameter values in the complete data model

Recall that the priors for i) the base boundary variables by = (bo 1, ...,bo,—1) and ii) the factors v/°% and
'y;‘)l for the noise variance are

L—1
p(bo) = [ N (bo.klmp°, vo), p(%i™) =ZG(%*|ao, bo) , p(5*) = ZG(75*ao, bo), (1)
k=1
where i =1,...,n, j=1,...,d, N(z|m,v) denotes a Gaussian density with mean m and variance v and
ZG(zla,b) = o % lex b (2)
" T(a) P17
bo

denotes an inverse-gamma density with parameters a and b. We initialize the prior means m; ,mb | to
form an evenly spaced grid in the interval [—6, 6] as suggested in |Paquet et al. (2012). For example when
L = 5, we have that m® = —6, m5° = —2, m5® = —2 and m% = —6. The prior variance vy for each
component of by is initialized to vg = 0.1. The hyper-parameters ao and by for the priors on v;°" and 'yc"l
are initialized to ap = 10/2 and by = 101/10/2. The strength of the resulting priors is then equivalent to
having seen for each of these random variables a random sample of size 10 with empirical variance v/10. The
prior expectations for v and 7“1 are close to v/10. This means that the product of ;% and WCOI is close
on average to 10, which is the recommended noise level in the ordinal matrix factorization model described
in |Paquet et al. (2012).

We use factorized standard Gaussian hyper-priors for the prior means mY = (mV, ... ,m}f) and mV =
(mY,...,m}Y), that is,
h h
= [[ N[0, 1), H (mY0,1) (3)
k=1 P
Similarly, we use factorized inverse-gamma hyper-priors for the prior variances v¥ = (vP,...,vY) and
vV =(vY,...,vY), that is,
h h
= HIQ(UEW&%)’ p(vV) = HIQ(ka|a6,b6). (4)
k=1 k=1

The hyper-parameters af, and bf, are initialized to aj = 10/2 and b, = 10/2. The strength of the resulting
priors is then equivalent to having seen for each of these random variables a random sample of size 10 with
unit empirical variance.

2 Priors in the missing data model

We choose to use fully factorized Gaussian priors for all the parameters in the missing data model, that is,
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j=1li=1
and p(z) = N(2]2°,2°). We fix these priors to have zero-mean and unit variance. We also incorporate a

local bias to each row and column. For example, the column A in F contains the biases for the columns of
X. In this case, égh =1 and é?,h =g, for i = 1,...,n, where ¢ is a small positive constant. Similarly, the

column h — 1 in E contains the biases for the rows and fﬁh_l =1 and ]?h_l =g forj=1,...,d

3 Description of each factor in the factor graph

We describe the form of each factor in the factor graph shown in Figure[l] This factor graph includes a total
of 19 different factors. The first 13 factors belong to the complete data model. The last 6 factors belong to
the missing data model. We first describe the factors for the complete data model. After that, we describe
the factors for the missing data model.

3.1 Factors for the complete data model

The complete data model is formed by factors 1 to 13. The first four factors are given by the hyper-priors
for the mean and variances of the Gaussian priors on the entries in the rows of U and V, that is,

Fr(oy) = ZG(vy lag, by) , f2ae(vi)) = G (v} |ag. bg) , (9)

Far(my) = N(my10,1), Fak(my)) = N(mi]0,1), (10)
for k =1,...,h. Factors 5 and 6 are the priors for the factors 7;°" and 7;?01 that form the variance of the
additive noise on ¢; ;, that is,

F5,5(5°) = TG (% [ao, bo) , fo.i (V) = ZG (75 a0, bo) (1)
fori=1,...,nand j=1,...,d. Factor 7 is formed by the Gaussian prior for the base boundary variables
by = (bo,1,...,bo,L—1), that is,

Frx(bok) = N (bo . |mP°, vo), (12)
fork=1,...,L—1. Factor 8 is given by the conditional Gaussian prior for the vector of boundary variables
bj = (bj71, cee bj7L_1), that iS,

f5,3.(bjk, b0,1) = N (b k[bo,, vo) , (13)

forj=1,...,d, k=1,...,L — 1. Factors 9 and 10 are the Gaussian priors for the entries of the low-rank
latent matrices U and V, namely

Joqw im0 ) = N (vj elmy ;0 Froi (im0 ) = N (ui g |my] o) (14)
fori=1,...,n,75=1,...,dand k =1,...,h. Factor 11 is formed by the delta functions that constrain each
ci,j to be equal to u;v where u; is the i- th row of U and v; is the j-th row of V, that is,

firg(cig, i, vy) =6(cij —wv) ), (15)
fori=1,...,nand j=1,...,d. Factor 12 is the conditional prior for the variables a; ;. These variables are
obtamed after adding Gau551an noise to ¢; ; with variance ;"5 col " that is,

fr2,i5(ai g, i v %COI) N(ai,j|0i,gﬁfow7§d) ; (16)
fori=1,...,n,j=1,...,d. Finally, factor 13 is given by
f13,6,,6 (5, @i 5, bjk) = © [sign[r; — k — 0.5](as; — bjk)] (17)

where © is the Heaviside step function and sign[z] is the sign function, which returns —1 if z < 0 and 1
otherwise.
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Figure 1: Factor graph for our Matrix Factorization model with data Missing Not At Random (MF-MNAR).

3.2 Factors for the missing data model

The missing data model is formed by factors 14 to 19. The first five factors in this model are formed by the
Gaussian priors on the model parameters E, F, A™" ¥l and z, that is,

Fraip(eir) = Neirlel , @) , Fis5k(Fik) = Nkl Flr 031) (18)
f16,,0(NTY) = NATT AT, A0, Frr.50(W59) = N (STHss0, 955'0) (19)
flS(Z) :N(Z|20720) ; (20)

fori=1,...,n,5=1,...,d, k=1,...,h, Il =1,..., L. Finally, factor 19 is given by the likelihood of the
missing data model, that is,

L
Fro.ig (i i g, e £, 2, XY b5 = i jo{ed] + 2+ Y (NG + i I[ri; = 1}+
=1
L
(1= wij)of{—ef] —z=> (N + s ; =11}, (21)
=1

where i =1,...,n, j =1,...,d, e; and f; are the i-th and j-th rows of the latent low-rank matrices E and
F, respectively, AI° and ¢°! are the are the i-th and j-th rows of matrices A™" and W<, respectively,
o(z) = 1/(1 + exp(—x)) is the logistic function and I[-] is the indicator function that takes value 1 when its
argument is true and 0 otherwise.

4 Approximate Inference

We now describe how to perform approximate Bayesian inference in the proposed Matrix Factorization model
with data Missing Not At Random (MF-MNAR). Our approach is based on a combination of the methods
expectation propagation (EP) Minka| (2001) and variational Bayes (VB) |(Ghahramani and Beal (2001)).

We approximate the exact posterior in MF-MNAR, that is, p(£2,®, R™|R®, X) given by Equation (8)
in the main document, with the parametric distribution Q(®, 2, R7°) = Q;(0©)Q5(Q2)Q3(R™?), where we



assume that Qy, Q5 and Q3 are fully factorized distributions with inverse-gamma, Gaussian and multinomial
factors, namely
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where Zlel Dij1 = 1. Ideally, we want to adjust the parameters of Q so that this approximation is as
close as possible to the exact posterior p(£2,®, R™?|R?, X). Recall that this posterior can be written, up
to its normalization constant, as the product of all the factors shown in the factor graph from Figure
Section [3] contains a description of each of these factors. We will approximate each exact factor in the factor
graph with an approximate factor that has the same functional form as Q. For example, the exact factor
fr2,i5(ai g, cig, iV, fijOl) will be approximated with the approximate factor flg,i,j(G), Q,R9) given by
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where Z =1 plli’;ﬂ and we have introduced the multiplicative constant 312 ; ; because the approximate factors

may not be normalized. The notation that we have used for the parameters of flgﬂ',j is the same that we
used for the parameters of Q, but adding to each parameter the tilde symbol ~and the superscript 12,4, j
with the indexes of the approximate factor. Note hat @ and all the approximate factors belong to the family
of exponential distributions. This family is closed under the product operation. Therefore, the product of
all the approximate factors still has the same functional form as Q and can be readily normalized. The
exact posterior p(©2,®, R"°|R®, X) is the normalized product of all the exact factors in the factor graph
from Figure [I] Similarly, we define the posterior approximation Q to be the normalized product of all the
approximate factors. This means that, we can make Q be close to the exact posterior p(€2,®, R"°|R®, X)
by adjusting each approximate factor so that it is as close as possible to its corresponding exact factor in
the factor graph. This is the approach followed by the method expectation propagation (EP) Minkal (2001))
and it will be the basis of our algorithm for approximate inference in MF-MNAR.

EP works by first, initializing all the approximate factors and Q to be non-informative or flat. This is
done by setting i) the mean and variance parameters of the Gaussians to be zero and infinite, respectively,
ii) the a and b parameters of the inverse gammas to be one and zero, respectively, and iii) the parameters of
the multinomials to be 1/L. After that, EP iteratively refines the parameters of the different approximate
factors. We now describe how EP performs each of these operations. For example, let us assume that EP
will refine the parameters of the approximate factor flg i,j- For this, EP computes the ratio of Q and flg i
and then normalizes the resulting distribution, which we denote by Q\'2J. Therefore, Q\2%J is equal to
the normalized product of all the approximate factors except flg,w The functional form of Q\'2%J is again
the same as Q and all the other approximate factors. In particular, we have that
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where notation for the parameters of Q\'2%J is the same that we used for the parameters of Q, but adding
to each parameter the superscript \12,,j with the indexes of the approximate factor that is removed
from Q to obtain Q\'2%7. EP refines the parameters of fi2,i,; by minimizing the Kullback-Leibler (KL)
divergence between Q\'2%7 (@, 0, Rﬁo)flgﬁi,j(('-l Q,R7°) and Q\'2%7 (@, 0, R79) fi2,i.(ai j, ci j, oV, 7;501)
where fi9; ; is the exact factor in the factor graph that is been approximated by flgyi,j. In particular, EP
refines the parameters of ‘]E]_Q,i)j by minimizing

Dx1, (Q\u’i’jfm,i,j ||Q\12’i’jf12,i,j) =

\12 i Q\!® f \12,i,5 \12,i,5
Z / ’ Jf 12 Z,] g————= — + Q ’ ’jf12,i7j — Q ’ ’jflgmj dd dQ, (27)

o Q\127mf12,i7j

where the arguments to Q\u’i’jfw’m and Q\lz’i’jflgyi,j have been omitted in the right-hand side of this
equation to improve readability. The divergence above is minimized when the expectation of the sufficient
statistics of Q\u’i’jflg,i}j with respect to Q\12’i’jflgﬁi,j is the same as the expectation of those sufficient
statistics with respect to Q\>%7 f15 ; ;. Note also that, when we refine the approximate factor fiz; j, we will
only be modifying the parameters of f121i’j that have an effect on the variables connected to the corresponding
exact factor fi2; ; in the factor graph from Figure that is, a; j, ¢; 4, 7", and 7601 This means that most

of the parameters of flz’m will never be modified by EP and can be ignored.

The main loop of EP iterates over all the approximate factors, refining one after the other by minimizing
the corresponding KL divergence. To simplify the exposition, we describe first how EP approximates the
factors of the complete data model (factors 1 to 13 in Figure [1)) when the data is assumed to be Missing At
Random (MAR).

4.1 Approximate Inference in the complete data model with M AR data

In this section we describe the operations performed by EP to refine the approximate factors for the complete
data model, that is, the approximate factors approximating the exact factors 1 to 13 in Figure |1} We will
assume here that the data is Missing At Random (MAR). In this case the dotted line connecting the complete
data model and the missing data model in Figure [1| does not exist and we can ignore the contribution of the
missing data model. Furthermore, we can also ignore all the exact factors fi1;, fi2,i,; and fis;;r With
(i,4) ¢ O since they do not have any effect in the posterior distribution in the MAR setting.

As described in Section |4} EP works by iteratively minimizing the KL divergence with respect to
each approximate factor. In the following sections we show the form of the resulting EP update operations.

4.1.1 EP updates for fl k

Recall that fi x(vY) = ZG(vY |af, b)), where k = 1,..., h. In this case, f1 has the same functional form as
the inverse-gamma factor that specifies the distribution of UX in fi,x. Therefore, the EP update for f; j sets
the parameters of that inverse-gamma factor to be the same as the parameters of the the inverse-gamma



distribution in f; ;, namely

[&Zvﬁl’k‘]new

— af, [y Lok mew — gy (28)

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f1 r has to be refined only once, during the first iteration of the main loop of EP. After refining f1 ks
we update Q (which is initially unlform) by setting

v

[ay |7V = ap, b 1Y = by . (29)

4.1.2 EP updates for fg’k

Recall that fo . (v0) = ZG(v7 |y, b)), where k = 1,..., h. The EP update operations for f,; are in this case
the same as for the approximate factor fi x, namely,

’L)U,Q,k]new

~ oY new
[ak [bk ’27k} = b6 ) (30)

o
=agq,

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f2 & has to be refined only once, during the first iteration of the main loop of EP. After refining f2 ks
we update Q by setting

new ’UUHW
[a ]"" = ag, [bp 1™ :b6~ (31)

4.1.3 EP updates for fg’k

Recall that f3 ,(mY) = N(mY|0,1), where k = 1,...,h. In this case, f3 has the same functional form as
the Gaussian factor that specifies the distribution of m) in f5. Therefore, the EP update for fsx sets the
parameters of that Gaussian factor to be the same as the parameters of the the Gaussian in f3 j, namely,

[m'];nv.,&k]new _ 0’ [@an73’k]new =1 , (32)

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f3 & has to be refined only once, during the first iteration of the main loop of EP. After refining f3 P
we update Q by setting

[mznv]new -0, [,Uznv]new —1. (33)

4.1.4 EP updates for f47k

Recall that fy(mY) = N(m}J|0,1), where k = 1,...,h. The EP update operations for f47k are in this case
the same as for the approximate factor f3, namely,

18} u
[mzl :4,k]new =0, [,ﬁlfgn AJC]new =1, (34)
Since these update equations do not depend on the parameters of any other approximate factor, we have
that f4 r has to be refined only once, during the first iteration of the main loop of EP. After refining f4 ks
we update Q (which is initially unlform) by setting

U

e =0, o = 1. (33)



4.1.5 EP updates for f57j

Recall that f5 (v CO]) ZG (% |ag,bo), where j = 1,...,d. In this case, f5, has the same functional form
as the inverse-gamma factor that specifies the distribution of 7“1 in f5’j. Therefore, the EP update for fs’j
sets the parameters of that inverse-gamma factor to be the same as the parameters of the the inverse gamma
in p(vy°°), namely

col £ ~_col

,o,]]new =aqg, [b’Y ,5,j]new = bo, (36)

) ;

J

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f5; has to be refined only once, during the first iteration of the main loop of EP. After refining f5 ;, we
update Q by setting

col col

[} ] = ag, 77 P = by (37)

4.1.6 EP updates for fgﬁ'

Recall that fg; (%) = ZG(y C°1|ao7 by), where i = 1,...,n. The EP update operation for fg; are in this case

the same as for the approximate factor f57j, namely,

(@7 o = ag, B e =, (38)

Since these update equations do not depend on the parameters of any other approximate factor, we have
that fs; has to be refined only once, during the first iteration of the main loop of EP. After refining fs;, we
update Q by setting

7 ]new =ag, [bV ]new — bO . (39)

[a‘z i

4.1.7 EP updates for f77k

Recall that f7(bo ) = ./\f(bo’k|mzo,UO)7 where k =1,...,L — 1. In this case, f; has the same functional
form as the Gaussian factor that specifies the distribution of by ;, in f7 . Therefore, the EP update for f7
sets the parameters of that Gaussian factor to be the same as the parameters of the Gaussian in f7 ;, namely

[m20’7’k]ncw mzo , [ﬁZOﬁ,k}ncw =y, (40)

Since these update equations do not depend on the parameters of any other approximate factor, we have
that f7 & has to be refined only once, during the first iteration of the main loop of EP. After refining f7 ks
we update Q by setting

ey = mko, (o] = vo (41)

4.1.8 EP updates for fs
Recall that fs j x(bj.k,bo,k) = N (bjklbok,vo), where j =1,...,dand k =1,..., L—1. In this case, we firstly

compute the parameters of Q\®7% which is defined as the normalized ratio of Q and f&j’k. This leads to
,UZO’\SJ‘JC _ [[v,ﬁo]*l _ [ﬁzo,s,j,k]—q -1 7 mzo7\8,j7k _ UZO7\8,j7k |:m20 ]! - mzo,s,j,k[ﬁzo,s,j,k]q} . (42)
57;8 gk _ [[U?,k]fl . ?724] ]—1 7 m?:;&j,k _ v;,;&j,k [m;k@;k]q _ mb 185] kg ?zz,j,k]fl} ’ (43)
After that, we refine f&j,k by setting
[m?,&j,k]new _ m?:;&j,k 7 [,{)Zo,&j,k]new _ U;) ;87] k + v, (44)

10



[m%&%ﬂnew

_ mbo,\&j,k

4 7 [52787j7k]new _ UZO’\S’j’k + v, (45)

These update equations guarantee that the normalized versions of Q\37F(@, Q, Rﬁo)fg,j’k((a, Q,R79) and
Q\8Ik(@,Q, R™©)N(b; k|bo,k, vo) have the same expectations of sufficient statistics. Finally, we recompute
Q as the normalized product of the updated fs ;. and Q\8:J3k that is,

[mzo]new

b \8,5,k
[l e = [l

b k]new

4.1.9 EP updates for fy

= [,

= o

. ~1
bonew b0,\8,75,k1— ~bo,8,5,k1—
o] = [f S et ] (46)
bo]new [m207\8;j7k[1120,\87j7k] +1m ~bo, s k[ ZO,SJ’k}_l} 7 (47)
, -1
e ikl I (48)
new | BA8.Gk[ bABGEI—1 | = b,8,51=b,8,k
R L C¥ i Rl Gl (49)
= N(vjklmY,vY), where j =1,...,d and k = 1,...,h. We firstly compute

Recall that fo jk(vjk,mY,vY)

the parameters of Q\9%3:% which is defined as the normalized ratio of Q and fg’j’k. This leads to

[U;n",\e),j,k]new _

mvv\9;j’k new
[my, ]
[U;{)}D&Lk
[m;_)7]>9,j’k]new
[av",\9,j,k]new
k

[bzv7\9;j7k]ncw

After this, we refine the approximate factor ng’k.
statistics with respect to h(©®,Q,R™°) =

v H Vo s Vg i
= [v;cn 7\9»J7k]new [mznv[ mv]—l _ mzn ,97J7k[1~}2n ,&Lk]—l}
. —1
]new _ [[v;,k]il _ [ﬁyvgd,k]fl] ’
_ [U;J;]s&j,k]new [ v
:az _a}27»]k+1’

— b'u _ bU

. —1
At

vy , (51)

-1 = v,9,j,k[q~]v,9,j,k]—1}
b

mg v ] T = g o

v

Jk

For this, we have to find the expectation of sufficient
Q\9IF(@,Q, R™C)N (vj x|mY,vY ). After summing out R™C and

integrating out  and © \ {v; x, mY,vY} in h, we obtain

h(UjJCv m;’, HX)

mV .
‘ V\9,4,k U 7\9,J7k)

= N (vjrlmy o) )N (my

The normalization constant of h(vj,, mY,vY) is then

7 = /h(vjyk,mx,v,y) dvj k de dvkv

/T U]k|mk,
/N vjk|mk,

. v .
N(’Uj k|mU \9,4, k7 U;} k\973 k)IG( V|aZ 7\9737167 bZ 7\97]7/’6) ) (56)
(57)
VA9 k
” 2 'va\g,jvk)
'UV 9,5,k Tk
mV \9.i w9 i
N(mk |m 7\9,]7 ;\973,/6)./\/'(,0] k|m v,\9,5,k ’Ujjlc\g’])k) dek dm;/ (58)
v MACKAC
vV N9,k 2)
mV \9.i )
N( V|m V9,5, U ,\97]7k)N(,UJ |m1’7\97J k’ U;{;k\gﬂak) de,k de (59)
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Qvaa\gnjvk

N mV \9,5,k v,\9,5,k  ©v,\9,7,k mY \9,j,k
N R O I ), (60)
Kk
where
T 1)/2 21— (wH1D)/2
Tt = SEEUD [, (o] o
VavAl'(v/2) v

denotes a Student’s ¢ distribution with mean pu, variance parameter A and degrees of freedom v and in
equation we have approximated a Student’s ¢ distribution with a Gaussian distribution that has the
same mean and variance as the original Student’s ¢ distribution. The expectation of the sufficient statistics
vk, [V5k)% mY, [mY1?%, vY and [vY]? with respect to h(v;k, mY,vY) can be approximated in a similar way
as the previous normalization constant. We describe below how to do this. For the random variable 112’, the
KL-divergence is actually mmlmlzed by matching the first moment and the expectation of log vk However,
matching the expectation of log vk. would require computing the inverse of the Digamma function, which
has no analytical solution. To avoid this, we match the first and second moments of vkv which is expected
to produce reasonably good results.

We approximate the moments of vY using the following property of inverse gammas see (2)). Let H(a,b)
be the normalization constant of f(x)ZG(z|a,b) for a particular f, that is, = [flx IQ (z|a,b) dx.
Then we have that [ zf(2)ZG(z|a,b)dz = H(a + 1,b)a/b and [ 22°ZG(x|a, b) dx = H(a +2,b)a(a + 1)/b%
Thus, each moment can be easily approximated given a procedure to approximate the normalization constant
H(a, b). For this, we only have to replace H(a + 1,b) and H(a + 2,b) in the previous equations with their
corresponding approximations. In a similar way, we can compute approximations for the moments of v, j

and mk’. In particular, we use the following property of the Gaussian distribution Let H (m v) be the
normalization constant of f(x ) (z|m,v) for a particular function f, that is, H(m,v) = [ f(z)N(z|m,v) dz.

Then we have that [H(m,v)] ™! [z f(z)N (z|m,v) dz = m—&—v%ﬂimv) and [H (m,v)]™ fasQN z|lm,v)dr —
([, 0)] 7 [ 2N (i, v) da]? = v — o?([Heagme]? — pdioafimal).

v

The resulting updates for fg ;. are

mnvyg,j,k]new _ sz",\g,j,k/@az",\g,j,k —o) 4 vv AL (62)
LR AL (63)
By ke = oy O (0 K g A0k (64
g e — 0 09
v Odkpmew _ or _ V9K (66)
G Sokynew _ YN0k (67)

and we define a’ and b’ as

v - v .
) az 7\971716212 " bz ,\97J,kZ21 (68)
a = - - 5 = - - )
(azv;\gﬂxk + I)ZZQ _ ava\gﬂkalQ (azvx\gﬂvk + l)ZZQ _ azvx\g,.%sz
vV \9,5,k

where Z; and Z, are obtained in the same way as Z, but increasing a in one and two units during

the computations, respectively. Once we have updated f97],k, we recompute Q using

\% . . -1
[U;nv]new — [[UZI ,\9,],16}—1 + [ﬁkmv79,],k]—1 , (69)
[mZLV]new _ [v;nv]new {mzl ,\97],/6[1}21 7\9,3”@]—1 + m’]ffnv,&]yk[@?knv,aj,k]—l ’ (70)

12



. -1
A\9,gky— ~v,9,
[ogale = [N + R

9.7k 0,\9,5,k1— 509,50,k 0,9,
07 = [l [y oy 2 T g R 72)
[azv]new a’k \9Jk +dz V.9,4,k _ 17 73)

v . N
vVYinew _ 20V \9.4,k vY.,9,5.k
B e = by 0

)

vV \9,5,k V. \9,j,k 7\97]7

Finally, note that we only update fg .,k when by >0, 2azv’\9’j’ —-2>0,v, > 0 and v; > 0.

4.1.10 EP updates for f1o,i,k

Recall that fio,ix(wi g, my,vP) = N(u;g/my,vP), where i = 1,...,n, and k = 1,...,h. The EP update
equations for each fig,  are similar to those for each fg ;1 and therefore we do not include them here.

4.1.11 EP updates for fll,z’,j

Recall that fi1,:;(cij,wi,v;) =0(ci; — wv j T). Since we are assuming MAR data, we only have to consider
the factors fi1,;,; corresponding to those entries of the rating matrix R that are actually observed, that is, the
factors fi1,,; such that (i, j) € O. We approximate all these exact factors in a single step. For this, we work
with the extended exact factor f11(C?, U, V) =], jico 8(cij —u;v}), where C is the set of variables c; ;

such that (i,j) € O. We approximate this exact factor with an approximate factor f11(®, Q,R79) that has
the same functional form as the posterior approximation Q. We now show how to refine the parameters of
f11 so that it is as similar as possible to fi1.

To refine f1; we do not follow the standard EP algorithm. The reason for this is that the extended exact
factor fii is invariant to rotations or changes of sign in the matrices U and V. This creates multiple modes
in the posterior distribution and the KL divergence minimized by EP will attempt to cover the support of
those modes. Covering all the modes is undesirable. Ideally, we would like to focus on a single mode locally
to break the symmetry. To achieve this, we follow the approach used by [Stern et al.| (2009) and minimize the
KL divergence with the arguments swapped. For this, we first marginalize f1;(C°, U, V)Q\''(@,Q,R™°)
with respect to 2, R™° and © \ {U, V}, where Q\'! is given by the ratio of Q and fi1. The parameters of
O\ are obtained using

e = [ - B (75)
[m;:k\:ll]new _ [U;,]}n]new {m})’k[%k]fl _ mgy[ﬁﬁl} 1} 7 (76)
[Uz}g\n]new _ {[’Ug,k:}_l _ [5%1]_1}—1 7 -
[mz,k\ll]new _ [Uz,k\ll]new {mzk[vzk]ﬂ _ mzku[@zku] 1} 7 (78)

fore=1,...,n,5=1,...,dand k=1,...,k and

-1
) 11 new (& — ~C,

e = g, = 57 (79)
) 11 new ] 11 new c c — ~ C C, —

e e T el e e v el (80)

for (i,5) € O. Let S(U,V) be the result of summing out R™® and integrating out © and © \ {U,V} in
f11(C2, U, V)Q\1'(©,2,R™°). Then

S( H 5 ng 1lT V]) H N Czy|m 7\11’1};}\11)

(i,5)€0 (1,7)€0O
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r d
[T TT Vsl n)”] [T TT N @slmiy™ o5 | dCe (81)

Li=1 k=1 j=1k=1
[ n h
_ T e\l e\l i
= H N(u; V]|m Vi) H N( Uik )
| (i,5)€O i=1k=1

[ h
HH vigelm o | (82)

Let Qu,v be the posterior approximation Q after summing out R and integrating out Q and © \ {U, V},
that is,

n h d h
H H N (ui i |m ., 'U?,k)‘| H H N (vjlmj g vie) | - (83)
i=1k=1 j=1k=1

The parameters of Qy v, that is, mi'y, vy, my . and 7, for i =1,. ,j=1,....dand k =1,...,h,
are then optimized to minimize KL(QU viS). "We describe how to do thls in Sectlon m Once QU v
has been updated, we update the parameters of Q for U and V to be the same as those of Oy v. We also
update the parameters of Q for C©. To do this, we note that in the exact posterior ci,; is always equal to
ul v; because of the delta function 6(c; ; — uf v;). Therefore, we set the mean and variance of each ¢;
in Q with (i,7) € O to be the same as the mean and variance of the corresponding u;} v; according to the

newly updated Q. This leads to the update

Mw

c new c new u v 12 u v
; E mgms ; j,k+vi,k[mj,k] TV RV (84)

k:l

for (i,7) € O. After updating Q, we refine fll so that it is the ratio of Q and Q\!!, that is,

o P = [l - )
g1 = [ o] - w7 (86)
G Rl [0 e s ) (s7)
i e = [ mi o) ™ = mi et (88)

fore=1,...,n,5=1,...,dand k=1,...,k and

-1
~C new c 1— c,\117—
o e = g7t = i (39)
~ new ~c,111new c c 1— c,\11 A\11
g e = 5 1 [ v )7 =i it (90)

for (¢,7) € O. Note that, when performing these EP updates, some of the variances U, ,31, v;‘}jl and NC]H

in fu can become negative. In our experiments, this sometimes created problems When updating other
approximate factors. To avoid this, whenever one of the variances of a Gaussian factor in fi; is going to
become negative, we do not perform the EP update of that Gaussian factor. When this happens, we have
to eliminate the EP update in the corresponding factor of Q since we are first updating Q and then f;; as
a function of Q.
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4.1.12 EP updates for f12,z‘,j

Recall that fia;(ai,cij, 775" = N(aizleiz, 75, Since we are assuming MAR data, we only
have to consider the factors fi2;; corresponding to those entries of the rating matrix R that are actually
observed, that is, the factors fi2; ; such that (¢, j) € O. To refine each f~12,i’j such that (¢,7) € O we firstly
compute the parameters of Q\'2%7 This distribution is defined as the normalized ratio of Q and ‘]E]_g’i’j.
This leads to

-1
[,Ua,]\12 1,]]new _ [[Uq’j]fl _ [f}a,JlQ,z,j] 1] , (91)
[m ’3\12 Z,J]ncw _ [1} 7’]\12 z,J}ncw [m?,j [,U;I,j]—l _ ma’J12 J85J [,U;ljl2 zJ] 1] ’ (92)

v““l,\lz,z‘,j]new —

[aj
1 . ~ _col .
Y \12,4, 5 new __ 317 Y1241,
[bj ] = b] bj .

1 .o
v =y 12,45
i T4 +1,

o e = (g7 = [0 o (93)
m 7j\12 binew _ [y ’]\12 s mew [ng,j [Uic,j}_l _ mcﬂm i, 66’;2 i)~ 1} 7 (94)
[az“’w,\m Z,j]new _ a;/““” _ d;y”‘",lQ,i,j 11, (95)
[b’ymw,\IZ,i,j]ncw — b;y“’w - ‘67"°W,12,i,j ’ (96)
(97)

(98)

After this, to refine the approximate factor flgvi, 4, we have to find the expectation of the sufficient statistics
with respect to h(®,Q,R™9) = Q\m’f’k(@,ﬂ,RﬂO)N(ai,j|Cw,'yfow'y;‘)l). After summing out R™® and

I'OW

integrating out € and © \ {a; j,c; j,7;°", 75"} in h, we obtain

12, 12,i,7 12 > \12,7,7
m 7\ 16,3 v%\ JJ)N( 7j|mc\ RN vg\ 7173)

Y [V

h(azm Ciiry Vi 'YJCOI) N(ai7j|cz’mV;OW'YJCOI)N(GW

col col .
IG(’Y;OWWz ,\12,147[)3 ,\12,2’1)1(}(7;;01‘%7 ,\12>m’bj7 ,\12,14)_ (99)

The normalization constant of h(a; ;,¢; ;, 7%, ’yj"l) is then

Z= / h(ai g, ci i, 75 dag j de; j doyf™™ dys©! (100)
/N a\lZ,z,j| c\12,z,]7v;z7,j\12,7,,j+ c\12”+%mw ol (101)
1G(yF|a) Y \12,3,5 b“r”’w,\12 Z’J)IG c01| ,\12,1}]'7bjw_wl,\l?,m)d%ow d,ycol (102)

%N(m?:j\lzld mle,]\12,z,]7vzlj\12,z,] + c\12,z,]+
AN (N2 ) (g1 N2 ), (103)

row .. col .o
where in 1) we have approximated IG(’yZ-rOW|a R ,b) A2, m) and IG(y °°1|a] ’\12’1"7,b]7 7\12””)
with point probability masses located at the modes of these factors. The expectation of the sufficient
statistics a; j, [a; ;1% cij, [cij]% AV, (oY), j"(’l and [y COI] with respect to h(a; j,c; j,7:° ,’y°°1) can
be approximated in a similar way as the previous normahzatlon constant, as we describe below. For the

random variables v;°" and ’y]COI the KL-divergence is actually minimized by matching the first moments and

col row col

the expectations of log;°" and log 5. However, matching the expectation of logv;°" and log 5" would
require computing the inverse of the Dlgamma function, which has no analytical solution. To av01d this, we

match the first and second moments of ;°" and fyCOI which is expected to produce reasonably good results.

row col

We approximate the moments of the random variables 7;°" and 7§, using the following property of
inverse gammas, see (2). Let H(a,b) be the normalization constant of f(z)ZG(z|a,b) for a function f, that is,

15



= [ f(z)IG(z|a,b) dz. Then we have [z f(x)ZG(x|a,b)dx = H(a+1,b)a/b and [ 2°ZG(z|a,b) dz =
H (a+2 b)a(a+ 1) /b?. Therefore, each moment can be easily approximated given a procedure to approximate
the normalization constant H (a7 b). For this, we only have to replace H(a + 1,b) and H(a + 2,b) in the
previous equations with their corresponding approximations. Following a similar approach, we can compute
approximations for the moments of a; ; and ¢; ;. In particular, we use the following property of the Gaussian
distribution. Let H(m, v) be the normalization constant of f(z)N(xz|m,v) for a particular function f,

that is, H(m,v) = J [ (alm,v) . Then [Hm, o)™ af(@)N (alm,v)dr = m -+ v2ERD and
[H(m, ’U f$2N $|m7v> dr — [[ (m’ U)]_l fo(x|m,v) dSC]Q — v — vg([ ogdn(lm,v)] 9dlog dv(m v))

The updates for f~12’2’7j are then

[ 2T e = V2T (104)
[53312,i7j]new _ ]\12,273 4 bv“’w \12717Jb’7601 \127173/[( YN 1)( I \12,i,5 +1)], (105)
[Thgjzi,j]new _ maJ\12 = (106)
7 e = B @V @YY ], (om)
[dzroW,IQ,i,j]new =d,, - a oW \12,i,j 41, (108)
(B I = b — 0]V (109)
i) 1 e — a’col - a}ml’\”’i’j +1, (110)
e P (111)

/
browa col’

/
where we define a,, bl as
YOYAN12,4,5 [Zrow]Q
a;OW = row \122 1 ai ! row \122 y i (112)
(a;/ s 2y + 1)ZZ£OW _ a;/ ) 2y [Z{OW]Q

row 122 -
b"/ 12, 7]ZZ{OW

/ _ T
brow - (a,},row,\127i7j + ].)ZZ;OW _ a’,‘/mw’\lzi’j [Z{OW]2 ) (113)
K3 K3

YN N\12,4,5 1 col12
/ aj [Zl ]

col = col \ 124 9 col \12 4.9
(a;}’ A 71»J+1)ZZ§ol_a;¥ A\ ’173[2501}2

a (114)

b’}’wl,\lQ,iijZfol
::()l = 'YCOI \12 7 ] . 1 "/COI \12 ij 1 ? (115)
(aj ) 5Ty, +1)ZZ§O _aj ) s, [Zfop

A12,ij
Z3°% and Zi°% are obtained in the same way as the normalization constant Z, but increasing a; TG gy

(‘01
12,4,
one and two units, respectively, and similarly, Z"Ol and ZCO1 are obtained by increasing a \ 7 in one

and two units, respectively.
a,12,1,j

Note that, in these EP update equations, some of the variances ;" ot

and, 7; i and can become

negative. To avoid this, whenever one of the variances of a Gaussian factor in f127z,j is going to become
negative, we do not perform the EP update of that Gaussian factor. Furtherrnore we only refine the

approximate factor f12 .i,j if all the conditions a] *\12,05 > 2, b'y *\12:0. >0,a \12,m > 2, bw R >0,
‘ ;\12 I 5 0 and v; ’\12 “7 5 0 are satisfied.

Once we have updated f127i7j, we recompute Q using

-1

[Uad]new _ {[’U ,7]\12 l,]] 1 + [1721’312,i,j]71 , (116)
[m?,j]new — [vaﬂ]new |:m;_1’,j\12,i,j [v ’}\12 Z,J] + ma 12,4,5 [17'17]12 z,]] 1} , (117)
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. -1
[vic’j]ncw — |:[U ;j\12 Z,J] 1 + [171»07]»1277’7]]_1} ; (118)
[ g,j]new — [Uic,j]new |:mC7J\12,l,j [vc,]\llz,j] 1 + 7,hc7jl2 ,1,J [f)chQ Z,j] ’ (119)
[ ey = ) NPT g gy 2T g (120)
[0 rew = pY NSy 20T (121)
col w col7 12,45 - col71274,4
[a) e = )M ) R (122)
co. col ) ~.,CO s
[bjw 1]new _ b;Y A\12,4,5 + 1»12:%]. (123)

In our experiments we observed that, if we refine the approximate factors f12,i7j during the first iterations
of EP, the proposed model gets stuck in solutions in which the the components of the noise variables ™%
and v°°! take very large values. The reason for this is that during the first iterations of EP, the posterior
approximation for the latent variables U and V is not yet very good and consequently the EP update
equations explain this by assuming that there is large additive noise. The result is that the EP approximation
Q gets stuck in solutions in which the components of 4™% and ~¢°! are too large. To avoid this, we do not
refine the approximate factors fi2,,; during the second iteration of EP. Note that in the first iteration, when
we refine the approximate factors flg’l‘,j, we do not modify the factors of Q for 4™V and ~
that we can always safely refine the approximate factors f~12’i’j during the first EP iteration, even though
the current posterior approximation for U and V is not yet good.

ol This means

4.1.13 EP updates for ‘];1371')3',]6

Recall that fi3; k(73 ,ai;,bjk) = © [sign[r; ; —k — 0.5](a; ; — bj)]. Since we are assuming MAR data,
we only have to consider the factors fi2; ; corresponding to those entries of the rating matrix R that are
actually observed, that is, the factors fi3; ; x such that (i,7) € O. To refine each fi3; ;4 such that (i, ) € O,
we firstly compute the parameters of Q\13:47:%  This distribution is defined as the normalized ratio of Q and

f13,i7j,k. This leads to

[y 2t ne — [[vﬁk]_l 57> 1}71 : (124)
[ms:;w,i,j,k]new _ [v;;w,z,; k}new [ ?k[vé),k]_l . m;; 1163 RN ;)]13 Ji,d, k;] } 7 (125)
[Ua,j\lg i knew [[Uﬁj]_l e 13 gk —1 (126)
[mavj\lg g knew [vaﬂ\ls,l,y k]new [ o [oe,] 1_ e 13 5 k[f}aﬂm k] = 1} . (127)

After this, we update the approximate factor f137i7j,k by matching expected sufficient statistics between
Q\1313:k(@,Q,R79)0 [sign[r; ; — k — 0.5](a;; — bjx)] and Q\1347+(©@, 2, R™°) fi3,,,(0,2,R"). This
leads to the updates

~ b 13,i,5,k b\13,i,5,k ~b 13,4,5,k __ b,\13,i,5,k

m;', =m; + K 0k = —U;% -1/ (128)
a3,k _ . a\13ijk a13,ig.k _ . a\13,ij.k
m;; =mg; —-K vy = —v; -1/ (129)

where 8 and x are given by

B d(a) P(a) a,\13,i,j,k b,\13,i,5,k -1
8=~ a) (@ F By ) [ R (130)
. -1
N L O ”
a, 32,7, 5 2% N «
\/ijc J —|—vj,k J
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with
a\18,ig.k _ b \13,i..k
a = sign[r; ; — k — 0.5] —2& AL (132)

a\13,i0k  b\I3ijk
\/”j,k- TV

and ¢ and ® denote the standard Gaussian density and cdf functions, respectively.
Note that, when performing these EP updates, the variances o;' Jls’m *or o ;3’1’] ¥ can become negative.
In our experiments, this sometimes created problems when updatmg other approximate factors. To avoid
this, whenever one of the variances of a Gaussian factor in fi3 4,5,k 1s going to become negative, we do not
a,\13,3,5,k

perform the EP update of that Gaussian factor. Similarly, we do not update f13 ij ke when v; or
v;’;lw’j’k are negative. )
Finally, once we have updated fi3 j, we recompute Q by setting

-1

[0) (" = [[vf,élg’z’j T [l } : (133)
b b bA\13,i,5,k 1 b,\13,i,5,k ~ b,13,3,5,k[~b,13,i,5,k

T N e R . T v (134)

-1
[vﬁj]new _ [[,Ua’j\l&zd k] 1 + [,17117]13 KAR k] 1] , (135)
[mziz’j]new _ [Uad]new |:m;1’,j\13,i,]7 [U;L’,]\13,i7j,k}fl + m;,le,i,j,k[6217,].13,1',]}16}71} ) (136)

4.1.14 Minimizing the reversed KL divergence when refining fu

In Section [4.1.11| we had to minimize KL(Qu v||S), where

n L
SU.V)= | I[ Nl vylmi ™ o™ [H LTV uiglmy ’\ll,vz}c\ll)]
| (1.5) €0 i=1k=1

i h
HH vjslm ot | (137)
]: k=1

and
n h [d n
Quv = [H HN(ulkm?kav?k)‘| H H N (vjklmj g, vi6) | (138)
i=1k=1 _j:1 k=1
with respect to the parameters of Qu v, that is, m,, v, mi . and vF . fori=1,....,n,j=1,...,d

and k = 1,...,h, For this, we follow Paquet and Koenigstein (2013) and make use of the intermediate
approximation Qu v that does not factorize across columns, where

n d
Quv = [HN(uAm;‘,W)] [TV my, V) (139)

i=1 j=1

and m;’ and mj are the mean vectors for the i-th row of U and the j-th row of V, respectively, and V}' and
V7 are the corresponding covariance matrices. To update the variational parameters in Qu,v for the i-th
row of U we first equate the gradient of KL(QU v ||S) with respect to the parameters m% and V¥ of the full

(not factorized) Gaussian approximation QU V to zero. Then we adjust Qu,v so that KL(Quy, V||QU v) is
minimized with respect to the parameters mj;, and v of Qu v, for k =1,...,h. This is achieved when,
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for the i-th row of U, the means of Qy v match the means of QAU’V and the precisions of Qy v match the
diagonal precisions of QUN. Following [Lim and Tehl (2007, we update QU,V with respect to m} and V;‘
by setting

N u _ Eo, [viv)]
Vit = diag(v; \11, cey %,h\n) Ty Z szf] , (140)
§:(i,§) €O Yij
’\HE T
~ o rul— u,\11 u,\11 w,\ 11— i Q [ }
ml VY~ = (m L m D diag (o et T Y - (141)
J:(i.§)€0 Vi j

After this, we update Qu v by setting

mgy, = [y, vk = V{IVIT ek, (142)
for kK = 1,...,h. The corresponding parameters for the j-th row of V, that is, m{, and vy, where
k=1,...,h, are updated in a similar way. In practice, we first iterate over ¢ = 1,...,n, updating the my
and CHA Qu,v for the i-th row of U, and then we iterate over j = 1,...,d, updatlng the my, and vy

in Qu v for the j-th column of V. We repeat this process a total of 3 times each time we want to refine
the approximate factor fu. Furthermore, we use as initial solution for Qy v the value obtained during the
previous iteration of EP. On the first EP iteration, we initialize Qv v by randomly sampling all the mean
parameters m;', and mj . from a standard Gaussian distribution and then setting all the variance parameters
vj'y and v7, to one.

4.1.15 The predictive distribution of the complete data model

Once the parameters of Q have been fixed by running the EP method, we can use Q to estimate the posterior
probability that the entry in the i-th row and j-th column of the rating matrix R may have taken value 77 .

Here, we assume that the entry in the i-th row and j-th column of R is not contained in the set of observed
ratings R®. When the data is Missing At Random (MAR), the exact posterior distribution for 77 ; given

RO is then

p(r?,|RO) = / p(r? jlat ;. by)p(al, e

¢ 5 p(e i, v p(OIRY) dO daf; des (143)

with p(r} ;la;;,b;) = Hk 1 [sign[ fo—k—05](a;,; —bjx)], plal S ,j,’yfow,’y]c‘)l) N(a; ”,fyfow’y;d)
p(c;jlug,vy) = d(c;; —uf v;) and p((-)\RO) is the posterlor distribution for ® given R® in the complete
data model under the MAR assumption, that is,

p(OR?) = p(RC|A°, B)p(A°|CO, 4", v*)p(C°|U, V)
p(UmY, v)p(VimY,vV)p(B|bg)p(bo)
(v )p(v**")p(m)p(m¥)p(v¥)p(vV) /p(R®) . (144)

where p(R®) is a normalization constant and

p(RP|A° B) = H H © [sign[r; ; — k — 0.5](ai,; — bj k)], (145)
(1,5)€0 k=1
p(AO|CO,’7mW col _ H N ( az’jlcld’ row col)’ (146)
(i,5)€0
p(COlU, V)= [] 6ci;—uf v;). (147)
(i,5)€0
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To obtain an approximation to (143) we first replace the exact posterior p(@|R?) in (143) with the EP
approximation Q. However, even after doing this approximation, the resulting integral is not analytical.
We therefore, perform an additional approximation. We replace [ 6( = ul v )Q(®) dO® with a Gaussian
with mean m;} = S mimY ;. and variance v’} = Zzzl[m;ﬁk] 0¥y + o [mY )7 + oY, Note that
u! v; is a a random variable with mean mf; and variance vc’j* under Q. Again, we still need to perform an
additional approximation. We replace f N(aj et j,'yfow'yJCOl)N (¢t lmy5,v77)Q(0©)d® with an additional
col col

V)@ + 1) (@ + 1)]7L. In this
case, we are approximating the inverse- gamma factors for fy and fy“’l in @ with point masses located at
the modes of those factors. The posterior distribution for 77 ; given by the complete data model (CDM)

xow row

Gaussian with mean mc’* and variance v + v , Where v = [b7
i,
row

once we have observed R© is then approximated by

I—
ﬁCDM(rzﬂRo) = / H €] [sign[r;‘,j —k—0.5](a;; — bj7k)} N(af |mf;, f]* +v] )Q(@) d® da ;

e {Crt ) - {Ctrt, — D)) (148)

where ((r7;) = (mf,.. —m{7)(v;7 +05,. +0];)70% and ®(-) is the standard Gaussian cdf.
5 T4 p P TiLg >

4.2 Approximate Inference in the missing data model

In this section we describe the operations performed to approximate the exact factors for the missing data
model, that is, the exact factors 14 to 19 in Figure[I] We approximate all these factors in a single step. For
this, we define the extended factor for the missing data model (MDM) as

d h n L
fra,ik(eir) HH fis,5.6(fik) lHHfmu 1

1k=1

Fupm(@,R9) = T]
Li=1 k

d L
HHnwﬂlm Hﬂmwmwﬁxmww%,<m)
j=1k=1

[n h

1

i=1j5=1

where  is the set of variables = {E,F, z, A™", ¥} and R™® denotes the set with the entries of the
raining matrix R that are not observed. We approximate the above extended factor with an approximate
factor fup (0,92, R™9) that has the same functional form as the posterior approximation Q. We now
show how to refine the parameters of fM pa so that it is as similar as possible to fi;pas. The first step is to
compute Q\MPM ag the ratio between Q and f m DM - Note that the exact factor fi;pas does not depend on
©. This means that we can ignore in Q\MPM any factor for any variable in ®. Furthermore, the factors in
the complete data model, that is, factors 1 to 13 in Figure |1, do not depend on €. This means that Q\MPM
is uniform and non-informative on € and consequently we can ignore in Q\MPM any factor for any variable
in Q. Therefore, we are only interested in knowing the parameters of the factors in Q\MPM for R™C. In
particular, we have that the parameters of Q\MPM are

piiPM = bepu(r; = IIRO), (150)

for (4,j) ¢ O and I = 1,..., L, where pcpm(r}; = l|RO) is given by , that is, the prediction of the
complete data model for the probablhty that the entry in the i-th row and j-th column of the rating matrix
R may have taken value I, where (i,5) ¢ O. In practice we do not store all the p}lj\./[lDM, for (i,7) ¢ O
and [ = 1,..., L, in memory, since their number scales as nd — |O|. When n and d are very large, storing
all of them is infeasible. As a solution, we will compute them only when needed and we will discard them
afterwards.

The standard EP algorithm would minimize the KL-divergence between fuspar (2, R"C)Q\MPM(R~0)

and farpar(Q, R"9)Q\MPM(R™O)  wwhere Q\MPM(R™C) is the marginal of Q\MPM on R™©. However,
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this is infeasible in practice. Instead, we follow the approach used by [Stern et al.| (2009) and minimize
the KL divergence with the arguments swapped. That is, we minimize the KL divergence between Q and
farpa (Q,RC)Q\MPM(R=O) The following section shows how to minimize this divergence with respect
to the parameters of Q.

Once we have adjusted Q, we would have to update fi;pas so that it is the ratio of Q and
However, in practice, this is not necessary since we always work with Q and never access fM pu directly.

Q\MDM

4.2.1 The variational objective function

The KL divergence between Q and fipa (€2, R™9)Q\MPM(R™C) is minimized when we maximize the
following objective with respect to the parameters of Q

c=#i0]+ Y [ Q0RO log [ fupai (2. RN PN (R)] an, (151)
RO

where H[-] denotes the entropy of a distribution. However, maximizing this objective is problematic because
we cannot analytically integrate the logarithm of the logistic functions in fu;pas (€2, R79). These logistic
functions have their origin in the exact factors fig; ; from Figure E To solve this problem, we approximate
the logistic function with a Gaussian lower bound [Jaakkola and Jordan|(1997)). In particular, we lower bound

z;50(a) + (1 — z;5)0(—a) in with

Cl(l — Zl‘i,j) —|—€

0§ =@ { -5

= AE)(a® ~ 52)} , (152)

where A\(€) = (0(€) — 0.5)/(28), o(x) = 1/(1 + exp(—1)) is the logistic function and & is adjusted to make
the lower bound tight at a = ££. When we replace each fig; ; in with an instantiation of (152) that
includes its own variational parameter ; j, we obtain the new objective function

n d n h d h L
L= ZZO‘W +Zzﬂak +ZZ%‘J€ +tr+ Z Z%’,j,z, (153)
i=1 j=1 i=1 k=1 j=1k=1 (i,)¢0 1=1

where

pig (1 =23 5) + &5
: o M)+ st — €y) (154)
DM

M
®i gl = —Dij1 108 Di 1+ Pij logpz\’j’[ ) (155)

a;j =logo(&i ;) —

Bia = pCia:& g, €a,&a), Yid = pFja [ Fia fa), & = p(2,2,2°,2°), we define p as pla,b,c,d) =
~0.5—0.5loga/b+ [(c — d)? + a][2b]~* and

h L row col ..
2 k=1 mf,kmf,k om0 (mY T+ mﬁz pija (i,5) ¢ O

Hij = h row col . (156)
PRy mie,kmf,k +m* + (m?,ri,j + m}b,m,j) 1 (i,5) €O
h L row col P
2 = (halmiaPe vl P ol ) e DL 00 v e (00 #0
] h row col L.
Zk:l[mik]QU{,k + ”ie,k[m;'c,k]z + Uf,k”;,k +vP 4 (], + U;'/J,ri,j) 1 (i,5) €O

In the following section we show how to optimize the cost function (153) with respect to the parameters of
Q and the variational parameters &; ;.
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4.2.2 Optimality conditions and batch inference
The cost function (153) is optimized with respect to &; ; by setting

Cij =17, +57;, (158)

where y; ; and s7 ; are given by (156) and (157). The optimal value for m* and v* are

n d
W =0T D 0D 20 (&), (159)

i=1 j=1

n d
mA ] =200 4 DO i — 0.5 = 2M(&i ) (i — m7)] (160)
i=1 j=1

AFoW

The optimal value for mf‘}ow and vz ,  are

3] = O Z 2A(&i)Pij » (161)
j=1
B B d
mf:l [’Uz{\,l ]71 _ )\rOWO[)\rOWO}*l —+ Z |:£Ci.,j —0.5— 2)\(5747])([“7] — mf"l ﬁi7j7l)i| ﬁi,j,l s (162)

1

J

where p; j; = pi ;i if (i,5) ¢ O and p; j; = I[r; ; = 1], otherwise, and I[r; ; =] is the indicator function that
takes value 1 when r; ; = [ and 0 otherwise. The optimal values for m#’lo and vwl have similar expressions

To obtain the optimal values for the mean and variance parameters myg ., vj, m! ik and vz i for ¢ =
l,...,n,j=1,....d and k = 1,...,h, we proceed as in Section [L.1.14] In partlcular we follow Paquet
and Koenigstein (2013) and make use of the intermediate approximation Qg g that does not factorize across
columns, where

n d
OpF = lHN(eilﬁlf,Vf)] [TV ], v (163)

i=1 j=1

and m{ and rhf are the mean vectors for the i-th row of E and the j-th row of F, respectively, and V{ and
Vf are the corresponding covariance matrices. To update the variational parameters in Q for the i-th row
of E we first equate the gradient of the ObJeCthB . with respect to the parameters m$ and Ve of the full
(not factorized) Gaussian approximation Q to zero. Then we adjust Q so that KL(QHQE F) is minimized
with respect to the parameters m{, and vi,k of @, for k =1,...,h. This is achieved when, for the i-th row
of E, the means of @ match the means of QEF and the precisions of Q match the diagonal precisions of
QE,F. We update QEF with respect to m§ and Vf using

[Vt = diag(edy, ..., 0 Zm &) Bolff;], (164)
Jj=1
mf[vf]71 = (6?17 . -aégh)diag(é?kv o -7é?,k)71+
> @i — 05— 2X(& ) (i — Zmlkm Eolf]]. (165)
j=1

After this, we update Q by setting

miy, = [0, ik = VAV Y (166)
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f

e where k =

for k = 1,...,h. The corresponding parameters for the j-th row of F, that is, m;-ck and v
1,...,h, are updated in a similar way.
Unfortunately, there is no analytical solution for the optimal value of p; ;; as a function of all the other

variational parameters. Because of this, when we refine fM pu, we do not fully optimize p; ;; and instead,

just fix p; ;1 to be equal to pl\’]j\-/’[lDM, that is,
MDM
Pijl = pz\,j,l ; (167)
for Il = 1,...,L. In practice, this approximation is expected to produce reasonably good results since

J10,i.5(ri g, i g, €0, £, 2, XY, 4pS!) will most of the times be rather flat as a function of r; ;. However, note
that at prediction time, we do adjust p; ;; by using the prediction formula described in Section

To optimize Q, we could follow the batch procedure described in Algorithm [I} However, this method is
infeasible in practice. For example, to update the variational parameters Vi . ,VfL just once, we need to
examine the whole matrix X, which has dimension n x d. When n and d are massive, the computational
cost of that operation is to high. In practice X is a very sparse matrix since only a very reduced number of
the ratings in R are actually observed. Ideally, we would like to optimize Q using a method that scales with
the number of ones in X, that is, with the number of observed ratings. The following section describes an
stochastic optimization method that has this property.

Algorithm 1 Batch method for updating @ when refining fMDM.

Input: Current Q, Q\MDM

fort=1to T do
{Update the variational parameters for the rows and global bias.}
for i =1ton do

Update Pi11,---5Pid,L using 167

Update & 1, .. .,&;,q using (158]).

Update [V¢]~! and m¢[V¢]~! using and (165).
Update mfy,...,m7, and vj,,...,v;, using 1]

Update m? and v* using (159) and (160).

Update mg\ffw, . ,mg\h and vi):l e 71);\;;% using |j and 1}

end for
{Update the variational parameters for the columns and global bias.}
for j=1toddo
Perform updates similar to the ones in the previous loop.
end for
end for
Output: Updated Q.

and binary matrix X.

4.2.3 Stochastic inference in the missing data model

We describe how to minimize the KL divergence between Q and faspar (€2, R™9)Q\MPM(R ™) in an efficient
way. Our approach is based on the method stochastic variational inference (SVI) Hoffman et al.| (2013]). SVI
works by sub-sampling the data and doing small partial updates of the variational parameters. This allows
us to obtain an accurate approximation Q@ when we have only examined a reduced fraction of the entries in
X. Note that the SVI updates are performed on the natural parameters of distributions in the exponential
family [Hoffman et al.| (2013).

The SVI updates for [V¢]~! and m¢[V¢]~! at time ¢ are given by

(Ve e = (1= pIVET emr + o5V Foisy » (168)
(S [V oo = (1= p) (i VST ot + o [V Juoisy (169)

where the subscripts t—1, t and “noisy” denote, respectively, the previous value of the variational parameter,
the new value of the variational parameter and a noisy estimate of the optimal value for the variational
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parameter, that is, the optimal value given by or . The parameter pS € [0,1] is a learning rate
that should converge to zero as ¢ increases. The value of p§ can be specified each time that we update
[Ve]~! and m¢[V¢]~! using a Robins-Monroe update schedule (Robbins and Monro, [1951), that is, p¢ =
(1 + updateCounter) ™" where & € (0.5,1] and “updateCounter” is the number of times that [Ve]~! and

[Ve] ! have been updated so far. In our experiments, we fix x = 0.7.

We compute the noisy estimates of (164 - ) and (| . 165) by considering all the entries x; ; with value one in
the i-th row of X and then randomly subsampling the same number of entries in that row with value zero.
In particular, we have that

(V] Ynoisy = diag(e) ..., &0) 7"+ > 2M&HEQlf 1+ 08 Y 2M&)Eolf ],  (170)

jEI;OW’l jEI;OW’U
{ﬁlﬂvf]_l}noisy = (é?,lv ) é?,h)diag(é?,m ) é?k)_1+
> l — 0.5 — 2M(&;) (i j — Zmzkm )| Eolf] ]+
eI:OW 1
m; Z lxw 0.5 = 2X(&i ) (mij — Z mg, km x| Eolff], (171)
jeTro™° k=1

where I{OW’l is a deterministic set with the column indexes of the entries in the i-th row of X that take
value one, that is, Z/°"" = {j : j € {1,...,d}and (3,j) € O}, and Z,°*"* is a random set with the column
indexes of some entries in the i-th row of X that take value zero. In particular, Z; w0 satisfies that a) for any

€ Iirow’o we have that z; ; = 0, b) the size of Iirow’o is the number of variables z; ; with value one in the i-th
row of X and c) all the elements in Z:°*"° are chosen randomly from the set {j : j € {1,...,d}and (i,5) ¢ O}
with equal probability and with replacement. Note that [Z;°"°| = |Z;°*"!|. Finally, the constant 7{ takes
value n¢ = (d — [Z7°°))/|Z/°"°|. This scaling constant guarantees that the expectations of {{V¢]™!}noisy
and {m¢ [Vf]_l}noisy are the same as the exact optimal values given by and , respectively.

The stochastic update for [V; |7t and rh;-c [\7; ]7! at time t are computed in a similar way.

We will update [v?]~! and m?[v?]~! each time that we access the value of an entry in the binary matrix
X. The SVI updates for [v*]~! and m?[v*]~! are given by

{1 = (= p){[07] Femr + {107 noisy (172)
] e = (1 — p? ) {mP o] e + pZ{mZ[vzrlsz}noisy, (173)

{m

1m?[v?

where p? is specified in a similar way as p¢ and {[v?] ™! },0isy and {m?[v?]™ }nmsy are given by

{[Uz]il}noisy = [20}71 + 7]22/\(51,]) ) (174)
{m* ] Fnoisy = 2°2°) 7 + 07 [ — 0.5 = 2A(&i,3) (s — m7)] (175)
z; ; is the entry of X accessed during the update of [v?]~! and m?[v?]~! and the constant * takes value

T O [T - ) + 1T - 1] (i) ¢ 0 (7o)

This constant guarantees that the expectations of {[v*]™}noisy and {m?[v?] 71 7171} L are the same as

their optimal values given by - and -
The SVI updates for mZ } " and v ,forl=1,..., L, are given by

{lo, 17" = (1= pH){[v} Vil U e+ pf{ o ?mw]_l}noisya (177)

)\row
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Algorithm 2 Stochastic method for updating Q when refining farpas-

Input: Current Q, Q\MDM 414 binary matrix X.
fort=1to T do
{Update the variational parameters for the rows and global bias.}

for i=1ton do
Initialize {[V¢]™ }noisy, {05[VE] ™ }noisy and {[v Amw] D oisy and {m’\ o Z’\;ow} D oisy, for 1 =
1,..., L, with the contribution from the prior.
Generate set of indexes Z;°"".
for j € T,V do
Update p; ji1,---,D: J [ using 167
Compute p; ; and s? . using 1 ) and (| .
Update &; ; using 1.)
Update {[Verl}nmsy and {E[VE] ™Y noisy using (170) and (171).
Update {[’Uz- "1 }n01sy and {m’\row [v rOW] D oisys for l =1,...,L, using and .
Update m~* and v* using first and then (172 and -

end for
Generate set of indexes
for j € 7/ do
Update Dij,1s---5Pi5,L using 167.
Compute p;,; and s7 ; using (156) and .
Update &; ; using .
Update {[\A/'e]_l}nmby and {m¢[Ve]~! }nomy using and
Update {[ ] oisy and {m o [ Y oisys for l =1,. L using (| and .
Update m~? and v* using first . and then and -

end for
Update [V¢]~! and m¢[V¢]~! using (168) and (169).
Update mg y,...,m{, and vf,,...,vf, using (166).
Update v;\jow and mf‘fw, forl=1,...,L, using 1) and 1]
{Update the variational parameters for the columns and global bias.}
end for
for j=1toddo
Perform updates similar to the ones in the previous loop.
end for

end for
Output: Updated O.

Iyow, 0

Arow )\row ATow

o1 e = (L= p)mdy) [0 T hma + pE{miy T 2 T oy » (178)

where we are using the same learning rate p¢ as for the stochastic updates of [V¢]~! and m¢[V¢]~! since we

{m3,

will be updating all these parameters at the same time. We compute {[Ua;ow]il}noisy and {mf‘low [v f‘?ow] Y oisy
in a similar way as {[V§] ™ }aoisy and {t¢[VE]~1},0isy, that is,
L B e N D DR G T D DL U (179)

. 1 . ,0
jeTre™ jeTre”

Arow ATow

{m) [0 ] oy = AOVONOVO T 4 Z [x” — 0.5 = 2X\(&i ) (i — my Piga) | Pigit

jezimw,l
oy [xm‘ = 0.5 = 2X(&5) (i — mi Wﬁi,j,l)] Dijil s (180)
jez-:ow,ﬂ
col col
The SVI updates for m}z’l and v}pl ,forl=1,..., L, are computed in a similar way.
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Finally, note that computing the optimal update for p; ;; without using numerical methods is not feasible
in practice. As mentioned in the previous section, we do not fully optimize p; ;; and instead, just fix p; ;;

to be equal to p\ DM , which is expected to produce reasonably good results.

Algorithm 2] shows our stochastic method for adjusting @. The computational cost of this method scales
linearly with respect to |O]. This is a significant gain when n and d are very large but the number of observed
entries from R is small. In practice, we do not keep in memory all the variables & j, p; j, 57 ; or p;ji. We
compute them when needed and then, we discard them afterwards.

4.2.4 The predictive distribution of the missing data model

Once Q as been updated to incorporate the contribution of the extended factor for the missing data model
(MDM) farpar (2, R™9), that is, , we can use Q to compute the approximation ngl (a:”) to the
posterior probability p%BM (xi,5) that the entry in the i-th row and j-th column of the rating matrix R has
taken value [, as a function of x; ;. This posterior probability is computed ignoring the contribution from

the complete data model. In particular, we have that

Py (i5) o /fw,i,j(ri,j = laxi,jaeufj»Z,MOWad’;OI)Q(Q) ds?
o« o {(2z;; — 1) [ezf +z+ N+ COI]} (2 (181)

We can approximate the integral above by replacing the logistic function with a rescaled probit function that
has the same slope at the origin as the logistic function o(-) MacKay| (1992)). This leads to

Pt (i) o< o{ (23 — 1)p(s7 i} s (182)

where o(z) = (1 + 7x/8)~ /2 and

row col
i = (Z mg ym;, > +m® A my ‘*‘m;ez ; (183)
h 1
Sij,l = (Z[mf,k]Zv;,k + o5 . [m] m] ] + vf k5, k) +0* + vzl T+ Uw . (184)
k=1

4.3 Approximate Inference in the complete data model with MINAR data

With MNAR data, approximate inference in the complete data model is challenging. The reason for this is
that we now have to deal with the exact factors fi1,;;, fi2,i,; and fis j for which (¢, j) ¢ O. Ideally, we
would approximate each of these exact factors with an approximate factor that would be iteratively refined
by EP. However, keeping all those approximate factors in memory is infeasible in practice since their number
scales as nd — |O|, where n and d can be very large. Instead, we will just generate an approximation to these
exact factors that will be computed when needed and then discarded afterwards. Whenever we have to find
an approximation to any of the fi1;;, fi2,:,; and fiz; ;x with (¢,j) ¢ O, we proceed as follows. First, we
approximate fi1,;; with a Gaussian factor on ¢; ;. Given this approximation, we then approximate fi2 ;
with another Gaussian factor on a; ;. After this, we approximate fis; ;x with an additional Gaussian factor
on a;; and finally, we approximate again fi3; ;% with a Gaussian factor on ¢; ;. The following sections
describe how to do this.

4.3.1 Approximating fi1,;; as a function of ¢; ;

Recall that fi1,:;(cij, i, v;) = 6(cij — uiv;»r). We can easily approximate this exact factor as a function

¢i,; with an approximate factor fu,mw For this, we only have to compute the marginal mean and variance
of ¢; j with respect to fi1.;;(ci j, i, v;)Q(©,2,R7Y). Note that we are using Q and not Q\11%J (the ratio
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between Q and the approximation to fi1,;) to compute the aforementioned marginal. The reason for this
is that we do not store any of the fll,i,j in memory and furthermore, we never include the contribution of
any of these approximate factors, as a function of ¢; ;, into Q, where (i,j) ¢ O. The EP update for the
parameters of the Gaussian factor for ¢; ; in f~11,i, ; is then given by the mean and variance of ¢; ; with respect
to fi1.4,5(cij,u;,v;)Q(0,Q2,R™) (because Q is uniform on ¢; ; for (i,5) ¢ O for the reasons mentioned
above), that is,

h
~ C, 11 ’Laj new __ ~c,11,%,7new __ u 12,0 u v 12 u v
[y E My My g [07; 7 ]ReY = E [mi' e 703 4 v [m g7 + vitg (185)
k=1
4.3.2 Approximating fi2;; as a function of a; ;
row . col

Recall that fi2, ;(a;;, cl’j,'yfow,’yJCOl) = N(a;,; Cigs Vi
for (i,7) ¢ O because we do not store any of the fia,; or fiz;; with (i,7) ¢ O in memory and never
include the contribution of these approximate factors into Q. To update flgﬂ) j we only have to compute the
mean and variance of the marginal of fi2;(ai,cij, 7", 75" Q(©, Q, R™©) f11.4.5(cij, ui, v;) with respect
to a; ;. This marginal is given by

7§>). Furthermore, recall that Q is uniform in a; ;

Z /le,h] aw,cm,'yfow,*y]COI)Q(@,Q,Rﬁo)f11,i7j(ci,j,ui,vj)dcm- de dQ) =

=
/N ai jlci 1Y col N(cw|mc 11, z,gjlcjllz,g)
zgmf"wm»‘ BTG5 ) dewg doi
~ N ai gm0y 5 el + 1)@+ 1), (186)

row row ol col
where in lb we have approximated IG(v/°|a] ,b] ) and IG(y COl|a ;b ) with point probability
masses located at the modes of these factors.

The resulting update for fi2; ; is then

col

[m%;z,z‘,j]new _ mf;l” ’ [,DZ,le,iJ]new _ 170]11 A b” bzcol/[(azmw + 1)(a;7 +1)]. (187)

4.3.3 Approximating fi3;; as a function of q; ;

We now approximate the extended factor fis; (7 ;,a:;,b;j) = 5;11 fi3,i,5,6(Ti 5, @ 5,05 1) as a function of
a; j, when r; ; and b; are marginalized out. For this, we need to match the marginal mean and variance of a; ;
between f13 z,](Tz,jaaz,]a )Q(G Q R™ O)fl? 7,,](0'7,,]) and f13 1,](Tl,j)al7]7 )Q(@ Q R- O)le z,](azj) The
first step is to compute the normalization constant of fis; ;(ri ;,ai ;, b;)Q(O, Q2 Rﬂo)fm ij(a; ;). Let Z be
such normalization constant. Then, it can be shown that

L
7Z = Z/ H © [sign[r; ; — k — 0.5](a;,; — Hpi\f?lM ;)| Hria=l

Tt]

L—1
[H N (bi k|m ., v?,k)‘| Nagj|mg 20 53220 ) da; j de; j dby;

s Yi,g
k=1

Zﬁyﬁ (wi5) [®(au-1) = D(en)] (188)
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where ® is the standard Gaussian cdf, oy = (mjf“ —m? ) (0] 200 b )70, we define ap = oo and
oy, = —oo and ﬁ%le (xij), -, ﬁ%DLM (x;,;) are the probabilistic predictions for r; ; given by the missing data

model, see Section 4.2.4]
The EP updates for fi3;;(ri j,a;,b;) are then given by

2logZ | .
~a,13,i,j1new ~a,12,1,
[U i, j] == [d[ma 12, z,]]g - vi,j ’ ) (189)
%,
y | dlogz PlogZ |
~a,13,%,j1new __ ~ a,12,4,j _ g g
[mivj ] =m;; [d ~ a’j12 KN d[mzaj12 1,3}2 (190)

where

dlogZ ,1Z~MDM [¢(az 1) ¢(az)]’ (191)

d?log Z Ny Plag—1)a—1  pla)ay
ez Z B’AﬂDlM[ B B } 12

2¥)

and By =1, B, =1 and B = 075> +of ) for l=1,...,L— L

4.3.4 Approximating fi2;; as a function of ¢; ;

row ,col

Recall that fi2;;(a:j,cij, vV, 'y]COI) N(a; jlci i ok ). To update flz,m» we only have to compute the
mean and variance of the marginal of fi2; ;(a; ;, ¢, vi°%, ’y]“’l)Q(@, Q, Rﬁo)flgyi,j (a4,;) with respect to a; ;.
This marginal is given by

/f12 i,7 a”L,j7 cz,j 5 Vfowa ’Y]COI)Q(@> 97 Rﬁo).fl?),i,j (ai,j) dai,j dO®dQ) =
RO

/N ai jlei O ASYN (ai g g > 50T

2

TGl ) )IG (y f»°W|a}°°‘,bf°‘> das j, dyi™ dyed
~N (i jlm

e 13 ,0,7 5% 13,i,5 + b’y b}COI/[(azww + 1)(a"jYC + 1)]) , (193)

s YiLg

row row ol col
where in we have approximated IG(y°%|a; ,b] ) and IG(y C°1|a ,b] ) with point probability
masses locate at the modes of these factors.

The resulting update for fi2; ; is then

ow col

[mc’jm Z,]}ncw _ m?’,jl?),i,j , [,Df:jlliyj]ncw _ 1~)Zaj13 1657 + b’)’ b;‘YCOl/[(aZr + 1)(@7 + 1)] . (194)

4.3.5 Batch minimization of the reversed KL divergence when refining fi;

Recall that in Section [£.1.11) we had to minimize KL(Qu v||S). The procedure for doing this with MAR data
was described in Sect!l;m With MNAR data, we still have to perform the same operation. However
S now includes a product of factors over all possible values of ¢ and j and not only over those (i,j) € O. In
particular, we have that S is now

n d

n h
S, V) = [T TINVT vime ™ of ™ | T TTNV (anlmie™ o™

i=1j=1 i=1k=1
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d h
UARERNETAR !
I1 H (lmSy ol | (195)
j=1k=1
e el . :
where m; and v;’", for (4, j) ¢ O, are now given by
:j\ll _ mf]w 0,7 7 74,]\11 17(,J12 z,] (196)

and m; ]1 27 and o j12 7 can be computed when needed following the steps described in sections ,
133 and 134
To minimize KL(Qu v|S) with MNAR data, that is, when S is given by (195) and not (137)), we again

follow |[Paquet and Koenigstein (2013]) and make use of the intermediate approximation Qu,v that does not
factorize across columns, where

n d
Quv = [HN(uAmy,V'g)] [TV (v,imy, vy) (197)

i=1 j=1

and m;’ and mj are the mean vectors for the i-th row of U and the j-th row of V, respectively, and V}' and
V¥ are the corresponding covariance matrices. To update the variational parameters in Qu,v for the i-th
row of U we first equate the gradient of KL(QU v ||S) with respect to the parameters mY and V“ of the full
(not factorized) Gaussian approximation Qu v to zero. Then we adjust Qu.v so that KL(Qu v|Qu.v) is
minimized with respect to the parameters m;', and v}, of Qu,v, for k =1,...,h. This is achieved when,
for the i-th row of U, the means of Qy v match the means of QAU’V and the precisions of Qu,v match the
diagonal precisions of Oy v. We update Oy v with respect to m¥ and V¥ by setting

d T
. E [vivy]
wl— u,\11 w,\11y — Qu, J
Vi)™t = diag(o"!! oy T DD (198)
Jj=1 i,J
\11 \11 \11 \11 d ’\nEQ [ T]
S uyrul— u, u, u u, — u,v
my Vi)™ = (mi Jdiag(uy o) T 3 T 0 (199)
Jj=1 (%]

After this, we update Qu v by setting

miy = (M, v = 1{VE] ™ Sh s (200)
for kK = 1,...,h. The corresponding parameters for the j-th row of V, that is, m{, and vy, where
k=1,...,h, can be updated in a similar way.

Note, however, that the update equations ((198)) and include now a sum over j = 1,...,d, while the
corresponding update equations in Section q& included only a sum over only the j such that (i,7) € O.
This last set of column indexes is usually much smaller than d since the number of observed entries in the
rating matrix is often very small. The consequence is that minimizing KL(Qu v||S) with MNAR data has
a cost that scales as nd instead of as |O|. When n and d are very large, minimizing the divergence with
MNAR data using the batch update equations and is infeasible in practice. Ideally, we would
like to minimize KL(Qu v||S) using a method that scales with |O|, that is, with the number of observed
ratings. In the following section we describe an stochastic optimization method that has this property. In
Section we used a similar approach to approximate the exact factors in Figure [I| for the missing data
model.

4.3.6 Stochastic minimization of the reversed KL divergence when refining fn

We now describe how to minimize KL(Qu v||S) in an efficient way. Our approach is based on the method
stochastic variational inference (SVI) Hoffman et al.| (2013)). SVI works by sub-sampling the data and doing
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small partial updates of the variational parameters. This allows us to obtain an accurate approximation

Qu v when we have only examined a reduced fraction of the nd factors N'(uf v;|m; ’\11, f”j\ll) that are
included in S in (195). The SVI updates for [V¥]~! and m%[V¥]~! at time ¢ are given by

(Ve = (= pHIVET Femr + IV oy » (201)

{my Vi~ = (1= pi){mf VI bt + i V] aoisy (202)

where the subscripts t—1, t and “noisy” denote, respectively, the previous value of the variational parameter,
the new value of the variational parameter and a noisy estimate of the optimal value for the variational
parameter, that is, the optimal value given by or . The parameter p} € [0,1] is a learning
rate that should converge to zero as t increases. The value of pj' can be specified each time that we
update [V¥]~! and m%[V¥]~! using a Robins-Monroe update schedule (Robbins and Monro, [1951), that is,
p* = (1 4+ updateCounter)™* where x € (0.5,1] and “updateCounter” is the number of times that [V%]~!
and mj' [V”]’1 have been updated so far. In our experiments we fix k = 0.7‘

We compute the estimates {[V¥] ™! }noisy and {m¥[V¥#] =1}, o1y of and ((199) by considering only a

reduced fraction of the factors N'(u} v; |mc \11, icj\ll) (j =1,...,d), instead of all of them, as it is actually

done in 1 and l . In particular, for each value of 7, we only consider the factors A'(u} vjilm; ’\11, vf”j\u)
such that and a random subset of the factors with indexes (i, j) such that (i,j) ¢ O, where the

two subsets of factors have the same size. In particular, we have that

_ w11y — Eouv[Vivil | Eoy v [v] V)]
(VT bty = diag(i ™l T YD S e S S, (209)

jel-row,l i.j jEIfOW’O i,
i — 11 11 11 Al1y—
(0} [V ey = (mi M omp D diag (ool T
c,\11 T ,\11 T
m; EQUV[V ] m; ; EQU v[ }
Z ,\11 +nl Z ’\11 ) (204)
jezyowt Yij JETIoMO Vi

where Z; o1 is a deterministic set with the column indexes of the observed entries in the i-th row of R, that
is, /' = {j: j € {1,...,d}and (3,5) € O}, and Z;°" is a random set with the column indexes of some
entries in the i-th row of R that are not observed. In particular, Z;°" -0 row,0
we have that z; ; = 0, b) the size of Z;°" ¥ is the number of variables x;; with value one in the i-th row
of X and c¢) all the elements in Z'**"" are chosen randomly from the set {j : j € {1,...,d}and (,j) ¢ O}
with equal probability and with replacement. Note that |Z;°*"°| = |Z:°"|. Finally, the constant 77? takes
value n* = (d — |Z:°°))/|Z:°"°|. This scaling constant guarantees that the expectations of {[V¥#] ™"}y
and {m} [Vf] "} oisy are the same as the exact optlmal Values given by ) and 1.} respectlvely

Once we have updated [V¥]~' and m%[V¥]~! using and , and (201) and , we update

Qu,v by setting

satisfies that a) for any j € Z;

miy = [0k, vk = VAV ks (205)
fork=1,...,h. R R
The corresponding stochastic updates for [V}’]’ and ;] [V“] in Qu v and the m}; and v}, with
k=1,...,hin Qu,v, are computed in a similar way.

Algorithm (3| shows our stochastic method for minimizing KL(Qu v||S). The computational cost of this
method scales linearly with respect to |O]. This is a significant gain when n and d are very large but the

number |O| of observed rating entries is small. In practice, we only keep in memory the variables m; e\

i,
v; ’]\11 with (¢,7) € O. All the other variables m; ’]\11 and v, ,]\1 with (4,7) ¢ O are computed when needed,

as described in Sections[4.3.1] [4.3.2] [4.3.3] and [4.3.4] and then discarded afterwards.

and
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Algorithm 3 Stochastic method for minimizing KL(Qu v||S).

\11

Input: Current Qu v, Q and binary matrix X.

fort=1to 3 do
{Update the variational parameters for U.}
for i =1ton do
Initialize {[V"] D oisy and {mY [V“} 1} oisy With contribution from the prior.

Generate set of indexes Z;”"". !
for j € TV do
Extract m \1 and vic_”j\u from Q\!1.
Update {[V 1] oisy and {m¥[V¥]71}, sy using and .
end for
Generate set of indexes

for j € 7°° do
Compute mf”}u and U;,j\u from Q\!! as described in sections |4.3.1 |4.3.2L |4.3.3| and |4.3.4l
Update {[Vf]*l}noisy and {m} [V?‘]’l}noisy using 1) and 1]

IY»OW’ 0

end for
Update [V¥]~! and m¢ V]~ usmg and l-
Update mj'y,...,m 7h and U i O usmg 1

end for

{Update the variational parameters for V.}
for j=1toddo
Perform updates similar to the ones in the previous loop.
end for
end for
Output: Updated Qu,v.

We first iterate over ¢ =1,...,n, doing stochastic updates on the m;, and v7, in Qu v for the i-th row
of U, and then we iterate over j = 1,...,d, doing stochastic updates for the mj, and A Qu,v for the
j-th column of V. We repeat this process a total of 3 times each time we want to reﬁne the approximate
factor f 11. We always use as initial solution for Qy v and QU v the value obtained during the previous
iteration of EP. Furthermore, the counter updateCounter that we use to compute the learning rates p}* counts
the number of updates done during the whole execution of EP, not only during the individual executions of
Algorithm [3]

4.4 Approximate Inference in the joint model

We describe how to perform approximate inference in the joint model formed by the combination of the
complete data model (CDM) and the missing data model (MDM). Our algorithm first performs approximate
inference in each of these models independently. First, we approximate the factors for the CDM assuming
MAR data. For this, we run the expectation propagation (EP) method described in Section for 40
iterations. Next, we approximate the factors for the MDM assuming that the predictions of the CDM are
non-informative, that is, we assume that popas (ri*’j =I|R®) in is uniform across rating values. This
disconnects the MDM from the CDM. The MDM is adjusted by running the stochastic variational inference
(SVI) method described in Section for 120 iterations. After this initial adjustment, we iterate refining
the posterior of each model by taking into account the predictions of the other one. In this case, we adjust
the MDM by running the SVI method from Section [£:2.3] again for 120 iterations, but this time without
assuming that the predictions of the CDM are non-informative. Finally, the CDM is adjusted by running
the EP-SVI method from Section for 40 iterations. Algorithm [4| shows all the steps of our inference
procedure.
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Algorithm 4 Approximate Inference in the Joint Model

Input: Rating dataset D.
Adjust Q by running EP on CDM with MAR data (Section [£.1]).
Adjust Q@ by running SVI on MDM assuming CDM is uniform (Section .
fori=1to 2 do

Adjust Q by running SVI on MDM (Section .

Adjust Q by running EP-SVI on CDM with MNAR data (Section .
end for
Output: Posterior approximation Q.

4.5 The predictive distribution of the joint model

Once we have adjusted Q by running the approximate inference method shown in Algorithm [] we can use
Q to make predictions. In particular, we can approximate the posterior probability p (xl ;) that the entry
in the i-th row and j-th column of the rating matrix R may have taken value [, whlle conditioning to any
specific value of z; ;. When we fix z; ; = 0, we assume that the entry was not selected by the missing
data mechanism and it is actually missing. When we fix z; ; = 1, we assume that the entry was selected
by the missing data mechanism and should have been observed, but for some reason its value is unknown.
The probability pf%(a:”) is approximated by combining the predictions of the CDM and the MDM. In
particular,

M (wi5) < Pepum () = IRC)pMM (24 5) (206)

where popm(ry; = I|RO) is given by 1' and ﬁi\/ngM(xi’j) is given by 1)

5 Evaluation Using Other Metrics Besides Log-likelihood

In the main document, we have evaluated the performance of MF-MNAR by computing its average predictive
log-likelihood (LL) on the standard and special test sets. In this section we report the results obtained by
MF-MNAR using other evaluation metrics such as root mean squared error (RMSE), mean absolute error
(MAS) and predictive accuracy (PA). The loss function used by PA takes value 1 if the predicted rating
value is the same as the one actually found in the test set and 0 otherwise.

In the main document, we use LL as an evaluation metric because

1. LL is invariant to the arbitrary assignment of real values to ordinal ratings, while RMSE or MAE are
not. For example, if we have three possible ordinal ratings with values 717, ”2” and ”3”, these ratings
could also have been labelled ”low”, "medium” and "high”. In this latter case, it is not clear how to
compute RMSE or MAE.

2. LL evaluates the quality of the whole predictive distribution. In this sense LL is more complete than
RMSE, MAE or PA, which only evaluate the quality of point predictions. Having accurate predictive
distributions, as measured by LL, can be very useful in practice, for example, to generate confidence
intervals in the predictions.

3. LL is a better indicator of how accurately the method models the data. For example, RMSE is
less sensitive than LL to how well the model captures the heteroskedasticity present in the data. In
heteroskedastic and homoskedastic models the predictive means (used to minimize RMSE) are often
very similar, while the predictive variances are not. In this sense, LL is a better performance metric
than RMSE.

Tables 1| and [2| show the average test PA in the standard and special test sets, respectively. The best

performing method is highlighted in bold and those results statistically indistinguishable according to a paired
t-test are underlined. The results obtained for PA are similar to the ones shown in the main document for
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LL. Regarding the standard test sets, MF-MNAR is on average the best method on the real-world datasets.
Furthermore, in accordance with intuition, MF-MNAR is better than MF-MAR in the synthetic datasets
with MNAR data, while the the opposite result occurs in the synthetic datasets with MAR data. Regarding
the special test sets, Table [2] shows again that MF-MNAR is better than MF-MAR in the synthetic datasets
with MNAR data. This table also shows that in the SMF-MAR and SRH-MAR datasets MF-MAR is better
than MF-MNAR, as expected.

Tables [3| and [5| show for each method the average test MAE and RMSE in the standard test sets,
respectively. MF-MNAR is on average the best method on the real-world datasets with respect to the MAE
metric. However, the RMSE metric seems to favor Paquet’s method which performs in this case better.
Furthermore, in accordance with intuition, MF-MNAR is overall better than MF-MAR in the synthetic
datasets with MNAR data, while the the opposite result occurs in the synthetic datasets with MAR data.
Finally, tables [ and [6] show the average test MAE and RMSE in the special test sets, respectively. In this
case, we can observe that MF-MNAR is better than MF-MAR, in the synthetic datasets with MNAR data,

while the opposite results is obtained in the synthetic datasets with MAR data.

MF MF MM CTPv Logitvd Paquet Oracle
MAR MNAR MNAR MAR

Dataset MNAR MAR

ML100K 0.479 0.476 0.346 0.370 0.374 0.465  0.335

MLIM 0.499 0.495 0.416 0.397 0.400 0.486  0.348

MTweet 0.603  0.603 0.547  0.515 0.530 0.589  0.492 MF MF MM CTPv Logitvd Paquet Oracle
NIPS 0.612 0.609 0.455  0.495 0.494 0.594  0.398 Dataset MNAR MAR MAR MNAR MNAR MAR

Yahoo 0.536 0.522 0.493  0.437 0.481 0.503  0.314 Yahoo 0.400  0.403 0.363  0.454 0.341 0.425  0.526
SMF-MNAR 0.638 0.632 0.438 0.467 0.464 0.554  0.448 SMF-MNAR 0.427 0.390 0.222  0.148 0.166 0.467  0.479
SMF-MAR  0.829 0.835 0.424  0.439 0.437 0.819  0.464 SMF-MAR  0.824 0.825 0.427 0.123 0.141 0.805  0.468

SRH-MNAR 0.477 0.476 0.492 0.474 0.480 0.475  0.318 SRH-MNAR 0.318 0.300 0.306 0.180 0.183 0.264  0.245

SRH-MAR 0419 0.430 0.422 0.419 0.416 0.446 0.293 SRH-MAR  0.438 0.440 0.426 0.354 0.341 0.448 0.252

Table 1: Average Test PA in Standard Test Sets.

Table 2: Average Test PA in Special Test Sets.

MF MF MM CTPv Logitvd Paquet Oracle
Dataset MNAR MAR MAR MNAR MNAR MAR
MLI100K 0.639 0.642 0.826  0.806 0.801 0.645 0.900
MLIM 0.595 0.598 0.716 0.768 0.752 0.598 0.872
MTweet 0.451  0.451 0.534  0.553 0.540 0.457  0.593 MF MF MM CTPv Logitvd Paquet Oracle
NIPS 0.532 0.544 0.776  0.713 0.707 0.548  1.011 Dataset MNAR MAR MAR MNAR MNAR MAR
Yahoo 0.814 0.825 0.903 1.126 0.944 0.800 1.401 Yahoo 1.180  1.177 1.249 0.770 0.881 1.094  0.819
SMF-MNAR 0.435 0.459 0.832 0.824 0.819 0.466 0.935 SMF-MNAR 0.613 0.685 1.074 1.038 0.982 0.604 0.562
SMF-MAR 0.170  0.165 0.675 0.623 0.620 0.183 0.602 SMF-MAR 0.176  0.175 0.675 1.405 1.328 0.195 0.597
SRH-MNAR 0.713 _0.701 0.717  0.689 0.684 0.698 1.447 SRH-MNAR 1.253 1.318 1.231 1.206 1.205 1.310 1.427
SRH-MAR 0.808 0.793 0.818 0.819 0.823 0.782 1.401 SRH-MAR 0.801 0.797 0.816 0.847 0.869 0.799 1.450

Table 3: Average Test MAE in Standard Test Sets.

Table 4: Average Test MAE in Special Test Sets.

MF MF MM CTPv Logitvd Paquet Oracle
Dataset MNAR MAR MAR MNAR MNAR MAR
ML100K 0.883 0.885 1.069 1.056 1.046 0.884  1.127
ML1IM 0.828 0.829 0.954 1.025 0.997 0.827 1.117
MTweet 0.690 0.690 0.806  0.800 0.792 0.692  0.879 MF MF MM CTPv Logitvd Paquet Oracle
NIPS 0.832 0.834 1.014 0.968 0.963 0.837  1.163 Dataset MNAR MAR MAR MNAR MNAR MAR
Yahoo 1.180 1.186 1.265 1.427 1.286 1.159 1.583 Yahoo 1.483 1480 1.500 1.056  1.141 1.404 _1.057
SMF-MNAR 0.693 0.717 1.056  1.045 1.042 0.659 1.095 SMF-MNAR- 0.793 0.857 1.163 1.181 1.152 0.812 0.775
SMF-MAR  0.351 0.349 0.911 0.820 0.820 0.371  0.819 SMF-MAR 0.362 0.360 0.912  1.402 1.350 0.385  0.816
SRH-MNAR 0.949 0.957 0.903 _0.896 0.896 0937 1.604 SRH-MNAR 1.519 1.562 1.463 1.430 1.430 1.547  1.550
SRH-MAR 1.136 1.129 1.134 1.134 1.134 1.096 1.552 SRH-MAR 1.140 1.130 1.135 1.169 1.172 1.101 1.566

Table 5: Average Test RMSE in Standard Test Sets.
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