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Abstract
A fundamental issue in active learning of
Gaussian processes is that of the exploration-
exploitation trade-off. This paper presents a
novel nonmyopic ✏-Bayes-optimal active learn-
ing (✏-BAL) approach that jointly and naturally
optimizes the trade-off. In contrast, existing
works have primarily developed myopic/greedy
algorithms or performed exploration and ex-
ploitation separately. To perform active learning
in real time, we then propose an anytime algo-
rithm based on ✏-BAL with performance guaran-
tee and empirically demonstrate using synthetic
and real-world datasets that, with limited budget,
it outperforms the state-of-the-art algorithms.

1. Introduction
Active learning has become an increasingly important focal
theme in many environmental sensing and monitoring ap-
plications (e.g., precision agriculture, mineral prospecting
(Low et al., 2007), monitoring of ocean and freshwater phe-
nomena like harmful algal blooms (Dolan et al., 2009; Pod-
nar et al., 2010), forest ecosystems, or pollution) where a
high-resolution in situ sampling of the spatial phenomenon
of interest is impractical due to prohibitively costly sam-
pling budget requirements (e.g., number of deployed sen-
sors, energy consumption, mission time): For such appli-
cations, it is thus desirable to select and gather the most
informative observations/data for modeling and predicting
the spatially varying phenomenon subject to some budget
constraints, which is the goal of active learning and also
known as the active sensing problem.

To elaborate, solving the active sensing problem amounts
to deriving an optimal sequential policy that plans/decides
the most informative locations to be observed for minimiz-
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ing the predictive uncertainty of the unobserved areas of
a phenomenon given a sampling budget. To achieve this,
many existing active sensing algorithms (Cao et al., 2013;
Chen et al., 2012; 2013b; Krause et al., 2008; Low et al.,
2008; 2009; 2011; 2012; Singh et al., 2009) have modeled
the phenomenon as a Gaussian process (GP), which allows
its spatial correlation structure to be formally character-
ized and its predictive uncertainty to be formally quantified
(e.g., based on mean-squared error, entropy, or mutual in-
formation criterion). However, they have assumed the spa-
tial correlation structure (specifically, the parameters defin-
ing it) to be known, which is often violated in real-world
applications, or estimated crudely using sparse prior data.
So, though they aim to select sampling locations that are
optimal with respect to the assumed or estimated parame-
ters, these locations tend to be sub-optimal with respect to
the true parameters, thus degrading the predictive perfor-
mance of the learned GP model.

In practice, the spatial correlation structure of a phe-
nomenon is usually not known. Then, the predictive per-
formance of the GP modeling the phenomenon depends on
how informative the gathered observations/data are for both
parameter estimation as well as spatial prediction given
the true parameters. Interestingly, as revealed in previous
geostatistical studies (Martin, 2001; Müller, 2007), poli-
cies that are efficient for parameter estimation are not nec-
essarily efficient for spatial prediction with respect to the
true model. Thus, the active sensing problem involves a
potential trade-off between sampling the most informative
locations for spatial prediction given the current, possibly
incomplete knowledge of the model parameters (i.e., ex-
ploitation) vs. observing locations that gain more informa-
tion about the parameters (i.e., exploration):

How then does an active sensing algorithm trade off be-
tween these two possibly conflicting sampling objectives?

To tackle this question, one principled approach is to frame
active sensing as a sequential decision problem that jointly
and naturally optimizes the above exploration-exploitation
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trade-off while maintaining a Bayesian belief over the
model parameters. This intuitively means a policy that
biases towards observing informative locations for spatial
prediction given the current model prior may be penalized
if it entails a highly dispersed posterior over the model pa-
rameters. So, the resulting induced policy is guaranteed to
be optimal in the expected active sensing performance. Un-
fortunately, such a nonmyopic Bayes-optimal policy cannot
be derived exactly due to an uncountable set of candidate
observations and unknown model parameters (Solomon &
Zacks, 1970). As a result, most existing works (Diggle,
2006; Houlsby et al., 2012; Park & Pillow, 2012; Zimmer-
man, 2006; Ouyang et al., 2014) have circumvented the
trade-off by resorting to the use of myopic/greedy (hence,
sub-optimal) policies.

To the best of our knowledge, the only notable nonmy-
opic active sensing algorithm for GPs (Krause & Guestrin,
2007) advocates tackling exploration and exploitation sep-
arately, instead of jointly and naturally optimizing their
trade-off, to sidestep the difficulty of solving the Bayesian
sequential decision problem. Specifically, it performs a
probably approximately correct (PAC)-style exploration
until it can verify that the performance loss of greedy ex-
ploitation lies within a user-specified threshold. But, such
an algorithm is sub-optimal in the presence of budget con-
straints due to the following limitations: (a) It is unclear
how an optimal threshold for exploration can be determined
given a sampling budget, and (b) even if such a threshold
is available, the PAC-style exploration is typically designed
to satisfy a worst-case sample complexity rather than to be
optimal in the expected active sensing performance, thus
resulting in an overly-aggressive exploration (Section 4.1).

This paper presents an efficient decision-theoretic planning
approach to nonmyopic active sensing/learning that can
still preserve and exploit the principled Bayesian sequential
decision problem framework for jointly and naturally opti-
mizing the exploration-exploitation trade-off (Section 3.1)
and consequently does not incur the limitations of the al-
gorithm of Krause & Guestrin (2007). In particular, al-
though the exact Bayes-optimal policy to the active sens-
ing problem cannot be derived (Solomon & Zacks, 1970),
we show that it is in fact possible to solve for a nonmy-
opic ✏-Bayes-optimal active learning (✏-BAL) policy (Sec-
tions 3.2 and 3.3) given a user-defined bound ✏, which is
the main contribution of our work here. In other words, our
proposed ✏-BAL policy can approximate the optimal ex-
pected active sensing performance arbitrarily closely (i.e.,
within an arbitrary loss bound ✏). In contrast, the algorithm
of Krause & Guestrin (2007) can only yield a sub-optimal
performance bound1. To meet the real-time requirement

1Its induced policy is guaranteed not to achieve worse than the
optimal performance by more than a factor of 1/e.

in time-critical applications, we then propose an asymp-
totically ✏-optimal, branch-and-bound anytime algorithm
based on ✏-BAL with performance guarantee (Section 3.4).
We empirically demonstrate using both synthetic and real-
world datasets that, with limited budget, our proposed ap-
proach outperforms state-of-the-art algorithms (Section 4).

2. Modeling Spatial Phenomena with
Gaussian Processes (GPs)

The GP can be used to model a spatial phenomenon of in-
terest as follows: The phenomenon is defined to vary as
a realization of a GP. Let X denote a set of sampling lo-
cations representing the domain of the phenomenon such
that each location x 2 X is associated with a realized (ran-
dom) measurement z

x

(Z
x

) if x is observed/sampled (un-
observed). Let Z

X

, {Z
x

}
x2X

denote a GP, that is, every
finite subset of Z

X

has a multivariate Gaussian distribution
(Chen et al., 2013a; Rasmussen & Williams, 2006). The
GP is fully specified by its prior mean µ

x

, E[Z
x

] and
covariance �
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0
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, Z

x

0 |�] for all x, x0 2 X , the
latter of which characterizes the spatial correlation struc-
ture of the phenomenon and can be defined using a covari-
ance function parameterized by �. A common choice is the
squared exponential covariance function:
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the square root of noise variance, square root of signal vari-
ance, and length-scales, and �

xx

0 is a Kronecker delta that
is 1 if x = x

0 and 0 otherwise.

Supposing � is known and a set z
D

of realized measure-
ments is available for some set D ⇢ X of observed lo-
cations, the GP can exploit these observations to predict
the measurement for any unobserved location x 2 X \ D
as well as provide its corresponding predictive uncertainty
using the Gaussian predictive distribution p(z

x

|z
D

,�) ⇠
N (µ

x|D,�

,�

xx|D,�

) with the following posterior mean and
variance, respectively:
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where, with a slight abuse of notation, z
D

is to be perceived
as a column vector in (1), µ
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is a column vector with mean
components µ
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for all u, x0 2 D. When the spatial
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correlation structure (i.e., �) is not known, a probabilistic
belief b

D

(�) , p(�|z
D

) can be maintained/tracked over all
possible � and updated using Bayes’ rule to the posterior
belief b

D[{x}

(�) given a newly available measurement z
x

:

b

D[{x}

(�) / p(z

x

|z
D

,�) b

D

(�) . (3)

Using belief b
D

, the predictive distribution p(z

x

|z
D

) can be
obtained by marginalizing out �:

p(z

x

|z
D

) =

X

�2⇤

p(z

x

|z
D

,�) b

D

(�) . (4)

3. Nonmyopic ✏-Bayes-Optimal Active
Learning (✏-BAL)

3.1. Problem Formulation

To cast active sensing as a Bayesian sequential deci-
sion problem, let us first define a sequential active sens-
ing/learning policy ⇡ given a budget of N sampling loca-
tions: Specifically, the policy ⇡ , {⇡

n

}N
n=1

is structured
to sequentially decide the next location ⇡

n

(z

D

) 2 X \ D
to be observed at each stage n based on the current ob-
servations z

D

over a finite planning horizon of N stages.
Recall from Section 1 that the active sensing problem in-
volves planning/deciding the most informative locations to
be observed for minimizing the predictive uncertainty of
the unobserved areas of a phenomenon. To achieve this, we
use the entropy criterion (Cover & Thomas, 1991) to mea-
sure the informativeness and predictive uncertainty. Then,
the value under a policy ⇡ is defined to be the joint entropy
of its selected observations when starting with some prior
observations z

D0 and following ⇡ thereafter:

V

⇡

1

(z

D0) , H[Z

⇡

|z
D0 ] , �

Z

p(z

⇡
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(5)
where Z

⇡

(z
⇡

) is the set of random (realized) measure-
ments taken by policy ⇡ and p(z

⇡

|z
D0) is defined in a sim-

ilar manner to (4).

To solve the active sensing problem, the notion of Bayes-
optimality2 is exploited for selecting observations of largest
possible joint entropy with respect to all possible induced
sequences of future beliefs (starting from initial prior be-
lief b

D0 ) over candidate sets of model parameters �, as
detailed next. Formally, this entails choosing a sequen-
tial policy ⇡ to maximize V

⇡

1

(z

D0) (5), which we call the
Bayes-optimal active learning (BAL) policy ⇡

⇤. That is,
V
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⇡

V

⇡

1

(z

D0). When ⇡

⇤ is
plugged into (5), the following N -stage Bellman equations
result from the chain rule for entropy:

2Bayes-optimality is previously studied in reinforcement
learning whose developed theories (Poupart et al., 2006; Hoang
& Low, 2013) cannot be applied here because their assumptions
of discrete-valued observations and Markov property do not hold.
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for stage n = 1, . . . , N where p(z

x

|z
D

) is defined in (4)
and the expectation terms are omitted from the right-hand
side (RHS) expressions of V ⇤

N

and Q
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at stage N . At each
stage, the belief b
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(�) is needed to compute Q
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, x)

in (6) and can be uniquely determined from initial prior
belief b

D0 and observations z

D\D0
using (3). To under-

stand how the BAL policy ⇡

⇤ jointly and naturally opti-
mizes the exploration-exploitation trade-off, its selected lo-
cation ⇡

⇤

n

(z

D

) = argmax
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, x) at each stage
n affects both the immediate payoff H
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current belief b
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(i.e., exploitation) as well as the posterior
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, the latter of which influences expected
future payoff E[V ⇤
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] and builds in
the information gathering option (i.e., exploration).

Interestingly, the work of Low et al. (2009) has revealed
that the above recursive formulation (6) can be perceived as
the sequential variant of the well-known maximum entropy
sampling problem (Shewry & Wynn, 1987) and established
an equivalence result that the maximum-entropy observa-
tions selected by ⇡

⇤ achieve a dual objective of minimizing
the posterior joint entropy (i.e., predictive uncertainty) re-
maining in the unobserved locations of the phenomenon.
Unfortunately, the BAL policy ⇡

⇤ cannot be derived ex-
actly because the stage-wise entropy and expectation terms
in (6) cannot be evaluated in closed form due to an uncount-
able set of candidate observations and unknown model pa-
rameters � (Section 1). To overcome this difficulty, we
show in the next subsection how it is possible to solve for
an ✏-BAL policy ⇡

✏

, that is, the joint entropy of its selected
observations closely approximates that of ⇡⇤ within an ar-
bitrary loss bound ✏ > 0.

3.2. ✏-BAL Policy
The key idea underlying the design and construction of our
proposed nonmyopic ✏-BAL policy ⇡

✏ is to approximate
the entropy and expectation terms in (6) at every stage us-
ing a form of truncated sampling to be described next:
Definition 1 (⌧ -Truncated Observation) Define random
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for some 0  ⌧  b⌧ . Then, a realized measurement of bZ
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Specifically, given that a set z
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of realized measurements is
available, a finite set of S ⌧ -truncated observations {zi
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for stage n = 1, . . . , N such that there is no V
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term on the RHS expression of Q

✏

N

at stage N . Like
the BAL policy ⇡
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})). Unlike the determinis-
tic BAL policy ⇡

⇤, our ✏-BAL policy ⇡

✏ is stochastic due
to its use of the above truncated sampling procedure.

3.3. Theoretical Analysis
The main difficulty in analyzing the active sensing per-
formance of our stochastic ✏-BAL policy ⇡

✏ (i.e., relative
to that of BAL policy ⇡

⇤) lies in determining how its ✏-
Bayes optimality can be guaranteed by choosing appropri-
ate values of the truncated sampling parameters S and ⌧

(Section 3.2). To achieve this, we have to formally under-
stand how S and ⌧ can be specified and varied in terms of
the user-defined loss bound ✏, budget of N sampling lo-
cations, domain size |X | of the phenomenon, and proper-
ties/parameters characterizing the spatial correlation struc-
ture of the phenomenon (Section 2), as detailed below.

The first step is to show that Q✏
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(8) is in fact a good approx-
imation of Q⇤

n

(6) for some chosen values of S and ⌧ . There
are two sources of error arising in such an approximation:
(a) In the truncated sampling procedure (Section 3.2), only
a finite set of ⌧ -truncated observations is generated for ap-
proximating the stage-wise entropy and expectation terms

in (6), and (b) computing Q
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does not involve utilizing the
values of V ⇤
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but that of its approximation V
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To facilitate capturing the error due to finite truncated sam-
pling described in (a), the following intermediate function
is introduced:
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for stage n = 1, . . . , N such that there is no V
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Its proof is given in Appendix A.1. The next two lemmas
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Refer to Appendix A.2 for its proof.

Remark 1. Deriving such a probabilistic bound in Lemma 2
typically involves the use of concentration inequalities for
the sum of independent bounded random variables like the
Hoeffding’s, Bennett’s, or Bernstein’s inequalities. How-
ever, since the originally Gaussian distributed observations
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are unbounded, sampling from p(z

x

|z
D

) (4) without trun-
cation will generate unbounded versions of {zi

x

}S
i=1

and
consequently make each summation term � log p(z

i

x

|z
D

)+

V

⇤

n+1

(z

D

[ {zi
x

}) on the RHS expression of W

⇤

n

(9) un-
bounded, hence invalidating the use of these concentration
inequalities. To resolve this complication, our trick is to
exploit the truncated sampling procedure (Section 3.2) to
generate bounded ⌧ -truncated observations (Definition 1)
(i.e., |zi

x

|  b⌧ for i = 1, . . . , S), thus resulting in each
summation term � log p(z

i

x

|z
D

) + V

⇤

n+1

(z

D

[ {zi
x

}) being
bounded (Appendix A.2). This enables our use of Hoeffd-
ing’s inequality to derive the probabilistic bound.

Remark 2. It can be observed from Lemma 2 that the
amount of truncation has to be reduced (i.e., higher cho-
sen value of ⌧ ) when (a) a tighter bound � on the error
|Q⇤

n

(z

D

, x)�W

⇤

n

(z

D

, x)| due to finite truncated sampling
is desired, (b) a greater budget of N sampling locations
is available, (c) a larger space ⇤ of candidate model pa-
rameters is preferred, (d) the spatial phenomenon varies
with more intensity and less noise (i.e., assuming all can-
didate signal and noise variance parameters, respectively,
(�

�

s

)

2 and (�

�

n

)

2 are specified close to the true large sig-
nal and small noise variances), and (e) its spatial corre-
lation structure yields a bigger . To elaborate on (e),
note that Lemma 2 still holds for any value of  larger
than that set in (12): Since |�

x

0
u|D,�

|2  �

x

0
x

0
|D,�

�

uu|D,�

for all x0 6= u 2 X \ D due to the symmetric positive-
definiteness of ⌃

(X\D)(X\D)|D,�

,  can be set to 1 +

2max

x

0
,u2X\D,�2⇤,D

p

�

x

0
x

0
|D,�

/�

uu|D,�

. Then, sup-
posing all candidate length-scale parameters are specified
close to the true length-scales, a phenomenon with extreme
length-scales tending to 0 (i.e., with white-noise process
measurements) or 1 (i.e., with constant measurements)
will produce highly similar �

x

0
x

0
|D,�

for all x0 2 X \ D,
thus resulting in smaller  and hence smaller ⌧ .

Remark 3. Alternatively, it can be proven that Lemma 2
and the subsequent results hold by setting  = 1 if a cer-
tain structural property of the spatial correlation structure
(i.e., for all z

D

(D ✓ X ) and � 2 ⇤, ⌃
DD|�

is diagonally
dominant) is satisfied, as shown in Lemma 9 (Appendix B).
Consequently, the  term can be removed from T and ⌧ .

Lemma 3 Suppose that a set z
D

0 of observations, a bud-
get of N � n

0

+ 1 sampling locations for 1  n

0  N ,
S 2 Z+, and � > 0 are given. The probability that
|Q⇤

n

(z

D

, x) � W

⇤

n

(z

D

, x)|  � (10) holds for all tuples
(n, z

D

, x) generated at stage n = n

0

, . . . , N by (8) to com-
pute V

✏

n

0(z
D

0
) is at least 1 � 2(S|X |)N exp(�2S�

2

/T

2

)

where T is previously defined in Lemma 2.

Its proof is found in Appendix A.3. The first step is con-
cluded with our first main result, which follows from Lem-
mas 1 and 3. Specifically, it chooses the values of S and
⌧ such that the probability of Q

✏

n

(8) approximating Q

⇤

n

(6) poorly (i.e., |Q⇤

n

(z

D

, x) � Q

✏

n

(z

D

, x)| > N�) can be
bounded from above by a given 0 < � < 1:
Theorem 1 Suppose that a set z

D

of observations, a bud-
get of N � n + 1 sampling locations for 1  n  N ,
� > 0, and 0 < � < 1 are given. The probability that
|Q⇤

n

(z

D

, x) � Q

✏

n

(z

D

, x)|  N� holds for all x 2 X \ D
is at least 1� � by setting

S = O
✓

T

2

�

2

✓

N log

N |X |T 2

�

2

+log

1

�

◆◆

where T is previously defined in Lemma 2. By assuming N ,
|⇤|, �

o

, �
n

, , and |X | as constants, ⌧ = O(

p

log(1/�))

and hence S = O
 

(log (1/�))

2

�

2

log

✓

log (1/�)

��

◆

!

.

Its proof is provided in Appendix A.4.

Remark. It can be observed from Theorem 1 that the num-
ber of generated ⌧ -truncated observations has to be in-
creased (i.e., higher chosen value of S) when (a) a lower
probability � of Q✏

n

(8) approximating Q

⇤

n

(6) poorly (i.e.,
|Q⇤

n

(z

D

, x)�Q

✏

n

(z

D

, x)| > N�) is desired, and (b) a larger
domain X of the phenomenon is given. The influence of �,
N , |⇤|, �

o

, �
n

, and  on S is similar to that on ⌧ , as previ-
ously reported in Remark 2 after Lemma 2.

Thus far, we have shown in the first step that, with high
probability, Q✏

n

(8) approximates Q⇤

n

(6) arbitrarily closely
for some chosen values of S and ⌧ (Theorem 1). The next
step uses this result to probabilistically bound the perfor-
mance loss in terms of Q⇤

n

by observing location ⇡

✏

n

(z

D

)

selected by our ✏-BAL policy ⇡

✏ at stage n and following
the BAL policy ⇡

⇤ thereafter:
Lemma 4 Suppose that a set z

D

of observations, a bud-
get of N � n + 1 sampling locations for 1  n  N ,
� > 0, and 0 < � < 1 are given. Q

⇤

n

(z

D

,⇡

⇤

n

(z

D

)) �
Q

⇤

n

(z

D

,⇡

✏

n

(z

D

))  2N� holds with probability at least
1� � by setting S and ⌧ according to that in Theorem 1.

See Appendix A.5 for its proof. The final step extends
Lemma 4 to obtain our second main result. In particular,
it bounds the expected active sensing performance loss of
our stochastic ✏-BAL policy ⇡

✏ relative to that of BAL pol-
icy ⇡

⇤, that is, policy ⇡

✏ is ✏-Bayes-optimal:

Theorem 2 Given a set z
D0 of prior observations, a bud-

get of N sampling locations, and ✏ > 0, V

⇤

1

(z

D0) �
E
⇡

✏

[V

⇡

✏

1

(z

D0)]  ✏ by setting and substituting � =

✏/(4N

2

) and � = ✏/(2N(N log(�

o

/�

n

) + log |⇤|)) into
S and ⌧ in Theorem 1 to give ⌧ = O(

p

log(1/✏)) and

S = O
 

(log (1/✏))

2

✏

2

log

✓

log (1/✏)

✏

2

◆

!

.

Its proof is given in Appendix A.6.

Remark 1. The number of generated ⌧ -truncated observa-
tions and the amount of truncation have to be, respectively,
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increased and reduced (i.e., higher chosen values of S and
⌧ ) when a tighter user-defined loss bound ✏ is desired.

Remark 2. The deterministic BAL policy ⇡

⇤ is Bayes-
optimal among all candidate stochastic policies ⇡ since
E
⇡

[V

⇡

1

(z

D0)]  V

⇤

1

(z

D0), as proven in Appendix A.7.

3.4. Anytime ✏-BAL (h↵, ✏i-BAL) Algorithm

Unlike the BAL policy ⇡

⇤, our ✏-BAL policy ⇡

✏ can be de-
rived exactly because its time complexity is independent of
the size of the set of all possible originally Gaussian dis-
tributed observations, which is uncountable. But, the cost
of deriving ⇡

✏ is exponential in the length N of planning
horizon since it has to compute the values V

✏

n

(z

D

) (8) for
all (S|X |)N possible states (n, z

D

). To ease this computa-
tional burden, we propose an anytime algorithm based on
✏-BAL that can produce a good policy fast and improve its
approximation quality over time, as discussed next.

The key intuition behind our anytime ✏-BAL algorithm
(h↵, ✏i-BAL of Algo. 1) is to focus the simulation of greedy
exploration paths through the most uncertain regions of the
state space (i.e., in terms of the values V ✏

n

(z

D

)) instead of
evaluating the entire state space like ⇡

✏. To achieve this,
our h↵, ✏i-BAL algorithm maintains both lower and upper
heuristic bounds (respectively, V

✏

n

(z

D

) and V

✏

n

(z

D

)) for
each encountered state (n, z

D

), which are exploited for rep-
resenting the uncertainty of its corresponding value V ✏

n

(z

D

)

to be used in turn for guiding the greedy exploration (or,
put differently, pruning unnecessary, bad exploration of the
state space while still guaranteeing policy optimality).

To elaborate, each simulated exploration path (EXPLORE
of Algo. 1) repeatedly selects a sampling location x and
its corresponding ⌧ -truncated observation z

i

x

at every stage
until the last stage N is reached. Specifically, at each stage
n of the simulated path, the next states (n+ 1, z

D

[ {zi
x

})
with uncertainty |V ✏

n+1

(z

D

[{zi
x

})�V ✏

n+1

(z

D

[{zi
x

})| ex-
ceeding ↵ (line 6) are identified (lines 7-8), among which
the one with largest lower bound V

✏

n+1

(z

D

[ {zi
x

}) (line
10) is prioritized/selected for exploration (if more than one
exists, ties are broken by choosing the one with most uncer-
tainty, that is, largest upper bound V

✏

n+1

(z

D

[ {zi
x

}) (line
11)) while the remaining unexplored ones are placed in the
set U (line 12) to be considered for future exploration (lines
3-6 in h↵, ✏i-BAL). So, the simulated path terminates if the
uncertainty of every next state is at most ↵; the uncertainty
of a state at the last stage N is guaranteed to be zero (14).

Then, the algorithm backtracks up the path to up-
date/tighten the bounds of previously visited states (line 7

in h↵, ✏i-BAL and line 14 in EXPLORE) as follows:

V

✏

n

(z

D

) min

✓

V

✏

n

(z

D

), max

x2X\D

Q

✏

n

(z

D

, x)

◆

V

✏

n

(z

D

) max

✓

V

✏

n

(z

D

), max

x2X\D

Q

✏

n

(z

D

, x)

◆ (14)

Algorithm 1 h↵, ✏i-BAL(z
D0)

h↵, ✏i-BAL
�
zD0

�

1: U  

�
(1, zD0 )

 

2: while |V

✏

1

�
zD0

�
� V

✏

1

�
zD0

�
| > ↵ do

3: V  argmax(n,zD)2U V

✏

n

(zD)

4: �
n

0
, zD0

�
 argmax(n,zD)2V V

✏

n

(zD)

5: U  U \

��
n

0
, zD0

� 

6: EXPLORE(n0
, zD0 ,U) /⇤ U is passed by reference ⇤/

7: UPDATE(n0
, zD0 )

8: return ⇡

h↵,✏i
1

�
zD0

�
 argmax

x2X\D0
Q

✏

1
(zD0 , x)

EXPLORE(n, zD,U)

1: T  ;

2: for all x 2 X \ D do
3: {z

i

x

}

S

i=1  sample from p(z

x

|zD) (4)
4: for i = 1, . . . , S do
5: z

i

x

 z

i

x

min

�
|z

i

x

|, b⌧
�
/|z

i

x

|

6: if |V ✏

n+1

�
zD [

�
z

i

x

 �
� V

✏

n+1

�
zD [

�
z

i

x

 �
| > ↵ then

7: T  T [

��
n + 1, zD [

�
z

i

x

 � 

8: parent
�
n + 1, zD [

�
z

i

x

 �
 (n, zD)

9: if |T | > 0 then
10: V  argmax(n+1,zD[{zi

x

})2T V

✏

n+1

�
zD [

�
z

i

x

 �

11: (n + 1, zD0 ) argmax(n+1,zD[{zi
x

})2VV

✏

n+1

�
zD [

�
z

i

x

 �

12: U  U [ (T \ {(n + 1, zD0 )})
13: EXPLORE(n + 1, zD0 ,U)

14:Update V

✏

n

(zD) and V

✏

n

(zD) using (14)

UPDATE(n, zD)

1: Update V

✏

n

(zD) and V

✏

n

(zD) using (14)
2: if n > 1 then
3: (n� 1, zD0 ) parent(n, zD)

4: UPDATE(n� 1, zD0 )

Q

✏

n

(z

D

, x), 1

S

S

X

i=1

� log p

�

z

i

x

|z
D

�

+ V

✏

n+1

�

z

D

[ �zi
x

 �

Q

✏

n

(z

D

, x), 1

S

S

X

i=1

� log p

�

z

i

x

|z
D

�

+ V

✏

n+1

�

z

D

[ �zi
x

 �

for stage n = 1, . . . , N such that there is no V

✏

N+1

(V

✏

N+1

) term on the RHS expression of Q
✏

N

(Q

✏

N

) at stage
N . When the planning time runs out, we provide the
greedy policy induced by the lower bound: ⇡h↵,✏i

1

(z

D0) ,
argmax

x2X\D0
Q

✏

1

(z

D0 , x) (line 8 in h↵, ✏i-BAL).

Central to the anytime performance of our h↵, ✏i-BAL
algorithm is the computational efficiency of deriving in-
formed initial heuristic bounds V ✏

n

(z

D

) and V

✏

n

(z

D

) where
V

✏

n

(z

D

)  V

✏

n

(z

D

)  V

✏

n

(z

D

). Due to lack of space,
we have shown in Appendix A.8 how they can be derived
efficiently. We have also derived a theoretical guarantee
similar to that of Theorem 2 on the expected active sens-
ing performance of our h↵, ✏i-BAL policy ⇡

h↵,✏i, as shown
in Appendix A.9. We have analyzed the time complexity
of simulating k exploration paths in our h↵, ✏i-BAL algo-
rithm to be O(kNS|X |(|⇤|(N3

+ |X |N2

+ S|X |) +�+

log(kNS|X |))) (Appendix A.10) where O(�) denotes the
cost of initializing the heuristic bounds at each state. In
practice, h↵, ✏i-BAL’s planning horizon can be shortened to
reduce its computational cost further by limiting the depth
of each simulated path to strictly less than N . In that case,
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although the resulting ⇡

h↵,✏i’s performance has not been
theoretically analyzed, Section 4.1 demonstrates empiri-
cally that it outperforms the state-of-the-art algorithms.

4. Experiments and Discussion
This section evaluates the active sensing performance and
time efficiency of our h↵, ✏i-BAL policy ⇡

h↵,✏i (Sec-
tion 3) empirically under limited sampling budget using
two datasets featuring a simple, simulated spatial phe-
nomenon (Section 4.1) and a large-scale, real-world traffic
phenomenon (i.e., speeds of road segments) over an urban
road network (Section 4.2). All experiments are run on a
Mac OS X machine with Intel Core i7 at 2.66 GHz.

4.1. Simulated Spatial Phenomenon

The domain of the phenomenon is discretized into a finite
set of sampling locations X = {0, 1, . . . , 99}. The phe-
nomenon is a realization of a GP (Section 2) parameterized
by �

⇤

= {��

⇤

n

= 0.25,�

�

⇤

s

= 10.0, `

�

⇤
= 1.0}. For sim-

plicity, we assume that ��

⇤

n

and �

�

⇤

s

are known, but the
true length-scale `

�

⇤
= 1 is not. So, a uniform prior belief

b

D0=;

is maintained over a set L = {1, 6, 9, 12, 15, 18, 21}
of 7 candidate length-scales `

�. Using root mean squared
prediction error (RMSPE) as the performance metric, the
performance of our h↵, ✏i-BAL policies ⇡

h↵,✏i with plan-
ning horizon length N

0

= 2, 3 and ↵ = 1.0 are com-
pared to that of the state-of-the-art GP-based active learn-
ing algorithms: (a) The a priori greedy design (APGD)
policy (Shewry & Wynn, 1987) iteratively selects and
adds argmax

x2X\S

n

P

�2⇤

b

D0(�)H[Z

S

n

[{x}

|z
D0 ,�] to

the current set S
n

of sampling locations (where S
0

= ;)
until S

N

is obtained, (b) the implicit exploration (IE) pol-
icy greedily selects and observes sampling location x

IE
=

argmax

x2X\D

P

�2⇤

b

D

(�)H[Z

x

|z
D

,�] and updates the
belief from b

D

to b

D[{x

IE
}

over L; if the upper bound on
the performance advantage of using ⇡

⇤ over APGD pol-
icy is less than a pre-defined threshold, it will use APGD
with the remaining sampling budget, and (c) the explicit
exploration via independent tests (ITE) policy performs a
PAC-based binary search, which is guaranteed to find `

�

⇤

with high probability, and then uses APGD to select the
remaining locations to be observed.

Both nonmyopic IE and ITE policies are proposed by
Krause & Guestrin (2007): IE is reported to incur the low-
est prediction error empirically while ITE is guaranteed not
to achieve worse than the optimal performance by more
than a factor of 1/e. Fig. 1a shows results of the active
sensing performance of the tested policies averaged over 20
realizations of the phenomenon drawn independently from
the underlying GP model described earlier. It can be ob-
served that the RMSPE of every tested policy decreases
with a larger budget of N sampling locations. Notably,
our h↵, ✏i-BAL policies perform better than the APGD, IE,
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Figure 1. Graphs of (a) RMSPE of APGD, IE, ITE, and h↵, ✏i-
BAL policies with planning horizon length N 0 = 2, 3 vs. budget
of N sampling locations, (b) stage-wise online processing cost of
h↵, ✏i-BAL policy with N 0 = 3 and (c) gap between V

✏
1(zD0)

and V ✏
1(zD0) vs. number of simulated paths.

and ITE policies, especially when N is small. The perfor-
mance gap between our h↵, ✏i-BAL policies and the other
policies decreases as N increases, which intuitively means
that, with a tighter sampling budget (i.e., smaller N ), it is
more critical to strike a right balance between exploration
and exploitation.

Fig. 2 shows the stage-wise sampling designs produced by
the tested policies with a budget of N = 15 sampling
locations. It can be observed that our h↵, ✏i-BAL policy
achieves a better balance between exploration and exploita-
tion and can therefore discern `

�

⇤
much faster than the IE

and ITE policies while maintaining a fine spatial coverage
of the phenomenon. This is expected due to the following
issues faced by IE and ITE policies: (a) The myopic explo-
ration of IE tends not to observe closely-spaced locations
(Fig. 2a), which are in fact informative towards estimat-
ing the true length-scale, and (b) despite ITE’s theoretical
guarantee in finding `

�

⇤
, its PAC-style exploration is too

aggressive, hence completely ignoring how informative the
posterior belief b

D

over L is during exploration. This leads
to a sub-optimal exploration behavior that reserves too lit-
tle budget for exploitation and consequently entails a poor
spatial coverage, as shown in Fig. 2b.

Our h↵, ✏i-BAL policy can resolve these issues by jointly
and naturally optimizing the trade-off between observing
the most informative locations for minimizing the predic-
tive uncertainty of the phenomenon (i.e., exploitation) vs.
the uncertainty surrounding its length-scale (i.e., explo-
ration), hence enjoying the best of both worlds (Fig. 2c). In
fact, we notice that, after observing 5 locations, our h↵, ✏i-
BAL policy can focus 88.10% of its posterior belief on
`

�

⇤
while IE only assigns, on average, about 18.65% of its

posterior belief on `

�

⇤
, which is hardly more informative

than the prior belief b
D0(`

�

⇤
) = 1/7 ⇡ 14.28%. Finally,

Fig. 1b shows that the online processing cost of h↵, ✏i-BAL
per sampling stage grows linearly in the number of sim-
ulated paths while Fig. 1c reveals that its approximation
quality improves (i.e., gap between V

✏

1

(z

D0) and V

✏

1

(z

D0)

decreases) with increasing number of simulated paths. In-
terestingly, it can be observed from Fig. 1c that although
h↵, ✏i-BAL needs about 800 simulated paths (i.e., 400 s)
to close the gap between V

✏

1

(z

D0) and V

✏

1

(z

D0), V
✏

1

(z

D0)
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(a) IE policy (b) ITE policy (c) h↵, ✏i-BAL policy

Figure 2. Stage-wise sampling designs produced by (a) IE, (b) ITE, and (c) h↵, ✏i-BAL policy with a planning horizon length N 0 = 3
using a budget of N = 15 sampling locations. The final sampling designs are depicted in the bottommost rows of the figures.

only takes about 100 simulated paths (i.e., 50 s). This im-
plies the actual computation time needed for h↵, ✏i-BAL to
reach V

✏

1

(z

D0) (via its lower bound V

✏

1

(z

D0)) is much less
than that required to verify the convergence of V ✏

1

(z

D0) to
V

✏

1

(z

D0) (i.e., by checking the gap). This is expected since
h↵, ✏i-BAL explores states with largest lower bound first
(Section 3.4).

4.2. Real-World Traffic Phenomenon
Fig. 3a shows the traffic phenomenon (i.e., speeds (km/h)
of road segments) over an urban road network X compris-
ing 775 road segments (e.g., highways, arterials, slip roads,
etc.) in Tampines area, Singapore during lunch hours on
June 20, 2011. The mean speed is 52.8 km/h and the stan-
dard deviation is 21.0 km/h. Each road segment x 2 X
is specified by a 4-dimensional vector of features: length,
number of lanes, speed limit, and direction. The phe-
nomenon is modeled as a relational GP (Chen et al., 2012)
whose correlation structure can exploit both the road seg-
ment features and road network topology information. The
true parameters �⇤

= {��

⇤

n

,�

�

⇤

s

, `

�

⇤} are set as the maxi-
mum likelihood estimates learned using the entire dataset.
We assume that ��

⇤

n

and �

�

⇤

s

are known, but `�
⇤

is not.
So, a uniform prior belief b

D0=;

is maintained over a set
L = {`�i}6

i=0

of 7 candidate length-scales `�0
= `

�

⇤
and

`

�

i

= 2(i+ 1)`

�

⇤
for i = 1, . . . , 6.

The performance of our h↵, ✏i-BAL policies with planning
horizon length N

0

= 3, 4, 5 are compared to that of APGD
and IE policies (Section 4.1) by running each of them on
a mobile probe to direct its active sensing along a path
of adjacent road segments according to the road network
topology; ITE cannot be used here as it requires observ-
ing road segments separated by a pre-computed distance
during exploration (Krause & Guestrin, 2007), which vio-
lates the topological constraints of the road network since
the mobile probe cannot “teleport”. Fig. 3 shows results
of the tested policies averaged over 5 independent runs: It
can be observed from Fig. 3b that our h↵, ✏i-BAL policies
outperform APGD and IE policies due to their nonmyopic
exploration behavior. In terms of the total online process-
ing cost, Fig. 3c shows that h↵, ✏i-BAL incurs < 4.5 hours
given a budget of N = 240 road segments, which can be
afforded by modern computing power. To illustrate the be-
havior of each policy, Figs. 3d-f show, respectively, the
road segments observed (shaded in black) by the mobile
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Figure 3. (a) Traffic phenomenon (i.e., speeds (km/h) of road seg-
ments) over an urban road network in Tampines area, Singapore,
graphs of (b) RMSPE of APGD, IE, and h↵, ✏i-BAL policies with
horizon length N 0 = 3, 4, 5 and (c) total online processing cost of
h↵, ✏i-BAL policies with N 0 = 3, 4, 5 vs. budget of N segments,
and (d-f) road segments observed (shaded in black) by respective
APGD, IE, and h↵, ✏i-BAL policies (N 0 = 5) with N = 60.

probe running APGD, IE, and h↵, ✏i-BAL policies with
N

0

= 5 given a budget of N = 60. It can be observed
from Figs. 3d-e that both APGD and IE cause the probe to
move away from the slip roads and highways to low-speed
segments whose measurements vary much more smoothly;
this is expected due to their myopic exploration behavior.
In contrast, h↵, ✏i-BAL nonmyopically plans the probe’s
path and can thus direct it to observe the more informative
slip roads and highways with highly varying measurements
(Fig. 3f) to achieve better performance.

5. Conclusion
This paper describes and theoretically analyzes an ✏-BAL
approach to nonmyopic active learning of GPs that can
jointly and naturally optimize the exploration-exploitation
trade-off. We then provide an anytime h↵, ✏i-BAL algo-
rithm based on ✏-BAL with real-time performance guaran-
tee and empirically demonstrate using synthetic and real-
world datasets that, with limited budget, it outperforms the
state-of-the-art GP-based active learning algorithms.
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