
A Unified Framework for Consistency of Regularized Loss Minimizers

A. Detailed Proofs
In this section, we state the proofs of all the theorems and claims in our manuscript.

A.1. Proof of Theorem 1

Proof. By optimality of the empirical minimizer, we have:
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A.2. Proof of Theorem 2

Proof. By Assumption C for ✓ =
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claim.

A.3. Proof of Theorem 3
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A.4. Proof of Claim i

Proof. Let k · k⇤ be the dual norm of k · k. Note that bL
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inequality, we have:

(8✓) | bL
n

(✓)� L(✓)| = |hbT
n

�T,✓i|
 kbT

n

�Tk⇤k✓k
 "

n,�

k✓k



A Unified Framework for Consistency of Regularized Loss Minimizers

A.5. Proof of Claim ii

Proof. Let k·k⇤ be the dual norm of k·k. Note that bL
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By the generalized Cauchy-Schwarz inequality, we have:
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A.6. Proof of Claim iii

Proof. Let k · k⇤ be the dual norm of k · k. Note that bL
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A.7. Proof of Claim iv

Proof. Let K be the Lipschitz constant of f . Without loss of generality, assume that f(0) = 0 (this can be accomplished
by adding a constant factor to f ). Note that bL
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A.8. Proof of Claim v

Proof. First, we represent the function ✓ : X ! R by using the infinitely dimensional orthonormal basis. That is,
✓(x) =
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associating the infinitely dimensional coefficient vector ⌫ with the original function ✓. Then, we define the norm of the
function ✓ with respect to the infinitely dimensional orthonormal basis. That is, k✓k = k⌫(✓)k.
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A.9. Proof of Claim vi

Proof. Let k · k⇤ be the dual norm of k · k. Let C(j,✓)
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A.10. Proof of Claim vii

Proof. By Pinsker’s inequality and Theorem 5 of (Maurer, 2004) which assumes n � 8, we have:
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A.11. Proof of Claim viii

Proof. The expected loss L is strongly convex with parameter ⌫ if and only if:
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which proves our first claim. Our second claim regarding twice continuously differentiable L is well-known in the calculus
literature.

A.12. Proof of Claim ix

Proof. Note that by the definition of M(✓), we have:
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By the definition of ⌫
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B. Discussion on Sparsistency
One way to prove sparsistency and sign consistency is to use the primal-dual witness method (Negahban & Wainwright,
2011; Obozinski et al., 2011; Ravikumar et al., 2008; Wainwright, 2009b; Wainwright et al., 2006). These results are
specific to the given loss (linear regression (Negahban & Wainwright, 2011; Obozinski et al., 2011; Wainwright, 2009b),
log-likelihood of Gaussian MRFs (Ravikumar et al., 2008), pseudo-likelihood of discrete MRFs (Wainwright et al., 2006))
as well as the specific regularizer (`
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-norm (Ravikumar et al., 2008; Wainwright, 2009b; Wainwright et al., 2006), `
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-
norm (Obozinski et al., 2011) and `

1,1-norm (Negahban & Wainwright, 2011)). Furthermore, due to nonuniqueness of
the dual of the `

1,1-norm (Negahban & Wainwright, 2011), characterizing sign consistency by primal-dual arguments is
difficult. In this paper, we prove sparsistency and sign consistency for general regularizers, besides the `

1

and `
1,p

norms.
Indeed, our results also hold for regularizers that are not norms.

Our approach is to perform thresholding of the empirical minimizer. In the context of `
1

-regularized linear regression,
thresholding has been previously used for obtaining sparsistency and sign consistency (Meinshausen & Yu, 2009; Zhou,
2009). Note that the primal-dual witness method of (Negahban & Wainwright, 2011; Obozinski et al., 2011; Ravikumar
et al., 2008; Wainwright, 2009b; Wainwright et al., 2006) applies only when mutual incoherence conditions hold. If such
conditions are not met, sparsistency and sign consistency is not guaranteed, independently of the number of samples. In
our two-step algorithm, the threshold decreases with respect to the amount of data samples. Potentially, the sparsity pattern
of every true hypothesis can be recovered, even if mutual incoherence does not hold.

Seemingly contradictory results are shown in (Zhao & Yu, 2006) where mutual incoherence conditions are shown to be
necessary and sufficient for `

1

-regularized linear regression. Note that here, we consider regularization followed by a
thresholding step, which is not considered in (Zhao & Yu, 2006).

C. Dirty Multitask Prior

(Jalali et al., 2010) proposed a dirty multitask prior of the form R(✓) = k✓(1)k
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orthonormal basis functions '
1

, . . . ,'
qn : R ! R. With these bases, we define q

n

p
orthonormal basis functions of the form  

j

(x) = '
k

(x
l

) for j = 1, . . . , q
n

p, k = 1, . . . , q
n

, l = 1, . . . , p. By the union
bound and Chebyshev’s inequality, we have P[(9j) | 1

n

P
i

(t(y(i))� E
y⇠Di [t(y)]) j

(x

(i)

)| > "]  q
n

p (�B)

2

n"

2 = �. By



A Unified Framework for Consistency of Regularized Loss Minimizers

solving for ", we have "
n,�

= �B
p

qnp

n�

.

In Table 1, we set q
n

= n2� for � 2 (0;

1/2), although other settings are possible for obtaining a decreasing rate "
n,�

with
respect to n.

D.9. Claim vi for the sub-Gaussian case and `
1

-norm

In order to allow for proper estimation of the parameters ✓(j) 2 Rp of each cluster, we assume that the hypothesis
class H allows only for clusters containing the same number of training samples. The complexity of our nonparametric
model grows with more samples. Let q

n

be increasing with respect to the number of samples n. Assume that we have
q
n

clusters with n/q
n

samples each. In order to show that for all partitions X (1), . . . ,X (1) of X , the dual norm ful-
fills (8j) k 1

n

P
i

1[x

(i) 2 X (j)

]t(x

(i)

) � E
x⇠D[1[x 2 X (j)

]t(x)]k⇤  "
n,�

, we will show concentration for all subsets of
{1, . . . , n} with size n/q

n

. That is:

(8C ✓ {1, . . . , n}, |C| = n/q
n

) k 1

n

P
i

1[x

(i) 2 C]t(x(i)

)� E
x⇠D[1[x 2 C]t(x)]k⇤  "

n,�

Let k·k⇤ = k·k1 and k·k = k·k
1

. Let (8j) t
j

(x) be sub-Gaussian with parameter �. By the union bound, sub-Gaussianity
and independence, we have:

P[(9j, C) | 1

n/qn

P
i

1[x

(i) 2 C]t(x(i)

)� E
x⇠D[1[x 2 C]t

j

(x)]| > �]  2p
�

n

n/qn

�
e�

n/qn�2

2�2

 2p (q
n

e)n/qne�
n/qn�2

2�2

= �

By solving for �, we have � = �
p

2(1 + log q
n

+

qn

n

log p+ qn

n

log

2/�). Note that "
n,�

= �/q
n

and by setting q
n

=

p
n

we have:

"
n,�

= �
q
2(

1+log qn

q

2
n

+

1

nqn
log p+ 1

nqn
log

2/�)

= �
q
2(

1+log

p
n

n

+

1

n

3/2 log p+
1

n

3/2 log
2/�)

D.10. Norm inequalities to extend results to other norms

• For the k-support norm k · ksup
k

, we have (8✓ 2 Rp

) k✓k
1


p
kk✓ksup

k

.

• For the `
2

-norm k · k
2

, we have (8✓ 2 Rp

) k✓k
1

 p
pk✓k

2

.

• For the `1-norm k · k
2

, we have (8✓ 2 Rp

) k✓k
1

 pk✓k1.

• For the Frobenius norm k · kF, we have (8✓ 2 R
p
p⇥p

p

) k✓k
1

 p
pk✓kF.

• For the trace norm k · k
tr

, we have (8✓ 2 R
p
p⇥p

p

) k✓k
1

 p
pk✓k

tr

.

• For the `
1,2

-norm k · k
1,2

, we have (8✓ 2 R
p
p⇥p

p

) k✓k
1

 p1/4k✓k
1,2

.

• For the `
1,1-norm k · k

1,1, we have (8✓ 2 R
p
p⇥p

p

) k✓k
1

 p
pk✓k

1,1.

• For the `
1,2

-norm with overlapping groups k · kov
1,2

, we have (8✓ 2 Rp

) k✓k
1

 p
gk✓kov

1,2

where g is the maximum
group size. Additionally, we have (8✓ 2 Rp

) k✓k
2

 k✓kov
1,2

.

• For the `
1,1-norm with overlapping groups k · kov

1,1, we have (8✓ 2 Rp

) k✓k
1

 gk✓kov
1,1 where g is the maximum

group size. Additionally, we have (8✓ 2 Rp

) k✓kov
1,2

 p
gk✓kov

1,1.


