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1 Approximate Inference in HOMF

We describe the implementation of approximate inference in the proposed heteroskedastic ordinal matrix
factorization (HOMF) model. Approximate Bayesian inference is performed using expectation propagation
(EP) Minka (2001) and variational Bayes Ghahramani and Beal (2001). We use variational Bayes to approx-
imate some operations within the execution of EP. First, we describe the hyper-parameter values used in the
prior distributions of the HOMF model. After that, we describe in detail the implementation of expectation
propagation in HOMF, how to make predictions using the EP approximation to the posterior distribution
and the specific form the EP update operations.

1.1 Description of the hyper-parameter values used in the priors of HOMF

Recall that the priors for i) the base boundary variables b0 = (b0,1, . . . , b0,L−1) and ii) the factors for the
noise variance γrowi and γcolj are

p(b0) =

L−1∏
k=1

N (b0,k|mb0

k , v0) , p(γrowi ) = IG(γrowi |a0, b0) , p(γcolj ) = IG(γcolj |a0, b0) , (1)

where i = 1, . . . , n, j = 1, . . . , d and

IG(x|a, b) =
ba

Γ(a)
x−a−1 exp

{
− b
x

}
(2)

denotes an inverse gamma distribution with parameters a and b. We initialize the prior means mb0
1 , . . . ,mb0

L−1
to form an evenly spaced grid on the interval [−6, 6] as suggested in Paquet et al. (2012). For example, when
L = 5, we have that mb0

1 = −6, mb0
2 = −2, mb0

3 = −2 and mb0
4 = −6. The prior variance v0 for each

component of b0 is initialized to v0 = 0.1. The hyper-parameters a0 and b0 for the priors on γrowi and γcolj

are initialized to a0 = 10/2 and b0 = 10
√

10/2. The strength of the resulting priors is then equivalent to
having seen a random sample of each of these variables of size 10 with empirical variance

√
10. The prior

expectations for γrowi and γcolj are
√

10. This means that the product of γrowi and γcolj is on average 10. This
is the recommended noise level in the ordinal matrix factorization model described in Paquet et al. (2012).

We use factorized standard Gaussian hyper-priors for the prior means mU = (mU
1 , . . . ,m

U
h ) and mV =

(mV
1 , . . . ,m

V
h ), that is,

p(mU) =

h∏
k=1

N (mU
k |0, 1) , p(mV) =

h∏
k=1

N (mV
k |0, 1) . (3)

1Equal contributors.
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Similarly, we use factorized inverse-gamma hyper-priors for the prior variances vU = (vU1 , . . . , v
U
h ) and

vV = (vV1 , . . . , v
V
h ), that is,

p(vU) =

h∏
k=1

IG(vUk |a′0, b′0) , p(vV) =

h∏
k=1

IG(vVk |a′0, b′0) . (4)

The hyper-parameters a′0 and b′0 are initialized to a′0 = 10/2 and b′0 = 10/2. The strength of the resulting
priors is then equivalent to having seen a random sample of each of these variables of size 10 with unit
empirical variance.

1.2 Expectation propagation in HOMF

Recall that the latent variables in HOMF are given by Ξ = {U,V,B,A,C,γrow,γcol,b0,m
U,mV,vU,vV}.

As described in the main document, the posterior distribution for Ξ given the set of entries in the rating
matrix R that are observed, that is, RO, is

p(Ξ|RO) = p(RO|A,B)p(A|C,γrow,γcol)p(C|U,V)p(U|mU,vU)

p(V|mV,vV)p(B|b0)p(b0)p(γrow)p(γcol)

p(mU)p(mV)p(vU)p(vV)[p(RO)]−1 , (5)

where p(RO) is the normalization constant. Expectation propagation (EP) approximates this posterior
distribution with the following parametric approximation within the exponential family of distributions:

Q(Ξ) =

 d∏
j=1

L−1∏
k=1

N (bj,k|mb
j,k, v

b
j,k)

 ∏
(i,j)∈O

N (ai,j |ma
i,j , v

a
i,j)

 ∏
(i,j)∈O

N (ci,j |mc
i,j , v

c
i,j)


[
n∏
i=1

h∏
k=1

N (ui,k|mu
i,k, v

u
i,k

] d∏
j=1

h∏
k=1

N (vj,k|mv
j,k, v

v
j,k

[L−1∏
k=1

N (b0,k|mb0
k , v

b0
k )

]
[

h∏
k=1

N (mU
k |mmU

k , vm
U

k )

][
h∏
k=1

N (mV
k |mmV

k , vm
V

k )

][
h∏
k=1

IG(vUk |av
U

k , bv
U

k )

]
[

h∏
k=1

IG(vVk |av
V

k , bv
V

k )

][
n∏
i=1

IG(γrowi |a
γrow

i , bγ
row

i )

] d∏
j=1

IG(γcolj |a
γcol

j , bγ
col

j )

 . (6)

where the parameters of each of the factors that form Q will be fixed during the execution of the EP
algorithm. If we ignore the normalization constant, the exact posterior distribution (5) includes 13 different
factors, namely, p(RO|A,B), p(A|C,γrow,γcol), p(C|U,V), p(U|mU,vU), p(V|mV,vV), p(B|b0), p(b0),
p(γrow), p(γcol), p(mU), p(mV), p(vU) and p(vV). EP works by approximating each of these exact factors
with a corresponding approximate factor f̃l, where l = 1, . . . , 13 and each f̃l has the same functional form
as the posterior approximation Q, namely

f̃l(Ξ) = s̃l

 d∏
j=1

L−1∏
k=1

N (bj,k|m̃b,l
j,k, ṽ

b,l
j,k)

 ∏
(i,j)∈O

N (ai,j |m̃a,l
i,j , ṽ

a,l
i,j )

 ∏
(i,j)∈O

N (ci,j |m̃c,l
i,j , ṽ

c,l
i,j)


[
n∏
i=1

h∏
k=1

N (ui,k|m̃u,l
i,k, ṽ

u,l
i,k

] d∏
j=1

h∏
k=1

N (vj,k|m̃v,l
j,k, ṽ

v,l
j,k

[L−1∏
k=1

N (b0,k|m̃b0,l
k , ṽb0,lk )

]
[

h∏
k=1

N (mU
k |m̃

mU,l
k , ṽm

U,l
k )

][
h∏
k=1

N (mV
k |m̃

mV,l
k , ṽm

V,l
k )

][
h∏
k=1

IG(vUk |ã
vU,l
k , b̃v

U,l
k )

]
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[
h∏
k=1

IG(ṽV,lk |ã
vV,l
k , b̃v

V,l
k )

][
n∏
i=1

IG(γrowi |ã
γrow,l
i , b̃γ

row,l
i )

] d∏
j=1

IG(γcolj |ã
γcol,l
j , b̃γ

col,l
j )

 , (7)

where we have introduced the multiplicative constant s̃l in f̃l because the approximate factors f̃1, . . . , f̃13
may not be normalized. EP will adjust the parameters of f̃1, . . . , f̃13 so that the l-th approximate factor f̃l is
similar to the corresponding l-th exact factor in (5), for l = 1, . . . , 13. Note that the exact posterior is given
by the product of all the exact factors in (5) and then normalizing the resulting function. Similarly, the
posterior approximation Q is obtained by computing the product of all the approximate factors f̃1, . . . , f̃13
and then normalizing the result of this operation. The family of exponential distributions is closed under
the product operation. Therefore, the product of f̃1, . . . , f̃13 has the same functional form as Q and can be
readily normalized. In particular, at any step of the EP algorithm we have that Q(Ξ) ∝

∏13
l=1 f̃l(Ξ).

EP works by first initializing all the approximate factors f̃1, . . . , f̃13 and Q to be non-informative or flat.
This is done by setting the mean and variance parameters of the Gaussian factors in f̃1, . . . , f̃13 and Q to
take value zero and infinity, respectively, and setting the a and b parameters of the inverse-gamma factors to
take values one and zero, respectively. After that, EP iteratively refines the parameters of the approximate
factors. For this, let Q\l denote the distribution obtained by computing the ratio of Q and f̃l and then
normalizing the resulting function. That is, Q\l is equal to the normalized product of all the approximate
factors except the l-th one: Q\l(Ξ) ∝ Q(Ξ)/f̃l(Ξ). The functional form of Q\l is again the same as that of
Q and all the f̃1, . . . , f̃13, that is,

Q\l(Ξ) =

[
d∏
i=1

L−1∏
k=1

N (bj,k|mb,\l
j,k , v

b,\l
j,k )

] ∏
(i,j)∈O

N (ai,j |ma,\l
i,j , v

a,\l
i,j )

 ∏
(i,j)∈O

N (ci,j |mc,\l
i,j , v

c,\l
i,j )


[
n∏
i=1

h∏
k=1

N (ui,k|mu,\l
i,k , v

u,\l
i,k

] d∏
j=1

h∏
k=1

N (vj,k|mv,\l
j,k , v

v,\l
j,k

[L−1∏
k=1

N (b0,k|mb0,\l
k , v

b0,\l
k )

]
[

h∏
k=1

N (mU
k |m

mU,\l
k , v

mU,\l
k )

][
h∏
k=1

N (mV
k |m

mV,\l
k , v

mV,\l
k )

][
h∏
k=1

IG(vUk |a
vU,\l
k , b

vU,\l
k )

]
[

h∏
k=1

IG(vVk |a
vV,\l
k , b

vV,\l
k )

][
n∏
i=1

IG(γrowi |a
γrow,\l
i , b

γrow,\l
i )

] d∏
j=1

IG(γcolj |a
γcol,\l
j , b

γcol,\l
j )

 . (8)

EP refines the parameters of f̃l by minimizing the Kullback-Leibler (KL) divergence between Q\l(Ξ)f̃l(Ξ)
and Q\l(Ξ)fl(Ξ), where fl(Ξ) denotes the l-th exact factor in the exact posterior (5), that is, EP refines the
parameters of f̃l by minimizing

DKL(Q\lfl‖Q\lf̃l) =

∫ [
Q\lfl log

Q\lfl

Q\lf̃l
+Q\lf̃l −Q\lfl

]
dΞ , (9)

where the arguments to Q\lfl and Q\lf̃l have been omitted in the right-hand side of this equation to improve
readability. It can be shown that (9) is minimized when the expectation of the sufficient statistics of Q\lf̃l
with respect to Q\lf̃l is the same as the expectation of those sufficient statistics with respect to Q\lfl. The
main loop of EP iterates over all the approximate factors f̃l, l = 1, . . . , 13, refining one after the other by
minimizing (9). In our experiments, we run the 30 iterations of the main loop of the EP algorithm.

1.3 The EP predictive distribution

Once the parameters of Q have been fixed by running the EP method, we can use Q to estimate the posterior
probability that the entry in the i-th row and j-th column of the rating matrix R may have taken value r?i,j .
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Here we assume that the entry in the i-th row and j-th column of R is not contained in the set of observed
ratings RO. The exact posterior distribution for r?i,j given RO is then

p(r?i,j |RO) =

∫
p(r?i,,j |a?i,j ,bj)p(a?i,j |c?i,j , γrowi , γcolj )p(c?i,j |ui,vj)p(Ξ|RO) dΞ da?i,j dc

?
i,j , (10)

with p(r?i,,j |a?i,j ,bj) =
∏L−1
k=1 Θ

[
sign[r?i,j − k − 0.5](a?i,j − bj,k)

]
, p(a?i,j |c?i,j , γrowi , γcolj ) = N (a?i,j |c?i,j , γrowi γcolj ),

and p(c?i,j |ui,vj) = δ(c?i,j − uT
i vj). Recall that δ is a point mass at zero. To obtain an approximation

to (10) we first replace the exact posterior p(Ξ|RO) in (10) with the EP approximation Q. However,
even after making this approximation, the resulting integral is not analytically tractable. We therefore
perform an additional approximation. We replace

∫
δ(c?i,j − uT

i vj)Q(Ξ) dΞ with a Gaussian with mean

mc,?
i,j =

∑h
k=1m

u
i,km

v
j,k and variance vc,?i,j =

∑h
k=1[mu

i,k]2vvj,k + vui,k[mv
j,k]2 + vui,kv

v
j,k. Note that uT

i vj is a

random variable with mean mc,?
i,j and variance vc,?i,j under Q. Again, we still need to perform an additional

approximation. We replace
∫
N (a?i,j |c?i,j , γrowi γcolj )N (c?i,j |m

c,?
i,j , v

c,?
i,j )Q(Ξ)dΞ with an additional Gaussian with

mean mc,?
i,j and variance vc,?i,j + vγi,j where vγi,j = [bγ

row

bγ
col

][(aγ
row

+ 1)(aγ
col

+ 1)]−1. In this case, we are

approximating the inverse-gamma factors for γrowi and γcolj in Q with point masses located at the modes of

those factors. The posterior distribution for r?i,j given RO is then approximated by

p̃(r?i,j |RO) =

∫ L−1∏
k=1

Θ
[
sign[r?i,j − k − 0.5](a?i,j − bj,k)

]
N (a?i,j |m

c,?
i,j , v

c,?
i,j + vγi,j)Q(Ξ) dΞ da?i,j

= Φ
{
ζ(r?i,j)

}
− Φ

{
ζ(r?i,j − 1)

}
, (11)

where ζ(r?i,j) = (mb
i,r?i,j

−mc,?
i,j )(vc,?i,j + vbj,r?i,j + vγi,j)

−0.5 and Φ(·) is the standard Gaussian cdf.

1.4 The EP update operations

As described in Section 1.2, EP works by iteratively minimizing (9) with respect to each approximate factor f̃l.
Note that we have one approximate factor f̃l for each of the 13 exact factors in the posterior distribution (5),
namely, p(RO|A,B), p(A|C,γrow,γcol), p(C|U,V), p(U|mU,vU), p(V|mV,vV), p(B|b0), p(b0), p(γrow),
p(γcol), p(mU), p(mV), p(vU) and p(vV). In the following sections we show the form of the EP updates for
refining the parameters of each approximate factor f̃l.

1.4.1 EP updates for f̃1

In our mapping between approximate factors and exact factors, we specify that f̃1 approximates the exact
factor p(vV) =

∏h
k=1 IG(vVk |a′0, b′0). In this case, p(vV) has the same functional form as the inverse-gamma

factors which specify the distribution of vV in f̃1. Therefore, the EP update for f̃1 sets the parameters of
those inverse-gamma factors to be the same as the parameters of the the inverse-gamma factors in p(vV),
namely

[ãv
V,1
k ]new = a′0 , [b̃v

V,1
k ]new = b′0 , (12)

for k = 1, . . . , h. Since these update equations do not depend on the parameters of any other approximate
factor, we have that f̃1 has to be refined only once, during the first iteration of the main loop of EP. After
refining f̃1, we update Q (which is initially uniform) by setting

[av
V

k ]new = a′0 , [bv
V

k ]new = b′0 , (13)

for k = 1, . . . , h.
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1.4.2 EP updates for f̃2

In our mapping between approximate factors and exact factors, f̃2 approximates the exact factor p(vU) =∏h
k=1 IG(vUk |a′0, b′0). The EP update operations in this case are the same as for the approximate factor f̃1,

namely,

[ãv
U,2
k ]new = a′0 , [b̃v

U,2
k ]new = b′0 , (14)

for k = 1, . . . , h. Since these update equations do not depend on the parameters of any other approximate
factor, we have that f̃2 has to be refined only once, during the first iteration of the main loop of EP. After
refining f̃2, we update Q (which is initially uniform) by setting

[av
U

k ]new = a′0 , [bv
U

k ]new = b′0 , (15)

for k = 1, . . . , h.

1.4.3 EP updates for f̃3

In our mapping between approximate factors and exact factors, f̃3 approximates the exact factor p(mV) =∏h
k=1N (mV

k |0, 1). In this case, p(mV) has the same functional form as the Gaussian factors which specify

the distribution of mV in f̃3. Therefore, the EP update for f̃3 sets the parameters of those Gaussian factors
to be the same as the parameters of the the Gaussians in p(mV), namely

[m̃mV,3
k ]new = 0 , [ṽm

V,3
k ]new = 1 , (16)

for k = 1, . . . , h. Since these update equations do not depend on the parameters of any other approximate
factor, we have that f̃3 has to be refined only once, during the first iteration of the main loop of EP. After
refining f̃3, we update Q (which is initially uniform) by setting

[mmV

k ]new = 0 , [vm
V

k ]new = 1 , (17)

for k = 1, . . . , h.

1.4.4 EP updates for f̃4

In our mapping between approximate factors and exact factors, f̃4 approximates the exact factor p(mU) =∏h
k=1N (mU

k |0, 1). The EP update operation are in this case the same as for the approximate factor f̃3,
namely,

[m̃mU,4
k ]new = 0 , [ṽm

U,4
k ]new = 1 , (18)

for k = 1, . . . , h. Since these update equations do not depend on the parameters of any other approximate
factor, we have that f̃4 has to be refined only once, during the first iteration of the main loop of EP. After
refining f̃4, we update Q (which is initially uniform) by setting

[mmU

k ]new = 0 , [vm
U

k ]new = 1 , (19)

for k = 1, . . . , h.

1.4.5 EP updates for f̃5

In our mapping between approximate factors and exact factors, f̃5 approximates the exact factor p(γcol) =∏d
j=1 IG(γcolj |a0, b0), In this case, p(γcol) has the same functional form as the inverse-gamma factors which
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specify the distribution of γcol in f̃5. Therefore, the EP update for f̃5 sets the parameters of those inverse-
gamma factors to be the same as the parameters of the the factors in p(γcol), namely

[ãγ
col,5
j ]new = a0 , [b̃γ

col,5
j ]new = b0 , (20)

for j = 1, . . . , d. Since these update equations do not depend on the parameters of any other approximate
factor, we have that f̃5 has to be refined only once, during the first iteration of the main loop of EP. After
refining f̃5, we update Q (which is initially uniform) by setting

[aγ
col

j ]new = a0 , [bγ
col

j ]new = b0 , (21)

for j = 1, . . . , d.

1.4.6 EP updates for f̃6

In our mapping between approximate factors and exact factors, f̃6 approximates the exact factor p(γrow) =∏n
i=1 IG(γrowi |a0, b0). The EP update operation are in this case the same as for the approximate factor f̃6,

namely,

[ãγ
row,6
i ]new = a0 , [b̃γ

row,6
i ]new = b0 , (22)

for i = 1, . . . , n. Since these update equations do not depend on the parameters of any other approximate
factor, we have that f̃6 has to be refined only once, during the first iteration of the main loop of EP. After
refining f̃6, we update Q (which is initially uniform) by setting

[aγ
row

i ]new = a0 , [bγ
row

i ]new = b0 , (23)

for i = 1, . . . , n.

1.4.7 EP updates for f̃7

In our mapping between approximate factors and exact factors, f̃7 approximates the exact factor p(b0) =∏L−1
k=1 N (b0,k|mb0

k , v0). In this case, p(b0) has the same functional form as the Gaussian factors which specify

the distribution of b0 in f̃7. Therefore, the EP update for f̃7 sets the parameters of those Gaussian factors
to be the same as the parameters of the factors in p(b0), namely

[m̃b0,7
k ]new = mb0

k , [ṽb0,7k ]new = v0 , (24)

for k = 1, . . . , L−1. Since these update equations do not depend on the parameters of any other approximate
factor, we have that f̃7 has to be refined only once, during the first iteration of the main loop of EP. After
refining f̃7, we update Q (which is initially uniform) by setting

[mb0
k ]new = mb0

k , [vb0k ]new = v0 , (25)

for k = 1, . . . , L− 1.

1.4.8 EP updates for f̃8

In our mapping between approximate factors and exact factors, f̃8 approximates the exact factor p(B|b0) =∏d
j=1

∏L−1
k=1 N (bj,k|b0,k, v0). Because p(B|b0) has a complicated form, we approximate individually each of

its d internal factors of the form
∏L−1
k=1 N (bj,k|b0,k, v0), where j = 1, . . . , d, with extra approximate factors

f̃8,1, . . . , f̃8,d. In this case, f̃8 is given by the product of f̃8,1, . . . , f̃8,d, where all these additional approximate

factors also have the same functional form as Q. Initially, all the f̃8,1, . . . , f̃8,d and f̃8 are non-informative

or flat. EP will iteratively refine each of the extra approximate factors as follows. To refine f̃8,j , where
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j = 1, . . . , d, we firstly compute the parameters of Q\8,j which is defined as the normalized ratio of Q and
f̃8,j . This leads to

v
b0,\8,j
k =

[
[vb0k ]−1 − [ṽb0,8,jk ]−1

]−1
, m

b0,\8,j
k = v

b0,\8,j
k

[
mb0
k [vb0k ]−1 − m̃b0,8,j

k [ṽb0,8,jk ]−1
]
, (26)

v
b,\8,j
j,k =

[
[vbj,k]−1 − [ṽb,8,jj,k ]−1

]−1
, m

b,\8,j
j,k = v

b,\8,j
j,k

[
mb
j,k[vbj,k]−1 − m̃b,8,j

j,k [ṽb,8,jj,k ]−1
]
, (27)

for k = 1, . . . , L− 1. After that, we refine the approximate factor f̃8,j by setting

[m̃b0,8,j
k ]new = m

b,\8,j
j,k , [ṽb0,8,jk ]new = v

b,\8,j
j,k + v0 , (28)

[m̃b,8,j
k ]new = m

b0,\8,j
k , [ṽb,8,jk ]new = v

b0,\8,j
k + v0 , (29)

for k = 1, . . . , L− 1. These update equations guarantee that the normalized versions of Q\8,j(Ξ)f̃8,j(Ξ) and

Q\8,j(Ξ)
∏L−1
k=1 N (bj,k|b0,k, v0) have the same expected sufficient statistics. Finally, we recompute Q as the

normalized product of the updated f̃8,j and Q\8,j , that is,

[vb0k ]new =
[
[v
b0,\8,j
k ]−1 + [ṽb0,8,jk ]−1

]−1
, (30)

[mb0
k ]new = [vb0k ]new

[
m
b0,\8,j
k [v

b0,\8,j
k ]−1 + m̃b0,8,j

k [ṽb0,8,jk ]−1
]
, (31)

[vbj,k]new =
[
[v
b,\8,j
j,k ]−1 + [ṽb,8,jj,k ]−1

]−1
, (32)

[mb
j,k]new = [vbj,k]new

[
m
b,\8,j
j,k [v

b,\8,j
j,k ]−1 + m̃b,8,j

j,k [ṽb,8,jj,k ]−1
]
, (33)

for k = 1, . . . , L− 1.

1.4.9 EP updates for f̃9

In our mapping between approximate factors and exact factors, f̃9 approximates the factor p(V|mV,vV) =∏d
j=1

∏h
k=1N (vj,k|mV

k , v
V
k ). Because p(V|mV,vV) has a complicated form, we approximate individually

each of its d × h internal factors of the form N (vj,k|mV
k , v

V
k ), where j = 1, . . . , d and k = 1, . . . , h, with

extra approximate factors f̃9,1,1, . . . , f̃9,d,h. In this case, f̃9 is given by the product of f̃9,1,1, . . . , f̃9,d,h,
where all these additional approximate factors also have the same functional form as Q. Initially, all the
f̃9,1,1, . . . , f̃9,d,h and f̃9 are non-informative or flat. EP will iteratively refine each of the extra approximate

factors as follows. To refine f̃9,j,k, where j = 1, . . . , d and k = 1, . . . , h, we firstly compute the parameters of

Q\9,j,k which is defined as the normalized ratio of Q and f̃9,j,k. This leads to

[v
mV,\9,j,k
k ]new =

[
[vm

V

k ]−1 − [ṽm
V,9,j,k

k ]−1
]−1

, (34)

[m
mV,\9,j,k
k ]new = [v

mV,\9,j,k
k ]new

[
mmV

k [vm
V

k ]−1 − m̃mV,9,j,k
k [ṽm

V,9,j,k
k ]−1

]
, (35)

[v
v,\9,j,k
j,k ]new =

[
[vvj,k]−1 − [ṽv,9,j,kj,k ]−1

]−1
, (36)

[m
v,\9,j,k
j,k ]new = [v

v,\9,j,k
j,k ]new

[
mv
j,k[vvj,k]−1 − m̃v,9,j,k

j,k [ṽv,9,j,kj,k ]−1
]
, (37)

[a
vV,\9,j,k
k ]new = av

V

k − ã
vV,9,j,k
k + 1 , (38)

[b
vV,\9,j,k
k ]new = bv

V

k − b̃
vV,9,j,k
k . (39)

After this, we refine the approximate factor f̃9,j,k. For this, we have to find the expectation of sufficient
statistics with respect to h(Ξ) = Q\9,j,k(Ξ)N (vj,k|mV

k , v
V
k ). After integrating out Ξ \ {vj,k,mV

k , v
V
k } in h,

we obtain

h(vj,k,m
V
k , v

V
k ) = N (vj,k|mV

k , v
V
k )N (mV

k |m
mV,\9,j,k
k , v

mV,\9,j,k
k )

7



N (vj,k|mv,\9,j,k
j,k , v

v,\9,j,k
j,k )IG(vVk |a

vV,\9,j,k
k , b

vV,\9,j,k
k ) . (40)

The normalization constant of h(vj,k,m
V
k , v

V
k ) is then

Z =

∫
h(vj,k,m

V
k , v

V
k ) dvj,k dm

V
k dv

V
k (41)

=

∫
T (vj,k|mV

k ,
b
vV,\9,j,k
k

a
vV,\9,j,k
k

, 2a
vV,\9,j,k
k )

N (mV
k |m

mV,\9,j,k
k , v

mV,\9,j,k
k )N (vj,k|mv,\9,j,k

j,k , v
v,\9,j,k
j,k ) dvj,k dm

V
k (42)

≈
∫
N (vj,k|mV

k ,
2b
vV,\9,j,k
k

2a
vV,\9,j,k
k − 2

)

N (mV
k |m

mV,\9,j,k
k , v

mV,\9,j,k
k )N (vj,k|mv,\9,j,k

j,k , v
v,\9,j,k
j,k ) dvj,k dm

V
k (43)

≈ N (m
mV,\9,j,k
k |mv,\9,j,k

j,k , v
v,\9,j,k
j,k + v

mV,\9,j,k
k +

2b
vV,\9,j,k
k

2a
vV,\9,j,k
k − 2

) , (44)

where

T (x|µ, λ, ν) =
Γ((ν + 1)/2)√
πνλΓ(ν/2)

[
1 +

(x− µ)2

λν

]−(ν+1)/2

(45)

denotes a Student’s t distribution with mean µ, variance parameter λ and degrees of freedom ν and in
equation (43) we have approximated a Student’s t distribution with a Gaussian distribution that has the
same mean and variance as the original Student’s t distribution. The expectation of the sufficient statistics
vj,k, [vj,k]2, mV

k , [mV
k ]2, vVk and [vVk ]2 with respect to h(vj,k,m

V
k , v

V
k ) can be approximated in a similar way

as the previous normalization constant. We describe below how to do this. For the random variable vVk , the
KL-divergence is actually minimized by matching the first moment and the expectation of log vVk . However,
matching the expectation of log vVk would require computing the inverse of the Digamma function, which
has no analytical solution. To avoid this, we match the first and second moments of vVk which is expected
to produce reasonably good results Cowell et al. (1996).

We approximately compute the moments of vVk using the following property of inverse-gamma distri-
butions, see (2). Let H(a, b) be the normalization constant of f(x)IG(x|a, b) for a particular function
f , that is, H(a, b) =

∫
f(x)IG(x|a, b) dx. Then we have that

∫
xf(x)IG(x|a, b) dx = H(a + 1, b)a/b and∫

x2IG(x|a, b) dx = H(a+2, b)a(a+1)/b2. Thus, each moment can be easily approximated given a procedure
to approximate the normalization constantH(a, b). For this, we only have to replaceH(a+1, b) andH(a+2, b)
in the previous equations with their corresponding approximations. In a similar way, we can compute ap-
proximations for the moments of vj,k and mV

k . In particular, we use the following property of the Gaussian
distribution. Let H(m, v) be the normalization constant of f(x)N (x|m, v) for a particular function f , that

is, H(m, v) =
∫
f(x)N (x|m, v) dx. Then we have that [H(m, v)]−1

∫
xf(x)N (x|m, v) dx = m+ v d logH(m,v)

dm

and [H(m, v)]−1
∫
x2N (x|m, v) dx− [[H(m, v)]−1

∫
xN (x|m, v) dx]2 = v − v2([d logH(m,v)

dm ]2 − 2d logH(m,v)
dv ).

The resulting updates for f̃9,j,k are

[ṽm
V,9,j,k

k ]new = 2b
vV,\9,j,k
k /(2a

vV,\9,j,k
k − 2) + v

v,\9,j,k
j,k , (46)

[m̃mV,9,j,k
k ]new = m

v,\9,j,k
j,k , (47)

[ṽv,9,j,kj,k ]new = 2b
vV,\9,j,k
k /(2a

vV,\9,j,k
k − 2) + v

mV,\9,j,k
k , (48)

[m̃v,9,j,k
j,k ]new = m

mV,\9,j,k
k , (49)

[ãv
V,9,j,k
k ]new = a′ − av

V,\9,j,k
k + 1 , (50)
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[b̃v
V,9,j,k
k ]new = b′ − bv

V,\9,j,k
k , (51)

and we define a′ and b′ as

a′ =
a
vV,\9,j,k
k Z2

1

(a
vV,\9,j,k
k + 1)ZZ2 − av

V,\9,j,k
k Z2

1

, b′ =
b
vV,\9,j,k
k ZZ1

(a
vV,\9,j,k
k + 1)ZZ2 − av

V,\9,j,k
k Z2

1

, (52)

where Z1 and Z2 are obtained in the same way as the normalization constant Z, but increasing a
vV,\9,j,k
k

in one and two units during the computations, respectively. Once we have updated f̃9,j,k, we recompute Q
using

[vm
V

k ]new =
[
[v
mV,\9,j,k
k ]−1 + [ṽm

V,9,j,k
k ]−1

]−1
, (53)

[mmV

k ]new = [vm
V

k ]new
[
m
mV,\9,j,k
k [v

mV,\9,j,k
k ]−1 + m̃mV,9,j,k

k [ṽm
V,9,j,k

k ]−1
]
, (54)

[vvj,k]new =
[
[v
v,\9,j,k
j,k ]−1 + [ṽv,9,j,kj,k ]−1

]−1
, (55)

[mv
j,k]new = [vvj,k]new

[
m
v,\9,j,k
j,k [v

v,\9,j,k
j,k ]−1 + m̃v,9,j,k

j,k [ṽv,9,j,kj,k ]−1
]
, (56)

[av
V

k ]new = a
vV,\9,j,k
k + ãv

V,9,j,k
k − 1 , (57)

[bv
V

k ]new = b
vV,\9,j,k
k + b̃v

V,9,j,k
k , (58)

Finally, note that we only update f̃9,j,k when b
vV,\9,j,k
k > 0, 2a

vV,\9,j,k
k −2 > 0, v

mV,\9,j,k
k > 0 and v

v,\9,j,k
j,k > 0.

1.4.10 EP updates for f̃10

In our mapping between approximate factors and exact factors, f̃10 approximates the factor p(U|mU,vU) =∏n
i=1

∏h
k=1N (uj,k|mU

k , v
U
k ). Because p(U|mU,vU) has a complicated form, we approximate individually

each of its n×h internal factors of the form N (ui,k|mU
k , v

U
k ), where i = 1, . . . , d and k = 1, . . . , h, with extra

approximate factors f̃10,1,1, . . . , f̃9,n,h. In this case, f̃10 is given by the product of f̃10,1,1, . . . , f̃10,n,h, where
all these additional approximate factors also have the same functional form as Q. The EP update equations
for each f̃10,i,k are similar to those for each f̃9,j,k and therefore we do not include them here.

1.4.11 EP updates for f̃11

In our mapping between approximate factors and exact factors, f̃11 approximates the factor p(C|U,V) =∏
(i,j)∈O δ(ci,j − uT

i vj). To refine f̃11 we do not follow the standard EP algorithm. Instead, we use the

approach used by Stern et al. (2009) and first marginalize p(C|U,V)Q\11(Ξ) with respect to Ξ \ {U,V}.
To do this, we first compute the parameters of Q\11(Ξ), that is,

[v
v,\11
j,k ]new =

[
[vvj,k]−1 − [ṽv,11j,k ]−1

]−1
, (59)

[m
v,\11
j,k ]new = [v

v,\11
j,k ]new

[
mv
j,k[vvj,k]−1 − m̃v,11

j,k [ṽv,11j,k ]−1
]
, (60)

[v
u,\11
i,k ]new =

[
[vui,k]−1 − [ṽu,11i,k ]−1

]−1
, (61)

[m
u,\11
i,k ]new = [v

u,\11
i,k ]new

[
mu
i,k[vui,k]−1 − m̃u,11

i,k [ṽu,11i,k ]−1
]
, (62)

for i = 1, . . . , n, j = 1, . . . , d and k = 1, . . . , k and

[v
c,\11
i,j ]new =

[
[vci,j ]

−1 − [ṽc,11i,j ]−1
]−1

, (63)
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[m
c,\11
i,j ]new = [v

c,\11
i,j ]new

[
mc
i,j [v

c
i,j ]
−1 − m̃c,11

i,j [ṽc,11i,j ]−1
]
, (64)

for (i, j) ∈ O. The result of marginalizing p(C|U,V)Q\11(Ξ) with respect to Ξ \ {U,V} is then

S(U,V) =

∫ ∏
(i,j)∈O

δ(ci,j − uT
i vj)

 ∏
(i,j)∈O

N (ci,j |mc,\11
i,j , v

c,\11
i,j )


[
n∏
i=1

h∏
k=1

N (ui,k|mu,\11
i,k , v

u,\11
i,k

] d∏
j=1

h∏
k=1

N (vj,k|mv,\11
j,k , v

v,\11
j,k

 dC (65)

=

 ∏
(i,j)∈O

N (uT
i vj |mc,\11

i,j , v
c,\11
i,j )

[ n∏
i=1

h∏
k=1

N (ui,k|mu,\11
i,k , v

u,\11
i,k

]
 d∏
j=1

h∏
k=1

N (vj,k|mv,\11
j,k , v

v,\11
j,k

 . (66)

Let QU,V be the posterior approximation Q after marginalizing Ξ \ {U,V} out, that is,

QU,V =

[
n∏
i=1

h∏
k=1

N (ui,k|mu
i,k, v

u
i,k

] d∏
j=1

h∏
k=1

N (vj,k|mv
j,k, v

v
j,k

 . (67)

The parameters of QU,V, that is, mu
i,k, vui,k, mv

j,k and vvj,k, for i = 1, . . . , n, j = 1, . . . , d and k = 1, . . . , h,
are then optimized to minimize KL(QU,V‖S). This can be done very efficiently using the gradient descent
method described by Raiko et al. (2007). Once QU,V has been updated, we update the parameters of Q
for U and V to be the same as those of QU,V. We also update the parameters of Q for C. To do this, we
note that in the exact posterior ci,j is always equal to uT

i vj because of the delta function δ(ci,j − uT
i vj).

Therefore, we set the mean and variance of each ci,j in Q to be the same as the mean and variance of the
corresponding uT

i vj according to the newly updated Q. This leads to the update

[mc
i,j ]

new =

h∑
k=1

mu
i,km

v
j,k , [vci,j ]

new =

h∑
k=1

[mu
i,k]2vvj,k + vui,k[mv

j,k]2 + vui,kv
v
j,k . (68)

for (i, j) ∈ O. After updating Q, we refine f̃11 so that it is the ratio of Q and Q\11, that is,

[ṽv,11j,k ]new =
[
[vvj,k]−1 − [v

v,\11
j,k ]−1

]−1
, (69)

[m̃v,11
j,k ]new = [ṽv,11j,k ]new

[
mv
j,k[vvj,k]−1 −mv,\11

j,k [v
v,\11
j,k ]−1

]
, (70)

[ṽu,11i,k ]new =
[
[vui,k]−1 − [v

u,\11
i,k ]−1

]−1
, (71)

[m̃u,11
i,k ]new = [ṽu,11i,k ]new

[
mu
i,k[vui,k]−1 −mu,\11

i,k [v
u,\11
i,k ]−1

]
, (72)

for i = 1, . . . , n, j = 1, . . . , d and k = 1, . . . , k and

[ṽc,11i,j ]new =
[
[vci,j ]

−1 − [v
c,\11
i,j ]−1

]−1
, (73)

[m̃c,11
i,j ]new = [ṽc,11i,j ]new

[
mc
i,j [v

c
i,j ]
−1 −mc,\11

i,j [v
c,\11
i,j ]−1

]
, (74)

for (i, j) ∈ O. Note that, when performing these EP updates, some of the variances ṽv,11j,k , ṽu,11i,k and ṽc,11i,j

in f̃11 can become negative. In our experiments, this sometimes created problems when updating other
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approximate factors. To avoid this, whenever one of the variances of a Gaussian factor in f̃11 is going to
become negative, we do not perform the EP update of that Gaussian factor. When this happens, we have
to eliminate the EP update in the corresponding factor of Q since we are first updating Q and then f̃11 as
a function of Q.

1.4.12 EP updates for f̃12

The approximate factor f̃12 approximates the exact factor p(A|C,γrow,γcol) =
∏

(i,j)∈ON (ai,j |ci,j , γrowi γcolj ).

Because p(A|C,γrow,γcol) has a complicated form, we approximate individually each of its internal factors
of the form N (ai,j |ci,j , γrowi γcolj ) with an extra approximate factor f̃12,i,j , for (i, j) ∈ O. In this case, f̃12 is

given by the product of all the additional approximate factors f̃12,i,j , which also have the same functional

form as Q. Initially, all the f̃12,i,j and f̃12 are non-informative or flat. EP will iteratively refine each of the

extra approximate factors as follows. To refine f̃12,i,j , we firstly compute the parameters of Q\12,i,j . This

distribution is defined as the normalized ratio of Q and f̃12,i,j . This leads to

[v
a,\12,i,j
i,j ]new =

[
[vai,j ]

−1 − [ṽa,12,i,ji,j ]−1
]−1

, (75)

[m
a,\12,i,j
i,j ]new = [v

a,\12,i,j
i,j ]new

[
ma
i,j [v

a
i,j ]
−1 − m̃a,12,i,j

i,j [ṽa,12,i,ji,j ]−1
]
, (76)

[v
c,\12,i,j
i,j ]new =

[
[vci,j ]

−1 − [ṽc,12,i,ji,j ]−1
]−1

, (77)

[m
c,\12,i,j
i,j ]new = [v

c,\12,i,j
i,j ]new

[
mc
i,j [v

c
i,j ]
−1 − m̃c,12,i,j

i,j [ṽc,12,i,ji,j ]−1
]
, (78)

[a
γrow,\12,i,j
i ]new = aγ

row

i − ãγ
row,12,i,j
i + 1 , (79)

[b
γrow,\12,i,j
i ]new = bγ

row

i − b̃γ
row,12,i,j
i , (80)

[a
γcol,\12,i,j
j ]new = aγ

col

j − ãγ
col,12,i,j
j + 1 , (81)

[b
γcol,\12,i,j
j ]new = bγ

col

j − b̃γ
col,12,i,j
j . (82)

After this, to refine the approximate factor f̃12,i,j , we have to find the expectation of sufficient statistics with
respect to h(Ξ) = Q\12,j,k(Ξ)N (ai,j |ci,j , γrowi γcolj ). After integrating out Ξ \ {ai,j , ci,j , γrowi , γcolj } in h, we
obtain

h(ai,j , ci,j , γ
row
i , γcolj ) = N (ai,j |ci,j , γrowi γcolj )N (ai,j |ma,\12,i,j

i,j , v
a,\12,i,j
i,j )N (ci,j |mc,\12,i,j

i,j , v
c,\12,i,j
i,j )

IG(γrowi |a
γrow,\12,i,j
i , b

γrow,\12,i,j
i )IG(γcolj |a

γcol,\12,i,j
j , b

γcol,\12,i,j
j ) . (83)

The normalization constant of h(ai,j , ci,j , γ
row
i , γcolj ) is then

Z =

∫
h(ai,j , ci,j , γ

row
i , γcolj ) dai,j dci,j dγ

row
i dγcolj (84)

=

∫
N (m

a,\12,i,j
i,j |mc,\12,i,j

i,j , v
a,\12,i,j
i,j + v

c,\12,i,j
i,j + γrowi γcolj ) (85)

IG(γrowi |a
γrow,\12,i,j
i , b

γrow,\12,i,j
i )IG(γcolj |a

γcol,\12,i,j
j , b

γcol,\12,i,j
j )dγrowi dγcolj (86)

≈ N (m
a,\12,i,j
i,j |mc,\12,i,j

i,j , v
a,\12,i,j
i,j + v

c,\12,i,j
i,j +

b
γrow,\12,i,j
i b

γcol,\12,i,j
j /[(a

γrow,\12,i,j
i + 1)(a

γcol,\12,i,j
j + 1)]) , (87)

where in (87) we have approximated IG(γrowi |a
γrow,\12,i,j
i , b

γrow,\12,i,j
i ) and IG(γcolj |a

γcol,\12,i,j
j , b

γcol,\12,i,j
j ) with

point probability masses located at the modes of these factors. The expectation of the sufficient statistics ai,j ,
[ai,j ]

2, ci,j , [ci,j ]
2, γrowi , [γrowi ]2, γcolj and [γcolj ]2 with respect to h(ai,j , ci,j , γ

row
i , γcolj ) can be approximated in
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a similar way as the previous normalization constant, as we describe below. For the random variables γrowi
and γcolj , the KL-divergence is actually minimized by matching the first moments and the expectations of

log γrowi and log γcolj . However, matching the expectation of log γrowi and log γcolj would require computing
the inverse of the Digamma function, which has no analytical solution. To avoid this, we match the first and
second moments of γrowi and γcolj , which is expected to produce reasonably good results Cowell et al. (1996).

We approximately compute the moments of the random variables γrowi and γcolj , using the following prop-
erty of inverse-gamma distributions, see (2). Let H(a, b) be the normalization constant of f(x)IG(x|a, b) for
a particular function f , that is, H(a, b) =

∫
f(x)IG(x|a, b) dx. Then we have that

∫
xf(x)IG(x|a, b) dx =

H(a + 1, b)a/b and
∫
x2IG(x|a, b) dx = H(a + 2, b)a(a + 1)/b2. Therefore, each moment can be easily ap-

proximated given a procedure to approximate the normalization constant H(a, b). For this, we only have
to replace H(a + 1, b) and H(a + 2, b) in the previous equations with their corresponding approximations.
Following a similar approach, we can compute approximations for the moments of ai,j and ci,j . In par-
ticular, we use the following property of the Gaussian distribution. Let H(m, v) be the normalization
constant of f(x)N (x|m, v) for a particular function f , that is, H(m, v) =

∫
f(x)N (x|m, v) dx. Then it

can be shown that [H(m, v)]−1
∫
xf(x)N (x|m, v) dx = m+ v d logH(m,v)

dm and [H(m, v)]−1
∫
x2N (x|m, v) dx−

[[H(m, v)]−1
∫
xN (x|m, v) dx]2 = v − v2([d logH(m,v)

dm ]2 − 2d logH(m,v)
dv ).

The updates for f̃12,i,j are then

[m̃a,12,i,j
i,j ]new = m

c,\12,i,j
i,j , (88)

[ṽa,12,i,ji,j ]new = v
c,\12,i,j
i,j + b

γrow,\12,i,j
i b

γcol,\12,i,j
j /[(a

γrow,\12,i,j
i + 1)(a

γcol,\12,i,j
j + 1)] , (89)

[m̃c,12,i,j
i,j ]new = m

a,\12,i,j
i,j , (90)

[ṽc,12,i,ji,j ]new = v
a,\12,i,j
i,j + b

γrow,\12,i,j
i b

γcol,\12,i,j
j /[(a

γrow,\12,i,j
i + 1)(a

γcol,\12,i,j
j + 1)] , (91)

[ãγ
row,12,i,j
i ]new = a′row − a

γrow,\12,i,j
i + 1 , (92)

[b̃γ
row,12,i,j
i ]new = b′row − b

γrow,\12,i,j
i , (93)

[ãγ
col,12,i,j
j ]new = a′col − a

γcol,\12,i,j
j + 1 , (94)

[b̃γ
col,12,i,j
j ]new = b′col − b

γcol,\12,i,j
j , (95)

where we define a′row, b′row, a′col, b
′
col as

a′row =
a
γrow,\12,i,j
i [Zrow

1 ]2

(a
γrow,\12,i,j
i + 1)ZZrow

2 − aγ
row,\12,i,j
i [Zrow

1 ]2
, (96)

b′row =
b
γrow,\12,i,j
i ZZrow

1

(a
γrow,\12,i,j
i + 1)ZZrow

2 − aγ
row,\12,i,j
i [Zrow

1 ]2
, (97)

a′col =
a
γcol,\12,i,j
j [Zcol

1 ]2

(a
γcol,\12,i,j
j + 1)ZZcol

2 − a
γcol,\12,i,j
j [Zcol

1 ]2
, (98)

b′col =
b
γcol,\12,i,j
j ZZcol

1

(a
γcol,\12,i,j
j + 1)ZZcol

2 − a
γcol,\12,i,j
j [Zcol

1 ]2
, (99)

Zrow
1 and Zrow

2 are obtained in the same way as the normalization constant Z, but increasing a
γrow,\12,i,j
i

in one and two units during the computations, respectively, and similarly, Zcol
1 and Zcol

2 are obtained by

decreasing a
γcol,\12,i,j
j in one and two units, respectively.

Note that, in these EP update equations, some of the variances ṽa,12,i,ji,j and, ṽc,12,i,ji,j and can become

negative. To avoid this, whenever one of the variances of a Gaussian factor in f̃12,i,j is going to become
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negative, we do not perform the EP update of that Gaussian factor. Furthermore, we only refine the

approximate factor f̃12,i,j if all the conditions a
γcol,\12,i,j
j > 2, b

γcol,\12,i,j
j > 0, a

γrow,\12,i,j
i > 2, b

γro,\12,i,j
i > 0,

v
a,\12,i,j
i,j > 0 and v

c,\12,i,j
i,j > 0 are satisfied.

Once we have updated f̃12,i,j , we recompute Q using

[vai,j ]
new =

[
[v
a,\12,i,j
i,j ]−1 + [ṽa,12,i,ji,j ]−1

]−1
, (100)

[ma
i,j ]

new = [vai,j ]
new

[
m
a,\12,i,j
i,j [v

a,\12,i,j
i,j ]−1 + m̃a,12,i,j

i,j [ṽa,12,i,ji,j ]−1
]
, (101)

[vci,j ]
new =

[
[v
c,\12,i,j
i,j ]−1 + [ṽc,12,i,ji,j ]−1

]−1
, (102)

[mc
i,j ]

new = [vci,j ]
new

[
m
c,\12,i,j
i,j [v

c,\12,i,j
i,j ]−1 + m̃c,12,i,j

i,j [ṽc,12,i,ji,j ]−1
]
, (103)

[aγ
row

i ]new = a
γrow,\12,i,j
i + ãγ

row,12,i,j
i − 1 , (104)

[bγ
row

i ]new = b
γrow,\12,i,j
i + b̃γ

row,12,i,j
i , (105)

[aγ
col

j ]new = a
γcol,\12,i,j
j + ãγ

col,12,i,j
j − 1 , (106)

[bγ
col

j ]new = b
γcol,\12,i,j
j + b̃γ

col,12,i,j
j . (107)

In our experiments we observed that, if we refine the approximate factors f̃12,i,j during the first iterations
of EP, the proposed model gets stuck in solutions in which the components of the noise variables γrow and γcol

take very large values. The reason for this is that during the first iterations of EP, the posterior approximation
for the latent variables U and V is not yet very good and consequently the EP update equations explain
this by assuming that there is large additive noise. The result is that the EP approximation Q gets stuck
in solutions in which the components of γrow and γcol are too large. To avoid this, we do not refine the
approximate factors f̃12,i,j during the second iteration of EP. Note that in the first iteration, when we refine

the approximate factors f̃12,i,j , we do not modify the factors of Q for γrow and γcol. This means that we

can always safely refine the approximate factors f̃12,i,j during the first EP iteration, even though the current
posterior approximation for U and V is not yet good.

1.4.13 EP updates for f̃13

In our mapping between approximate factors and exact factors, f̃13 approximates the factor p(RO|A,B) =∏
(i,j)∈O

∏L−1
k=1 Θ [sign[ri,j − k − 0.5](ai,j − bj,k)]. Because p(RO|A,B) does not have a simple form, we

approximate individually each of its |O|×(L−1) internal factors of the form Θ [sign[ri,j − k − 0.5](ai,j − bj,k)]

with an extra approximate factor f̃13,i,j,k, for (i, j) ∈ O and k = 1, . . . , L − 1. In this case, f̃13 is given by

the product of all the additional approximate factors f̃13,i,j,k, which also have the same functional form

as Q. Initially, all the f̃13,i,j,k and f̃13 are non-informative or flat. EP will iteratively refine each of the

extra approximate factors as follows. To refine f̃13,i,j,k, we firstly compute the parameters of Q\13,i,j,k. This

distribution is defined as the normalized ratio of Q and f̃13,i,j,k. This leads to

[v
b,\13,i,j,k
j,k ]new =

[
[vbj,k]−1 − [ṽb,13,i,j,kj,k ]−1

]−1
, (108)

[m
b,\13,i,j,k
j,k ]new = [v

b,\13,i,j,k
j,k ]new

[
mb
j,k[vbj,k]−1 − m̃b,13,i,j,k

j,k [ṽb,13,i,j,kj,k ]−1
]
, (109)

[v
a,\13,i,j,k
i,j ]new =

[
[vai,j ]

−1 − [ṽa,13,i,j,ki,j ]−1
]−1

, (110)

[m
a,\13,i,j,k
i,j ]new = [v

a,\13,i,j,k
i,j ]new

[
ma
i,j [v

a
i,j ]
−1 − m̃a,13,i,j,k

i,j [ṽa,13,i,j,ki,j ]−1
]
. (111)

After this, we update the parameters of f̃13,i,j,k by minimizing the KL-divergence between the unnormalized

distributions Q\13,i,j,k(Ξ)Θ [sign[ri,j − k − 0.5](ai,j − bj,k)] and Q\13,i,j,k(Ξ)f̃13,i,j,k(Ξ). This leads to the
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updates

m̃b,13,i,j,k
j,k = m

b,\13,i,j,k
j,k + κ ṽb,13,i,j,kj,k = −vb,\13,i,j,kj,k − 1/β (112)

m̃a,13,i,j,k
i,j = m

a,\13,i,j,k
i,j − κ ṽa,13,i,j,ki,j = −va,\13,i,j,ki,j − 1/β (113)

where β and κ are given by

β = − φ(α)

Φ(α)

(
α+

φ(α)

Φ(α)

)[
v
a,\13,i,j,k
j,k + v

b,\13,i,j,k
j,k

]−1
, (114)

κ = − sign[ri,j − k − 0.5]√
v
a,\13,i,j,k
j,k + v

b,\13,i,j,k
j,k

[
α+

φ(α)

Φ(α)

]−1
, (115)

with

α = sign[ri,j − k − 0.5]
m
a,\13,i,j,k
j,k −mb,\13,i,j,k

j,k√
v
a,\13,i,j,k
j,k + v

b,\13,i,j,k
j,k

(116)

and φ and Φ denote the standard Gaussian density and cdf functions, respectively.
Note that, when performing these EP updates, the variances ṽa,13,i,j,ki,j or ṽb,13,i,j,kj,k can become negative.

In our experiments, this sometimes created problems when updating other approximate factors. To avoid
this, whenever one of the variances of a Gaussian factor in f̃13,i,j,k is going to become negative, we do not

perform the EP update of that Gaussian factor. Similarly, we do not update f̃13,i,j,k when v
a,\13,i,j,k
i,j or

v
b,\13,i,j,k
j,k are negative.

Finally, once we have updated f̃13,i,j,k, we recompute Q by setting

[vbj,k]new =
[
[v
b,\13,i,j,k
j,k ]−1 + [ṽb,13,i,j,kj,k ]−1

]−1
, (117)

[mb
j,k]new = [vbj,k]new

[
m
b,\13,i,j,k
j,k [v

b,\13,i,j,k
j,k ]−1 + m̃b,13,i,j,k

j,k [ṽb,13,i,j,kj,k ]−1
]
, (118)

[vai,j ]
new =

[
[v
a,\13,i,j,k
i,j ]−1 + [ṽa,13,i,j,ki,j ]−1

]−1
, (119)

[ma
i,j ]

new = [vai,j ]
new

[
m
a,\13,i,j,k
i,j [v

a,\13,i,j,k
i,j ]−1 + m̃a,13,i,j,k

i,j [ṽa,13,i,j,ki,j ]−1
]
. (120)

2 Data

2.1 Dataset descriptions

We perform experiments using seven datasets consisting of ratings. These come from a diverse set of domains.
Unless otherwise stated, the ratings in each dataset were ordinal valued, in the range 1, . . . , 5.

• MovieLens100K and MovieLens1M are collections of ratings for movies, commonly used for benchmark-
ing recommendation systems. These are available at http://grouplens.org/datasets/movielens/.

• MovieTweets has been released recently, and consists of ratings for movies collected from Tweets.
Details of the dataset can be found in Dooms et al. (2013), and the data is available from https:

//github.com/sidooms/MovieTweetings. The original ratings took values in {0 . . . , 10}. We map
the original ratings to values in {1, . . . , 5} as follows: {0, 1, 2} → 1, {3, 4} → 2, {5, 6} → 3, {7, 8} → 4,
{9, 10} → 5.

• Webscope is a collection of ratings for songs. It is available for research upon request from Yahoo! Labs.
We used the ‘R3’ dataset from http://webscope.sandbox.yahoo.com/catalog.php?datatype.
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• Jester is a collection of ratings for jokes, available at http://goldberg.berkeley.edu/jester-data/.
The ratings on this dataset are real valued ∈ [−10, 10]. We convert these to ordinal ratings by grouping
the values into 5 bins with equal counts.

• Book is a set of ratings for books, publicly available from http://www.informatik.uni-freiburg.

de/~cziegler/BX/ The ratings take values 1, . . . , 10. Most of the ratings take value higher than 6, so
we merged the ratings 1, . . . , 6 to yield 5 values in total.

• IPIP contains responses to a 336 item International Item Pool questionnaire Goldberg et al. (2006).
These data were collected from Facebook Kosinski et al. (2013) and are available for research upon
request at http://mypersonality.org/wiki/doku.php?id=start. This dataset is dense, that is, all
of the ratings are observed. All of the other datasets contained many missing entries.

2.2 Data pre-processing

Some of the datasets are very sparse, so we selected only users and items that have 10 ratings or more, as
proposed in Rendle et al. (2009). This formed the set of ratings that we used for the model-comparison
experiments described in Section 5.1 of the main document. In these experiments, the ratings were split
randomly into training and test sets containing 80% and 20% of the ratings, respectively.

For the active learning experiments in Section 5.2 with new users (the -U datasets) we selected the 2000
users and 1000 items with the most ratings, up to the maximum number available. This was to provide the
largest possible pool for active sampling, since in a real-world setting the system can request any rating. As
described in the main document, of these 2000 users, 75% were sampled randomly as the users ‘already in the
system’ and all of their ratings were added to the training set. Then, one rating from each of the remaining
25% ‘test users’ was added to the training set. For each test user, 3 ratings were randomly held out in a
test set for evaluation of predictive performance. The remaining ratings for the test users were added to
the pool set. In each round of active sampling, a single item was selected from the pool for each user, these
items were then added to the training set. After this, the model was incrementally retrained and evaluated
on the test set. For the new-item experiments (-I), we followed the same procedure, except that the roles of
the users and items were interchanged. In all of our experiments the dataset splits were re-sampled for each
fold.

3 All Results

3.1 Learning curves

Figure 1 shows the log likelihood learning curves in the cold-start experiments when using the full het-
eroskedastic model (HOMF). This figure includes all the experiments in which we select items for new
users (-U) and select users to rate new items (-I). Figure 2 shows the same for the homoskedastic model
(OMF). All results are summarized in Table 3. Overall, with both models, BALD is the best perform-
ing algorithm. Entropy sampling and its model-free version, Emp-Ent, often perform poorly, and are even
outperformed frequently by random sampling. This indicates that they often seek noisy, and hence uninfor-
mative, users or items. In many cases, such as Book-U, Movielens100k-U, Movielens100k-I, MovieTweets-I,
IPIP-I, Webscope-U and Webscope-I, the performance gap between BALD and the alternative strategies is
decreased substantially when using the homoskedastic model. This implies that to obtain robust performance
with Bayesian active learning it is important to model all sources of uncertainty appropriately.

3.2 Root mean squared error

We also evaluated the performance of our model and active learning algorithm using the root mean squared
error (RMSE) of the posterior mean prediction. RMSE is a popular metric for models that only produce point
estimates. For probabilistic models it is a less informative metric than log likelihood because it measures only
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the quality of the mean rating, and does not consider the model’s confidence in its predictions. Furthermore,
unlike log likelihood, it is not invariant to the (normally arbitrary) assignment of numeric values (1, . . . , 5)
to ordinal valued ratings. Tables 1 and 2 contain the log likelihood and RMSE for the model-comparison
experiments, respectively. Tables 3 and 4 contain the results for the active learning experiments.

Table 2 shows that OMF performs best when evaluated using RMSE, although the improvement over
HOMF is normally very small, the difference in RMSE is smaller than 0.005 in all but one case. Although
learning heteroskedastic noise is crucial for assessing confidence correctly, as indicated by Table 1 where
HOMF performs best in all cases, incorporating heteroskedasticity does not change the mean effect. We
speculate that the small improvement of OMF over HOMF is due to the fast that OMF has fewer parameters
to learn. Learning the bias parameters and using an ordinal rather than a Gaussian likelihood yields improved
performance when evaluating with both RMSE and log likelihood.

A similar effect is observed in the active learning experiments. With log likelihood HOMF+BALD
outperforms OMF+BALD in 15 out of 16 cases, and draws on the last. With RMSE, HOMF+BALD out-
performs OMF+BALD 5 times, draws 9 times and loses twice. Again, this indicates that heteroskedasticity
does not change the mean effect. However, with RMSE the heteroskedasticity is still important to achieve
robust active learning. This is indicated by the fact that in Table 4, overall, HOMF+BALD outperforms
OMF+BALD but HOMF+Rand loses to OMF+Rand. Furthermore, within the HOMF model, BALD out-
performs Rand in more cases than it does with OMF. This indicates that although the heteroskedasticity
does not improve the final evaluation, it is necessary for selecting good samples with BALD during active
learning.

3.3 Approximation Losses

Figure 3 depicts, for all datasets, the information loss (Equation (8) in the main text) due to each of
the approximations made to compute the second term in BALD, EQ(ui)H[p(r?i,j |ui)]. In all 16 cases the
information loss from using 100 Monte Carlo samples of ui from Q to approximate the integral is smaller
than 5%. In all but 3 cases using the unscented approximation results in less than 5% loss.

Table 1: Average test Log likelihood. Bold denotes best method, and those statistically indistinguishable.
Method HOMF OMF HOMF OMF Paquet RBMF BMF BMM

-NoB -NoB
Books -1.415 -1.436 -1.507 -1.439 -1.427 -1.545 -1.544 -1.622
Dating -0.867 -0.906 -0.890 -1.028 -1.009 -1.045 -1.140 -0.948
IPIP -1.096 -1.140 -1.131 -1.189 -1.188 -1.194 -1.225 -1.270
Jest -1.238 -1.306 -1.240 -1.320 -1.320 -1.312 -1.368 -1.290
ML1M -1.136 -1.165 -1.141 -1.177 -1.170 -1.173 -1.210 -1.324
ML100K -1.203 -1.234 -1.208 -1.243 -1.232 -1.238 -1.277 -1.493
MTweet -0.956 -0.991 -0.984 -1.025 -1.012 -1.014 -1.077 -1.115
WebSc. -1.207 -1.253 -1.209 -1.257 -1.236 -1.529 -1.532 -1.298
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Table 2: Average Test RMSE.
Method HOMF OMF HOMF-NoB OMF-NoB Paquet RBMF BMF BMM
Books 1.207 1.204 1.246 1.204 1.214 1.281 1.280 1.390
Dating 0.822 0.821 0.823 0.836 0.829 0.825 0.838 0.913
IPIP 0.886 0.885 0.887 0.887 0.887 0.893 0.895 1.046
Jester 1.019 1.006 1.015 1.008 1.009 1.016 1.015 1.078
MLens1M 0.838 0.836 0.839 0.837 0.836 0.842 0.847 0.965
MLens100K 0.895 0.894 0.895 0.895 0.895 0.898 0.903 1.077
MTweet 0.699 0.698 0.701 0.699 0.703 0.712 0.722 0.817
WebScope 1.200 1.195 1.201 1.195 1.185 1.215 1.218 1.283

Table 3: Log likelihood after collecting 10 active samples per user (-U) or item (-I). Underlining indicates
the top performing active sampling algorithms for each model, and bold denotes the best overall method.
The bottom row gives the number of datasets that each active learning strategy yields the best (or joint
best) performance with each model.

Heteroscedastic (HOMF) Homoscedastic (OMF) BMM
Dataset BALD Entro Emp-Ent Rand BALD Entro Emp-Ent Rand BALD Entro Emp-Ent Rand
Book-U -2122 -2129 -2129 -2126 -2146 -2149 -2150 -2147 -2405 -2418 -2413 -2411
Dating-U -1214 -1239 -1241 -1248 -1217 -1230 -1235 -1244 -1234 -1309 -1305 -1255
IPIP-U -1944 -1977 -1960 -1967 -1945 -1978 -1964 -1973 -1964 -1988 -1983 -1987
Jester-U -2051 -2095 -2070 -2064 -2080 -2119 -2100 -2099 -2041 -2075 -2054 -2045
MLens100k-U -918 -928 -926 -920 -926 -927 -929 -926 -989 -1001 -997 -988
MLens1M-U -1831 -1843 -1844 -1835 -1840 -1850 -1854 -1846 -1877 -1899 -1898 -1879
MTweets-U -1467 -1475 -1475 -1471 -1503 -1508 -1508 -1503 -1608 -1624 -1622 -1613
Webscope-U -1837 -1869 -1869 -1846 -1882 -1898 -1903 -1880 -1951 -1984 -1970 -1958
Book-I -2038 -2039 -2037 -2038 -2095 -2094 -2094 -2095 -2186 -2198 -2202 -2195
Dating-I -1630 -1720 -1655 -1612 -1672 -1722 -1684 -1643 -1603 -1691 -1631 -1602
IPIP-I -319 -325 -339 -329 -325 -325 -339 -330 -335 -347 -346 -339
Jester-I -99 -99 -99 -100 -102 -102 -101 -102 -104 -107 -106 -104
Mlens100k-I -1085 -1103 -1095 -1099 -1110 -1112 -1111 -1113 -1160 -1186 -1171 -1170
Mlens1M-I -1831 -1843 -1844 -1835 -1840 -1850 -1854 -1846 -1877 -1899 -1898 -1879
MTweets-I -1470 -1479 -1475 -1476 -1519 -1520 -1520 -1520 -1605 -1617 -1613 -1608
Webscope-I -1837 -1869 -1869 -1846 -1882 -1898 -1903 -1880 -1951 -1984 -1970 -1958
Wins / 16 15 1 2 7 15 7 5 12 16 1 2 12

Table 4: RMSE after collecting 10 active samples.
Heteroscedastic (HOMF) Homoscedastic (OMF) BMM

Dataset BALD Entro Emp-Ent Rand BALD Entro Emp-Ent Rand BALD Entro Emp-Ent Rand
Book-U 1.185 1.188 1.189 1.187 1.186 1.188 1.189 1.187 1.345 1.352 1.353 1.350
Dating-U 0.768 0.788 0.790 0.795 0.769 0.783 0.788 0.794 0.789 0.841 0.838 0.807
IPIP-U 1.033 1.058 1.047 1.055 1.030 1.051 1.042 1.050 1.063 1.080 1.075 1.085
Jester-U 1.089 1.119 1.103 1.103 1.086 1.110 1.100 1.101 1.121 1.140 1.130 1.129
MLens100k-U 0.968 0.983 0.979 0.974 0.975 0.973 0.977 0.973 1.047 1.054 1.053 1.043
MLens1M-U 0.888 0.897 0.899 0.894 0.890 0.895 0.898 0.894 0.916 0.926 0.926 0.917
MTweets-U 0.704 0.708 0.708 0.706 0.703 0.704 0.704 0.703 0.777 0.775 0.783 0.774
Webscope-U 1.192 1.213 1.217 1.201 1.199 1.205 1.216 1.198 1.290 1.313 1.311 1.291
Book-I 1.175 1.175 1.174 1.175 1.175 1.174 1.174 1.175 1.250 1.256 1.258 1.254
Dating-I 0.910 0.962 0.941 0.914 0.924 0.951 0.937 0.909 0.966 1.019 0.989 0.963
IPIP-I 1.039 1.066 1.121 1.088 1.058 1.059 1.122 1.089 1.102 1.163 1.155 1.125
Jester-I 1.086 1.100 1.095 1.108 1.105 1.101 1.096 1.113 1.155 1.175 1.176 1.162
Mlens100k-I 0.943 0.960 0.955 0.957 0.953 0.954 0.954 0.957 1.004 1.030 1.016 1.015
Mlens1M-I 0.888 0.897 0.899 0.894 0.890 0.895 0.898 0.894 0.916 0.926 0.926 0.917
MTweets-I 0.721 0.725 0.724 0.724 0.725 0.725 0.725 0.725 0.768 0.774 0.774 0.769
Webscope-I 1.192 1.213 1.217 1.201 1.199 1.205 1.216 1.198 1.290 1.313 1.311 1.291
Wins /16 15 1 2 6 15 10 5 9 16 2 0 11
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Figure 1: Log likelihood on the test users versus number of active samples selected by each algorithm with
the HOMF model.
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Figure 2: Log likelihood on the test users versus number of active samples selected by each algorithm with
the OMF model.
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Figure 3: Information losses from sampling (blue), using the posterior mean (red), and the unscented
approximation (black) to the integral over ui in the second term of BALD, EQ(ui)H[p(r?i,j |ui)]. x-axis is the

number of evaluations of H[p(r?i,j |ui)] required. Circles denote the mean loss, and vertical bars the 10th to

90th percentiles.
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