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6. Appendix
6.1. Proof sketch for Theorem 2

This theorem is proved in (Mazumder et al., 2010) by con-
sidering the auxilliary function

Q(X,Y ) =
1
2
‖ΠΩ(A) + Π⊥Ω(Y )−X‖2F + λ‖X‖∗

= F (X) +
1
2
‖Π⊥Ω(Y −X)‖2F ,

for which Q(X,Y ) ≥ F (X) and Q(X,X) = F (X).
We can minimize the auxiliary function by noting that
the minimum with respect to Y for fixed X is Y = X
and for fixed Y the minimum with respect to X is X =
Sλ(ΠΩ(A) + Π⊥Ω(Y )). Alternating the minimization gives
the iteration in the theorem. This algorithm is known as
Soft-Impute.

6.2. Proof sketch for Theorem 3

For the regression problem we can form a different auxil-
liary function. If cI � A>A = f ′′(X) then − 1

2‖AX −
AY ‖2F + c

2‖X − Y ‖
2
F ≥ 0 for all X,Y and the auxilliary

function

Q(X,Y ) =
1
2
‖AX −B‖2F −

1
2
‖A(X − Y )‖2F

+
c

2
‖X − Y ‖2F + λ‖X‖∗

=
c

2
‖X − Y − 1

c
(A>B −A>AY )‖2F

+λ‖X‖∗ + const

= c(
1
2
‖X> − (Y − 1

c
f ′(Y ))‖2F +

λ

c
‖X‖∗)

+const

satisfy Q(X,Y ) ≥ F (X) and Q(X,X) = F (X). For
fixed Yk the minimum over X is Xk+1 = Sλ/c(Yk −
1
cf
′(Yk)) and for fixed Xk the minimum over Y is Yk =

Xk. This auxilliary function is constructed completely
analogously to the `1 case, for which global convergence
is formally proved in (Daubechies et al., 2004).

6.3. Proof of Theorem 4

Proof. If u ∈ U⊥A , then (1) U>u = 0, which implies
u>X = 0; (2) U>Gu = 0, which implies |u>(X −
∇f(X))v| < λ for any v (by the definition of soft-
thresholding operator S). Combining (1) and (2) we have
uv> ∈ F for all v if u ∈ U⊥A . By the same argument we
can prove uv> ∈ F for all u if v ∈ V ⊥A .

6.4. Proof of Theorem 6

Proof. Since S is positive definite it has an eigenvalue
decomposition S = PΣP> with Σ � 0 a diagonal

matrix. Therefore the SVD of X can be written X =
(UP )Σ(V P )> and the sub-differential is

∂‖X‖∗ = {UV >+W : U>W = 0,WV = 0, ‖W‖2 ≤ 1},

independent of S since (UP )(V P )> = UV >.

6.5. Proof of Theorem 7

Proof. AssumeX∗ = U∗Σ∗V ∗ is the reduced SVD ofX∗.
Since X∗ is the global optimum,

X∗ = Sλ(X∗ −∇f(X∗))

= Ū∗(Σ̄∗ − λI)+(V̄ ∗)>. (15)

If there are k singular values in Σ̄∗ larger than λ, then it is
clear that the first k columns of Ū∗ is U∗, and the first k
columns of V̄ ∗ is V ∗. By our assumption, Σii 6= λ for all
i, so we can assume Σkk > λ and Σk+1,k+1 < λ− ε with
some ε > 0.

We consider the set

Z ≡ {(u,v) | u ∈ (U∗)⊥ or v ∈ (V ∗)⊥}.

For (u,v) ∈ Z , u>X∗v = 0, so

|u>(X∗ −∇f(X∗))v| = |u>∇f(X∗)v| < λ− ε.

Since the sequenceXt generated by Algorithm 1 converges
to the global optimum X∗, there exists a T such that

‖∇f(Xt)−∇f(X∗)‖ < ε (16)

and
|u>∇f(Xt)v| < λ (17)

for all t > T and any (u, v) ∈ Z . Now for any (u, v) ∈ Z
we consider two cases:

1. If u>Xt−1v 6= 0, then u ∈ (UA)t−1 and v ∈
(VA)t−1. Since we exactly solve the sub-problem (7)
and we already know |u>∇f(Xt)v| < λ, the opti-
mality condition of (7) implies u>Xtv = 0.

2. If u>Xt−1v = 0, then combined with (17) we know
u,v are not in the active subspace, so u>Xtv = 0.

Therefore, once t > T , for any u ∈ (U∗)⊥ or v ∈
(V ∗)⊥, u>Xtv will be zero and will never be selected in
(UA)t, (VA)t. This implies that span((UA)t) ⊆ span(U∗)
and span((VA)t) ⊆ span(V ∗).

Next we prove the equality part. For all u,v such that
u>X∗v 6= 0, there exists a T such that u>(Xt)v 6= 0 for
all t > T (since the smallest eigenvalue > 0). Therefore,
all such u,v will belong to (UA)t, (VA)t after t > T . Com-
bined with the previous argument, we have span((UA)t) =
span(U∗) and span((VA)t) = span(V ∗) after t > T .
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6.6. Proof of Theorem 9

Proof. We first introduce an important property of the
power method, which will be useful for proving the the-
orem.

The power method (subspace iteration) described in Algo-
rithm 2 has a linear convergence rate: assume U, V are
the top-k singular vectors of A, σk, σk+1 are the k-th and
(k+ 1)-st singular values, and the approximate SVD given
by Algorithm 2 with R as initial and with Tmax steps. If
the initial matrixR satisfies the condition that V >R is non-
singular, then

‖Û Û>−UU>‖ ≤ (
σk+1

σk
)T

max

‖URU>R −UU>‖,

‖V̂ V̂ >−V V >‖ ≤ (
σk+1

σk
)T

max

‖VRV >R −V V >‖. (18)

where UR is the orthogonal subspace of R, VR is the or-
thogonal subspace of AR, and Û is the subspace after one
power iteration. This property is shown in Theorem 7.2 in
(Arbenz, 2010).

Now we prove that the sequence Xt generated by Algo-
rithm 1 converges to the global optimum. For convenience,
we define P (X) := Sλ(X −∇f(X)), and P̃ (X) to be the
computed value (by the power method with one iteration)
of P (X). The reduced SVD of Sλ(X−∇f(X)) is denoted
by UG(X)ΣG(X)(VG(X))>, and the computed subspace
vectors is ŨG(X), ṼG(X). We use ŨG(Xt) to denote the
computed value at the t-th iteration, and UG(Xt) to denote
the true subspace vectors at the t-th iteration.

Since Algorithm 1 ensures that the objective function value
decreases at each iteration, the sequence {Xt} is in a com-
pact set. Therefore, there exists a subsequence of Xst

con-
verges to a limit point X̄ . For convenience we denote st
by t in the following. We want to prove X̄ is the global
optimum by contradiction, so we first assume X̄ 6= X∗, so
P (X̄) 6= X̄ .

First we want to show Ũ(Xt), Ṽ (Xt) converges to
UG(X̄), VG(X̄) (the computed subspace converges to the
true subspace). Assume ŨG(Xt), ṼG(Xt) converges to
Ũ , Ṽ , then what we want to show is that span(Ũ) =
span(UG(X̄)) and span(Ṽ ) = span(VG(X̄)). Since {Xt}
converges to X̄ and X −∇f(X) is a continuous function,
for any ε > 0 there exists a T1 such that ∀t > T1 ,

‖(Xt −∇f(Xt))− (X̄ −∇f(X̄))‖ ≤ ε. (19)

By perturbation theory (Li, 1998), for any matrix A and a
small perturbation ∆, we have

max(‖U(A)U(A)> − U(A+ ∆)U(A+ ∆)>‖,
‖V (A)V (A)> − V (A+ ∆)V (A+ ∆)>‖) ≤ ‖∆‖/δ,

where δ is the singular-gap between σk(A) and σk+1(A),
and U(A), V (A) are the top-k singular vectors of A. Now
we consider A = P (X̄),∆ = P (Xt) − P (X̄), then we
have

max(‖UG(Xt)UG(Xt)> − UG(X̄)UG(X̄)>‖,
‖VG(Xt)VG(Xt)> − VG(X̄)VG(X̄)‖) ≤ ‖P (Xt)− P (X̄)‖/δ,

Combining with (19) we get

‖UG(Xt)UG(Xt)> − UG(X̄)UG(X̄)>‖ ≤ ε

δ
∀t > T1.

(20)
Now assume t is large enough so that

‖Ũ Ũ> − ŨG(Xt−1)ŨG(X>t−1)‖ < ε1, (21)

so we have

‖ŨG(Xt)ŨG(Xt)> − UG(X̄)UG(X̄)>‖

≤ ‖ŨG(Xt)ŨG(Xt)> − UG(Xt)UG(Xt)>‖+
ε

δ
(by (20))

≤(
σk+1

σk
)‖ŨG(Xt−1)ŨG(Xt−1)>−UG(Xt)UG(Xt)>‖+

ε

δ
(by (18))

≤ (
σk+1

σk
)‖Ũ Ũ> − UG(Xt)UG(Xt)>‖+

ε

δ
+ ε1. (by (21))

≤ (
σk+1

σk
)‖Ũ Ũ> − UG(X̄)UG(X̄)>‖+ 2

ε

δ
+ ε1 (by (20)).

Therefore,

‖ŨG(Xt)ŨG(Xt)> − Ũ Ũ>‖
≥ ‖UG(X̄)UG(X̄)> − Ũ Ũ>‖
− ‖ŨG(Xt)ŨG(Xt)− UG(X̄)UG(X̄)>‖

≥ (1− σk+1

σk
)‖Ũ Ũ> − UG(X̄)UG(X̄)>‖ − 2

ε

δ
− ε1.

Taking t→∞ on both side and ε, ε1 → 0 we have

0 ≥ (1− σk+1/σk)‖Ū Ū> − UG(X̄)UG(X̄)>‖.

So span(UG(X̄)) = span(Ũ). Using the same derivations
on the right singular vectors V , we can get span(VG(X̄)) =
span(Ṽ ).

The above argument shows that P̃ (Xt) → P (X̄). If X̄
is not a global optimum, then P (X̄) 6= X̄ . Since all the
fixed points are global optimum, by a typical convergence
property for the fixed-point operation we can show that X̄
is a global optimum.

Next, we prove the asymptotic convergence rate. By
Theorem 7, we know after finite steps T1, UA(Xt) =
U∗, VA(Xt) = V ∗. Moreover, σk(Xt − ∇f(Xt)) con-
verges to σk(X∗ − ∇f(X∗)) and σk+1(Xt − ∇f(Xt))
converges to σk+1(X∗ − ∇f(X∗)), so there exists a T2

such that for all t > T2,

σk+1(Xt −∇f(Xt))
σk(Xt −∇f(Xt))

≤ λ− ε/2
λ

. (22)
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Assume T̄ = max(T1, T2). Since for each iteration we run
one power iteration on Xt − ∇f(Xt) and the gap of the
k-th and (k + 1)-st singular values are guaranteed in (22),
from (18) we can bound the error between subspaces (UA)t
and U∗ by

‖UA(Xt)UA(Xt)> − U∗(U∗)>‖

≤ (1− ε

2λ
)‖UA(Xt−1)UA(Xt−1)> − U∗(U∗)>‖

when t > T̄ . Therefore

‖UA(XT̄+t)UA(XT̄+t)
> − U∗(U∗)>‖

≤ (1− ε

2λ
)t‖UA(XT̄ )UA(XT̄ )> − U∗(U∗)>‖. (23)

At the t-th iteration, it is clear that S̄t =
UA(Xt)>X∗VA(Xt) is a feasible solution for the
sub-problem (8). Let X̄t = UA(Xt)S̄tVA(Xt)> then
F (Xt) ≥ F (X̄t) (because Xt is the minimizer of (8)).
Also, X∗ = U∗(U∗)>X∗ = X∗V ∗(V ∗)>, so

‖X̄t −X∗‖
≤‖UA(Xt)UA(Xt)>X∗VA(Xt)VA(Xt)>−UA(Xt)UA(Xt)>X∗‖
+ ‖UA(Xt)UA(Xt)>X∗ −X∗‖

= ‖UA(Xt)UA(Xt)>X∗
(
V ∗(V ∗)> − VA(Xt)VA(Xt)>

)
‖

+ ‖(U∗(U∗)> − UA(Xt)UA(Xt)>)X∗‖
≤ (‖U∗(U∗)> − UA(Xt)UA(Xt)>‖+
‖V ∗(V ∗)> − VA(Xt)VA(Xt)>‖)‖X∗‖.

Next we relate this quantity with the objective function
value F (Xt). From Lemma 3.1 in (Ji & Ye, 2009),

F (X)− F (X∗) ≤ L‖X −X∗‖2F ,

where L is the Lipschitz constant for∇f(X). Substituting
X̄t into the above inequality we get

F (Xt)− F (X∗) ≤ F (X̄t)− F (X∗)

≤ LR(‖U∗(U∗)> − UA(Xt)UA(Xt)>‖
+ ‖V ∗(V ∗)> − VA(Xt)VA(Xt)>‖),

where R = ‖X∗‖ is a constant. Applying (23) we can get

F (Xt)− F (X∗) ≤ LR(1− ε

2λ
)t−T̄

when t > T̄ . Therefore our algorithm has an asymptoti-
cally linear convergence rate.

6.7. Implementation Details for the comparison

We discuss the implementation detail for other algo-
rithms in our comparison. The code for Soft-Impute

is downloaded from http://statweb.stanford.
edu/˜rahulm/SoftImpute/. In their code, the top-
k singular vectors is computed by Lanczos algorithm. We
use the same JSH and SSGD implementation as in (Avron
et al., 2012), where the largest singular value is com-
puted by the SVDS function in MATLAB and the pa-
rameters are tuned by the authors. More specifically,
δ = 0.04 for ml100k, δ = 0.015 for ml10m and net-
flix, and ν = 0.005 for all datasets. We implement Lift-
edCD by ourselves and compute the largest singular value
by the power method. For MMBS the code is down-
loaded from http://www.montefiore.ulg.ac.
be/˜mishra/softwares/traceNorm.html, and
the GCG code is downloaded from http://users.
cecs.anu.edu.au/˜xzhang/GCG/.


