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6. Appendix

6.1. Proof sketch for Theorem 2

This theorem is proved in (Mazumder et al., 2010) by con-
sidering the auxilliary function

1
QX,Y) = SlHa(4)+ g (Y) = X% + AllX]«

1
= F(X)+ §IIH$(Y—X)|I%,

for which Q(X,Y) > F(X) and Q(X,X) = F(X).
We can minimize the auxiliary function by noting that
the minimum with respect to Y for fixed X is ¥ = X
and for fixed Y the minimum with respect to X is X =
S)(Ilg(A) + II5 (Y)). Alternating the minimization gives
the iteration in the theorem. This algorithm is known as
Soft-Impute.

6.2. Proof sketch for Theorem 3

For the regression problem we can form a different auxil-
liary function. If ¢ = ATA = f”(X) then —1||AX —
AY |3 + £ X = Y% > 0 for all X, Y and the auxilliary
function

1 1
QX,Y) = SIAX - BlF - SI1AX = Y)|7

C
+5 11X = Y7 + X

= XY - (ATB - ATAY)[
C
+A[| X« + const
1, 1 1, A
= eIXT = = LPOIE A+ 2IXL)

+const

satisfy Q(X,Y) > F(X) and Q(X,X) = F(X). For
fixed Y) the minimum over X is Xy4; = S,\/C(Yk —
%f’(Yk)) and for fixed X, the minimum over Y is Y, =
X}. This auxilliary function is constructed completely
analogously to the ¢; case, for which global convergence
is formally proved in (Daubechies et al., 2004).

6.3. Proof of Theorem 4

Proof. If u € Uj, then (1) UTu = 0, which implies
u'X = 0; 2) Ulu = 0, which implies [u’ (X —
Vf(X))v] < A for any v (by the definition of soft-
thresholding operator §). Combining (1) and (2) we have
uv' € Fforall v if u € Uy. By the same argument we
canprove uv' € F foralluifv € V. O

6.4. Proof of Theorem 6

Proof. Since S is positive definite it has an eigenvalue
decomposition S = PYPT with ¥ > 0 a diagonal

matrix. Therefore the SVD of X can be written X =
(UP)X(VP)T and the sub-differential is

INX|« ={UVT4+W :U'W =0,WV =0, ||W|, < 1},
independent of S since (UP)(VP)T =UV . O

6.5. Proof of Theorem 7

Proof. Assume X* = U*¥*V* is the reduced SVD of X *.
Since X™ is the global optimum,

X" =5\(X" = V(X))
=U" (2 =X)L (VHT. (15)

If there are k singular values in > larger than A, then it is
clear that the first k£ columns of U* is U*, and the first k
columns of V* is V*. By our assumption, ¥;; # A for all
1, 50 we can assume X, > A and Xgqq p+1 < A — e with
some € > 0.

We consider the set
Z={(u,v)|ue (U*)J‘ orv e (V*)J‘}.
For (u,v) € Z,u’ X*v =0, so

u" (X* = VAX))v] = [u' VAX )V < A —e

Since the sequence X; generated by Algorithm 1 converges
to the global optimum X *, there exists a 7" such that

IVF(Xe) = VHXT) < e (16)

and
lu'VF(X)v] < A (17)

forall t > T and any (u,v) € Z. Now for any (u,v) € Z
we consider two cases:

I.Ifu'™X; ;v # 0, then u € (Uy);_; and v €
(Va)¢—1. Since we exactly solve the sub-problem (7)
and we already know |[u' Vf(X;)v| < A, the opti-
mality condition of (7) implies u' X;v = 0.

2. If uTXt_lv = 0, then combined with (17) we know
u, v are not in the active subspace, so u' X;v=0.

Therefore, once t > T, for any u € (U*)* or v €
(V*)*, uT X;v will be zero and will never be selected in
(Ua)t, (Va)e. This implies that span((U4):) C span(U*)
and span((V4):) C span(V*).

Next we prove the equality part. For all u,v such that
u' X*v # 0, there exists a T such that u' (X;)v # 0 for
all t > T (since the smallest eigenvalue > 0). Therefore,
all such u, v will belong to (U, )+, (V)¢ aftert > T. Com-
bined with the previous argument, we have span((Uga);) =
span(U*) and span((V4):) = span(V*) aftert > T. O
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6.6. Proof of Theorem 9

Proof. We first introduce an important property of the
power method, which will be useful for proving the the-
orem.

The power method (subspace iteration) described in Algo-
rithm 2 has a linear convergence rate: assume U,V are
the top-k singular vectors of A, o, 041 are the k-th and
(k + 1)-st singular values, and the approximate SVD given
by Algorithm 2 with R as initial and with T™* steps. If
the initial matrix R satisfies the condition that V' " R is non-
singular, then

00T -UUT < (P U -0UT ),

A A g maz
IVVT=vvT < (ST VeV = VYT a8y

where Up, is the orthogonal subspace of R, Vg is the or-
thogonal subspace of AR, and U is the subspace after one
power iteration. This property is shown in Theorem 7.2 in
(Arbenz, 2010).

Now we prove that the sequence X; generated by Algo-
rithm 1 converges to the global optimum. For convenience,
we define P(X) := S\(X — Vf(X)), and P(X) to be the
computed value (by the power method with one iteration)
of P(X). Thereduced SVD of S (X —V f(X)) is denoted
by Ug(X)Xq(X)(Ve(X)) T, and the computed subspace
vectors is Ug(X), Vo (X). We use Ug(X;) to denote the
computed value at the ¢-th iteration, and Ug (X;) to denote
the true subspace vectors at the ¢-th iteration.

Since Algorithm 1 ensures that the objective function value
decreases at each iteration, the sequence { X;} is in a com-
pact set. Therefore, there exists a subsequence of X, con-
verges to a limit point X. For convenience we denote s;
by ¢ in the following. We want to prove X is the global
optimum by contradiction, so we first assume X # X*, so
P(X) £ X.
First we want to show U(X;),V(X;) converges to
Ug(X), Vg(X) (the computed subspace converges to the
true subspace). Assume Ug(X,), Va(X,) converges to
U,V, then what we want to show is that span(U) =
span(Ug (X)) and span(V') = span(Vg(X)). Since {X;}
converges to X and X — V f(X) is a continuous function,
for any € > 0 there exists a 7} such that V¢ > T ,

I(Xe = VI(X) = (X = VXD <e.  (19)
By perturbation theory (Li, 1998), for any matrix A and a
small perturbation A, we have

max([U(A)U(A)T = U(A+ A)U(A+A)T],
IV(AVA)T = V(A+)V(A+A)T]) < A]/5,

where 0 is the singular-gap between o (A) and o41(A),
and U(A), V(A) are the top-k singular vectors of A. Now
we consider A = P(X),A = P(X;) — P(X), then we
have

max(||Us(Xe)Us(Xe) " —
Ve (Xe)Va(Xe) " = Va(X)Va(X

Combining with (19) we get

Ua(X)Uc(X) ",

V) < 1P(Xe) — PX)]I/9,

||UG(Xt)UG(Xt)T - Vi > T.

(20)

Ua(X)Ua(X)7] < 5

Now assume ¢ is large enough so that

00T~ Ue(Xe-1)Ua(X, )| <e, 2D
so we have
1Ua(Xe)Ua(Xe) " —
< U (Xe)Ua(X:)"

Ua(X)Ua(X)T|
~ Us(X)Ua(X0)TIl +
<N 0(Xea e (Xer)T

o o €
< ()07 - Ua(X)Uo(X0) T + 5

< (PEL)|00T — Ua(X)Us(X) || +25 + e (by 20).

(by (20))

~Ug(X)Ug (Xt)T||+5 (by (18))

+ 1. (by (21))

o)
Therefore,

1Ue(X)Uc(Xe) " =0T

> |[Ue(X)Ua(X)" - UUT|

— lUc(X)Uca(X) = Ua(X)Ue(X) |

o

> (1= 00T~ Us(X)U6(X)T] - 25 ~a.

Taking ¢ — oo on both side and €, ¢; — 0 we have
0> (1= 0pt1/on) U0 = Ua(X)Ua(X) |-

So span(Ug(X)) = span(U). Using the same derivations
on the right singular vectors V', we can get span(Vg (X)) =
span(V).

The above argument shows that P(Xt) — P(X). If X
is not a global optimum, then P(X) # X. Since all the
fixed points are global optimum, by a typical convergence
property for the fixed-point operation we can show that X
is a global optimum.

Next, we prove the asymptotic convergence rate. By
Theorem 7, we know after finite steps T, Ua(X;) =
U*,Va(X:) = V*. Moreover, o;(X: — Vf(X:)) con-
verges to o (X* — Vf(X™*)) and 011 (X;: — V(X))
converges to 041 (X* — Vf(X™)), so there exists a Ty
such that for all t > T5,

o1 (Xt — Vf(Xy)) <A €/2

(22)
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Assume T' = max (T}, Ty). Since for each iteration we run
one power iteration on X; — V f(X;) and the gap of the
k-th and (k 4 1)-st singular values are guaranteed in (22),
from (18) we can bound the error between subspaces (U )
and U™ by

[UA(X)UA(X) " = U (U)T|
<(1- i)\\m(xt_l)m(xt_lf AN

when ¢ > T. Therefore
1UA(X 74 )Ua(Xgp) T = U(U)T
€ * *
< (1= ) UAXP)Ua(Xp) T = U U] (23)

2\

At the ¢-th iteration, it is clear that S, =
Ua(X:)TX*V4(X;) is a feasible solution for the
sub-problem (8). Let X; = Ux(X;)S;Va(X;)" then
F(X;) > F(X;) (because X; is the minimizer of (8)).
Also, X* = U*(U*)TX* = X*V*(V*)T, s0

X — X7

is downloaded from http://statweb.stanford.
edu/ " rahulm/SoftImpute/. In their code, the top-
k singular vectors is computed by Lanczos algorithm. We
use the same JSH and SSGD implementation as in (Avron
et al., 2012), where the largest singular value is com-
puted by the SVDS function in MATLAB and the pa-
rameters are tuned by the authors. More specifically,
d = 0.04 for mI100k, 6 = 0.015 for mI1Om and net-
flix, and v = 0.005 for all datasets. We implement Lift-
edCD by ourselves and compute the largest singular value
by the power method. For MMBS the code is down-
loaded from http://www.montefiore.ulg.ac.
be/ mishra/softwares/traceNorm.html, and
the GCG code is downloaded from http://users.
cecs.anu.edu.au/ "xzhang/GCG/.

<NUAX)Ua(X2) X Va(Xe)Va(Xe) T-Ua(Xe)Ua (Xe) "X

HUAX)Ua(Xe) T X" — X7

= [IUA(Xe)Ua(Xe) "X (VA(VH)T = Va(Xe)Va(Xe)T) |

+(UU)T = Ua(X)Ua(Xe) D)X
< (U U = Ua(X)Ua(Xe) ||+
[V*(V*) T — Va(X)Va(Xe) TIDIIX -

Next we relate this quantity with the objective function
value F(X;). From Lemma 3.1 in (Ji & Ye, 2009),

F(X) = F(X") < LIIX - X*||%,

where L is the Lipschitz constant for V f(.X). Substituting
X, into the above inequality we get

F(Xy) = F(X") < F(Xy) - F(X7)
< LR(|US(U)" = Ua(Xe)Ua(Xo)"|
VAV T = Va(Xe)Va(Xe) "D,

where R = || X *|| is a constant. Applying (23) we can get

F(X;) = F(X*) < LR(1 - %)t—T

when t > T. Therefore our algorithm has an asymptoti-
cally linear convergence rate.

O

6.7. Implementation Details for the comparison

We discuss the implementation detail for other algo-
rithms in our comparison. The code for Soft-Impute



