
Multi-period Trading Prediction Markets: Supplementary Material

A. Algorithm for the Multi-period Trading
Markets (the Split Version)

We split the market algorithm into two routines, one for
the market maker and one for the agent, respectively. We
do this to emphasise the fact that each agent in the market
has its own objective (achieving the optimal portfolio based
on its unique preferences), plus a communication with the
market maker.

Algorithm 1 The market maker in a multi-period market
Input: time period T

for t = 1 to T do
publish a pricing rule ct(·)
collect trading request {∆Xn,t} from agents
choose agent at and make trade, ∆Xt ≡ ∆Xat,t

update ct(·)→ ct−1(·)
end for
close the market

Output: {at}, {∆Xt}

Algorithm 2 An agent n ∈ A in a multi-period market
Input: initial portfolio {wn,0, Xn,0}, risk measure ρn(·),

starting point t = 1
repeat

receive the pricing rule for time t
calculate {∆Xn,t,−ct(∆Xn,t)} for this round us-
ing Select({wn,t−1, Xn,t−1}, ρn(·), ct(·)), and send
its trading request to the market maker
if trade happens then
Xn,t = Xn,t−1 + ∆Xn,t

wn,t = wn,t−1 − ct(∆Xn,t)
else
Xn,t = Xn,t−1, wn,t = wn,t−1,∆Xn,t = 0

end if
t = t+ 1

until market is closed
Output: {wn,t, Xn,t}t=1,2,..., {∆Xn,t}t=1,2,...

B. Complete Proof of Proposition 1
Proposition 1 (The global objective of a market). A multi-
period market with a path-independent pricing rule market

maker aims to minimise the global objective

L = c(Y ) +
∑
n∈A

ρn(Xn), Y =
∑
n∈A

Xn, (1)

by performing a sequential optimisation algorithm, which
is implemented by the trading process: define ϕat(∆X

′
t) ≡

ρat(Xat,t−1 + ∆X ′t + wat,t−1 − ct(∆X ′t)) and for each
time t

∆Xt = arg min∆X′
t
ϕat(∆X

′
t), (2)

Xn,t = Xn,t−1 + 1(n = at)∆Xt, (3)
wn,t = wn,t−1 − 1(n = at)ct(∆Xt), (4)
Yt = Yt−1 + ∆Xt, (5)

If the algorithm converges at time t′, i.e. ∆Xt = 0 for all
t > t′, then {Xn,t′}, Yt′ achieves a local minimum of the
objective L in (1).

Proof. At time t only agent at will trade with the market
maker, so ∆Xt = ∆Xat,t. At time t, for any agent n all
quantities calculated before t can be treated as constants as
they could no longer be modified. Therefore, the functional
that is minimised in (2) has the same optimal point with the
following functional

lt(∆X
′
t) = ρat(Xat,t−1 + ∆X ′t + wat,t−1 − ct(∆X ′t))

− ρat(Xat,t−1 + wat,t−1). (6)

Apply the property of translation invariance to lt, we have

lt(∆X
′
t) = ρat(Xat,t−1 + ∆X ′t)

− ρat(Xat,t−1) + ct(∆X
′
t). (7)

Sum over all lt’s and denote this summation by LT , which
is a functional. Then

min
{∆X′

t}
LT = min

{∆X′
t}

T∑
t=1

lt(∆X
′
t) =

T∑
t=1

min
∆X′

t

lt(∆X
′
t)

=

T∑
t=1

lt(∆Xt). (8)

Here ∆Xt’s are the optimal point obtained from (2). Sub-
stitute (7) to (8)

T∑
t=1

lt(∆Xt) =

T∑
t=1

ρat(Xat,t−1 + ∆Xt)

− ρat(Xat,t−1) +

T∑
t=1

ct(∆Xt). (9)
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Note that at time t for any agent n 6= at it makes no trade
∆Xn,t = 0, and so

ρn(Xn,t−1+∆Xn,t)−ρn(Xn,t−1) = 0, ∀n 6= at. (10)

The first summation on RHS thus becomes
T∑
t=1

ρat(Xat,t−1 + ∆Xt)− ρat(Xat,t−1)

=

T∑
t=1

∑
n∈A

ρn(Xn,t−1 + ∆Xn,t)− ρn(Xn,t−1)

=
∑
n∈A

ρn(Xn,T )− ρn(Xn,0). (11)

Since the pricing rule is path-independent, the second sum-
mation on RHS is

T∑
t=1

ct(∆Xt) =

T∑
t=1

ct(Yt)− ct(Yt−1) = c(Yt)− c(0),

(12)
where Yt =

∑t
τ=1 ∆Xτ and Y0 = 0. Since Xn,0 = 0 and

for any t and n 6= at ∆Xn,t = 0, we have

Yt =

t∑
τ=1

∆Xτ =

t∑
τ=1

∆Xaτ ,τ =

t∑
τ=1

∑
n∈A

∆Xn,τ

=
∑
n∈A

t∑
τ=1

∆Xn,τ =
∑
n∈A

Xn,t, ∀t > 0. (13)

Finally, substitute (11) (12) and (13) to (8) and merge the
rest terms we can end up with

min
{∆Xt}

LT = min
{∆Xt}

c(YT ) +
∑
n∈A

ρn(Xn,T )− C, (14)

where YT =
∑
n∈A ∆Xn,T and C = c(0) +

∑
n∈A ρn(0)

is a constant. This is a sequential minimisation scheme for
minL. Finally, if the market converges at time T , we have
Xn = Xn,T and Y = YT , leading to a local minimal point
of L.

C. Another Example of Constructing Risk
Measures from Expected Utilities

As another example, consider the HARA utility

uH(x) =
1− γ
γ

(
ax

1− γ
+ b

)γ
, a > 0,

ax

1− γ
+ b > 0.

(15)
The resultant convex risk measure is the one who has the
following penalty functional

α(Q) =
γ

a
η−1/η(−u0)1/γ E

[(
dQ

dP

)η]1/η

+ (1− γ)
b

a
,

(16)
where 1/η + 1/γ = 1.

D. Bayesian Updates for Gaussians
Here we explain the connection between the markets with
Bayesian updates in detail (the second example in Section
7). To estimate a univariate GaussianN (µ, σ1) all we need
is the sufficient statistics calculated from a set of N data
points D = {x1, x2, . . . , xN}. For clarity of exposition
let’s assume that we only care about the Bayesian updates
of the mean parameter µ, and think σ1 is a prefixed con-
stant. Introduce a Conjugate prior on the mean

p(µ | µ0, σ0) ∝ exp

(
− 1

θ0

(µ− µ0)2

2σ2
0

)
, (17)

where θ−1
0 is so-called the pseudo count. The posterior is

p(µ | D, µ0, σ0) ∝ p(µ | µ0, σ0)p(D | µ, σ1)

∝ exp

(
− 1

θ0

(µ− µ0)2

2σ2
0

)
exp

(
−N (µ− x̄)2

2σ2
1

)
∝ exp

(
− 1

θ0

(µ− µ0)2

2σ2
0

− 1

θ1

(µ− µ1)

2σ2
1

)
, (18)

where µ1 = x̄ denotes the sample mean of the data set, and
θ1 = N−1. If our goal is to calculate the MAP distribution
then we have an optimisation problem

L = min
µ∈R

1

θ0

(µ− µ0)2

2σ2
0

+
1

θ1

(µ− µ1)2

2σ2
1

. (19)

Let

F0(µ) ≡ 1

θ0

(µ− µ0)2

2σ2
0

, F1(µ) ≡ 1

θ1

(µ− µ1)2

2σ2
1

, (20)

and thus we have L = minµ∈R F0(µ) + F1(µ). Since F0

and F1 are convex, we could apply the Fenchel’s duality to
the problem L, which gives us the following dual problem

−L′ = min
s∈R

F ∗0 (s) + F ∗1 (−s), (21)

where F ∗0 is the Legendre-Fenchel transform of F0

F ∗0 (s) = sup
µ∈R

sµ− F0(s) = sµ0 +
1

2
σ2

0θ0s
2, (22)

and similarly F ∗1 (s) = sµ1 + 1
2σ

2
1θ1s

2. Choose the hyper-
parameter µ0 = 0, σ0 = 1, and we finally have

−L′ = min
s∈R

θ0

2
s2 +

(
−sµ1 +

1

2
σ2

1θ1s
2

)
= min

s∈R
c(x) + ρ1(s). (23)

This is exactly the agent’s objective. Since s and µ are
dual to each other, the market performs the Bayesian update
(MAP estimate) in the dual space of the mean parameters.


