
SUPPLEMENTAL MATERIALS

1. Summary of Notation

Useful notation is summarized in Table 1.

2. Algorithm: Semedifinite Programming Relaxation (SDPR)

To make the supplemental material self-contained, we repeat the proposed semidefinite programming
relaxation (SDPR) as follows

maximize
x∈Rnm,X∈Snm

n∑

i=1

〈wi,xi〉+
∑

(i,j)∈G

〈W ij ,Xij〉

subject to 1Txi = 1, (1 ≤ i ≤ n)(1)

Xii = diag (xi) , (1 ≤ i ≤ n)(2)

Xij ≥ 0, (i, j) ∈ G(3)
[

1 xT

x X

]

� 0,(4)

3. Proofs of Theorems in Section 2

3.1. Proofs of Theorem 1.

Theorem 1. The semidefinite constraint (4) and the linear constraints (1) and (2) induce the following
linear constraints

Xij1 = xi, XT
ij1 = xj , 1 ≤ i < j ≤ n.

The proof of Theorem 1 relies on the following lemma.

Lemma 1. Let D =

(
1 0
0 In ⊗ 1

)

∈ R
(nm+1)×m. Introduce Y = DT

(
1 xT

x X

)

D ∈ R
(n+1)×(n+1).

Then constraints (1),(2) and (4) lead to

Y = 1 · 1T .

Proof. If we represent Y := [Y ij ]1≤i,j≤n, then it is straightforward to see that Y � 0 and Y 11 = 1. Moreover,

Y 1i = 1Txi = 1, 2 ≤ i ≤ n+ 1,

Y ii = 1TDiag(xi)1 = 1, 2 ≤ i ≤ n+ 1.(5)

Let us consider the following 3×3 principal minor of Y coming from rows and columns with indices in
{1, i, j}, where 2 ≤ i < j ≤ n+ 1.

Y (1,i,j) =





1 1 1
1 1 Y ij

1 Y ij 1



 ,

which is necessarily positive semidefinite due to Y � 0. This implies that

det
(
Y (1,i,j)

)
= −(Y ij − 1)2 ≥ 0,

which can only occur when Y ij = 1. This completes the proof. �
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Symbol Description

1 ones vector: a vector with all entries one
Xij (i, j)-th block of a block matrix X .

〈A,B〉 matrix inner product, i.e. 〈A,B〉 =
∑

i,j

aijbij .

diag(X) a column vector formed from the diagonal of a square matrix X

Diag(x) a diagonal matrix that puts x on the main diagonal
ei ith unit vector, whose ith component is 1 and all others 0

⊗ tensor product, i.e. A⊗B =








a1,1B a1,2B · · · a1,n2
B

a2,1B a2,2B · · · a2,n2
B

...
...

...
...

an1,1B an1,2B · · · an1,n2
B








A(·) a linear matrix operator, i.e, A(·) : RN×M → R
K

A⋆(·) conjugate operator of A(·), i.e., 〈A(X),y〉 = 〈X ,A⋆(y), ∀X ∈ R
N×M ,y ∈ R

K .
x+ x+ = max(0, x)
X+ X+ is the matrix after applying ()+ to each element of X.
X�0 projection of a symmetric matrix X onto the positive semidefinite cone
‖ · ‖F matrix Frobineous norm

Table 1. Summary of Notations

Proof of Theorem 1. Denote r = rank

([
1 xT

x X

])

. As

(
1 xT

x X

)

� 0, we can find a matrix Z =

(z,Z1, · · · ,Zn) ∈ R
r×(nm+1) with z ∈ R

r,Zi ∈ R
r×n, 1 ≤ i ≤ n such that

(
1 xT

x X

)

= ZTZ.

It follows from Lemma 1 that

DT

(
1 xT

x X

)

D = (ZD)T (ZD) = 11T .

Simple algebraic manipulation indicates that: there exists a unitary matrix U ∈ R
r×r such that

UZD = e1 · 1
T , ⇒ [Uz,UZ11, · · · ,UZn1] = e1 · 1

T ,

which immediately follows that

Zi1 = z, 1 ≤ i ≤ n.

One can then derive

Xij1 = ZT
i Zj1 = ZT

i z = xi,

XT
ij1 = ZT

j Zi1 = ZT
j z = xj ,

which concludes the proof. �

3.2. Proofs of Theorem 2. In the main paper, we introduced another SDP relaxation (referred to as

SDPR2) via reparameterization of the variables. Denote by wi := wi +
1
2

(

∑

j:(i,j)∈G

W ij1+
∑

j:(j,i)∈G

W T
ji1

)

,
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we repeat the convex formulation as follows

maximize
n∑

i=1

〈wi,yi〉+
1

2

∑

(i,j)∈G

〈W ij , Yij〉

subject to

(
1 yT

y Y

)

� 0,

11T + yi1
T + 1yT

i + Y ii = 2Diag(1+ yi), (1 ≤ i ≤ n),

1Tyi = 2−m, (1 ≤ i ≤ n),

Y ij + 1yT
j + yi1

T + 11T ≥ 0. (i, j) ∈ G.(6)

Theorem 2. (x,X) is an optimal solution to SDPR if and only if
(
y := 2x−1,Y := 4X−2(x1T +1xT )+

11T
)

is an optimal solution to SDPR2.

Proof. We first prove that if (x,X) is a feasible point to SDPR, then (y := 2x − 1,Y := 4X − 2(x1T +
1xT ) + 11T ) is a feasible point to SDPR2. In fact

Y ij + yi1
T + 1yT

j + 11T = 4Xij ≥ 0, (i, j) ∈ G,

Y ii + yi1
T + 1yT

i + 11T = 4Xii = 2Diag(1+ yi), 1 ≤ i ≤ n,

1Tyi = 1T (2xi − 1) = 2−m. 1 ≤ i ≤ n.

The property

(
1 yT

y Y

)

� 0 can be shown via the following observation

(
1 0
−1 2I

)(
1 xT

x X

)(
1 −1T

0 2I

)

=

(
1 2xT − 1T

2x− 1 4X − 2(x1T + 1xT ) + 11T

)

=

(
1 yT

y Y

)

.

Following the same procedure, we can prove that if (y,Y ) is a feasible point to SDPR2, then (x := 1+y

2 ,X =
11

T+1yT+y1T+Y

4 ) is feasible for SDPR. We omit the details for brevity.
We conclude the proof by showing the following linear relation between the objective value of (x,X) in

SDPR and the objective value of (y,Y ) in SDPR2:

fSDPR =
n∑

i=1

〈wi,xi〉+
∑

(i,j)∈G

〈W ij ,Xij〉

=

n∑

i=1

〈

wi,
1+ yi

2

〉

+
∑

(i,j)∈G

〈

W ij ,
11T + yi1

T + 1yT
j + Y ij

4

〉

=
1

2

n∑

i=1

〈

wi +
1

2




∑

j:(i,j)∈G

W ij1+
∑

j:(j,i)∈G

W T
ji1



 ,yi

〉

+
1

4

∑

(i,j)∈G

〈W ij ,Y ij〉

+
1

2

n∑

i=1

〈wi,1〉+
1

4

∑

(i,j)∈G

〈
W ij ,11

T
〉

=
1

2
fSDPR2 +

1

2

n∑

i=1

〈wi,1〉+
1

4

∑

(i,j)∈G

〈
W ij ,11

T
〉

︸ ︷︷ ︸

∆SDPR

,

where ∆SDPR is a constant independent of the variables to optimize. �

4. SDPAD-LRR

In this section, we present the derivation of the SDPAD-LRR, and prove its convergence properties. The
methodology largely follows [1], which describes ADALM for general semidefinite programs.
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4.1. Derivation of SDPAD-LR. As described in the main text, we consider the following simplified form
of SDPR (with corresponding dual variables on the right hand side):

minimize 〈C,X〉 dual variables

subject to A(X) = b, y

P(X) ≥ 0, z ≥ 0

X � 0, S � 0(7)

It is easy to write down the Lagrangian multipler of SDPR as follows:

L′ = −bTy +
〈
C +A⋆(y) − P⋆(z)−Z,X

〉
.

The basic idea of ADALM is to consider the following augmented Largrangian, which adds a quadratic
term that minimizes the dual feasibility:

L(y, z,S,X) = 〈b,y〉+
〈
P⋆(z) + S −C −A⋆(y),X

〉

+
1

2µ
‖P⋆(z) + S −C −A⋆(y)‖2F .

Note that the sign of L is changed in order to make it consistent with the quadratic term.
ADALM alternates between optimizing the dual variables y. z and S and updating the primal variable X.

Instead of optimizing the dual variables together, the key idea of ADALM is to optimize the dual variables
in a sequential manner. Specifically, let superscript (k) denote the value of a variable. ADALM determines
y(k), z(k) and X by solving following sub-problems:

y(k) = argmin
y

L(y, z(k−1),S(k−1),X
(k−1)

),

z(k) = argmin
z≥0

L(y(k), z,S(k−1),X
(k−1)

),

S(k) = argmin
S�0

L(y(k), z(k),S,X
(k−1)

).

Given y(k), z(k) and S(k), ADALM then updates X as

(8) X
(k)

= X
(k−1)

+
P⋆(z(k)) + S(k) −C −A⋆(y(k))

µ
.

It turns out y(k), z(k) and S(k)can be computed analytically. After some standard linear algebra deriva-
tions (See [1] for details), we arrive at the following explicit formula for the dual variables:

y(k) = (AA∗)−1
(

A
(
S(k−1) + P⋆(z(k−1))−C + µX

(k−1))
− µb

)

,(9)

z(k) = P
(

C +A⋆(y(k))− S(k−1) − µX
(k−1)

)

+
,(10)

S(k) =
(

C +A⋆(y(k))− P⋆(z(k))− µX
(k−1)

)

�0

.(11)

The key observation in developing the proposed SDPAD-LR is that the dual variable S is redundant. In

fact, (8) enables us to represent S(k) using other dual variables as

(12) S(k) = C +A⋆(y(k))− P⋆(z(k)) + µ(X
(k)

−X
(k−1)

).
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Substituting 12 into (9) and (10), we obtain

y(k) = (AA⋆)−1
(

A
(
C +A⋆(y(k−1))− P⋆(z(k−1)) + µ(X

(k−1)
−X

(k−2)
)

+ P⋆(z(k−1))−C + µX
(k−1))

− µb
)

= y(k−1) + µ(AA⋆)−1
(

A(2X
(k−1)

−X
(k−2)

)− b
)

,(13)

z(k) = P
(

C +A⋆(y(k))−C −A⋆(y(k−1)) + P⋆(z(k−1))− µ(X
(k−1)

−X
(k−2)

)− µX
(k−1)

)

+

=
(
z(k−1) − µP((2X

(k−1)
−X

(k−2)
))
)

+
.(14)

Rewrite (12) as

S(k) − µX
(k)

=
(

C +A⋆(y(k))− P⋆(z(k))− µX
(k−1)

)

and combine (11), we obtain the following explicit formula for computing X
(k)

:

(15) X
(k)

=
(

X
(k−1)

−
C +A⋆(y(k))− P⋆(z(k))

µ

)

�0
.

Collecting (13),(14) and (??), we obtain the proposed SDPAD-LRR, which is summarized as Algorithm
1 in the main text.

4.2. Convergence Analysis of SDPAD-LRR.

Theorem 3. The SDPAD-LRR method converges to an optimal solution to SDPR.

Proof. To prove the convergence of SDPAD-LRR, we utilize the original formulas, which involve the dual
variable S. The proof is similar to that of [1]. Define two matrix operators D(·) and V(·, ·) as follows

D(V ) := (V �0,V �0 − V ),(16)

V(X,S) := C +A⋆(y(X,S))− P⋆(z(X ,S))− µX, where

y(X ,S) := (AA⋆)−1(A(S + µX −C)− µb),

z(X ,S) := P(C − S − µX)+.(17)

[1] provides a framework for the proving the convergence of a ADALM method by proving that both D(·)
and V(·, ·) are nonexpansive, i.e.,

‖D(V )−D(V̂ ‖F ≤ ‖V − V̂ ‖F ,

‖V(X,S)− V(X̂, Ŝ)‖F ≤ ‖(S − Ŝ, µ(X − X̂)‖F .

This means the composite operator D(V(·, ·)) is nonexpansive aswell, and one can prove the convergence
of ADALM by the fact that is converges to a fixed point of D(V(·, ·)). As [1] already provides a proof of the
nonexpansiveness of D, we only prove that V(·, ·) is nonexpansive.

Lemma 2. For any symmetric matrices X, X̂,S, Ŝ,

‖V(X,S)− V(X̂, Ŝ)‖F ≤ ‖(S − Ŝ, µ(X − X̂)‖F .

Proof. Since the domain of P(·) and A(·) do not intersect, we divide the elements of a matrix V (X ,X) into
three subsets, ΩA, ΩP and Ω◦, i.e., ΩA and ΩP consist of elements that are constrained by A(·) and P(·),
respectively, and Ω◦ includes the remaining elements. In the following, we use ΩA(·) and Ω◦(·) to denote
the linear operator that pick elements in ΩA and Ω◦, respectively.

Expanding V (X,S)− V (X̂, Ŝ) out, we obtain

V (X ,S)− V (X̂, Ŝ) = A∗(y(X,S)− y(X̂, Ŝ))− P⋆(z(X,S)− z(X̂ , Ŝ)))− µ(X − X̂)

= −µ(I −M)(X − X̂)− P⋆(z(X,S)− z(X̂, Ŝ))) +M(S − Ŝ),

where M = A⋆(AA⋆)−1A, and I standards for the identity operator.
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In the following, we prove that V(·, · is actually non-expansive on each type of elements. First,

‖ΩA(V (X ,S)− V (X̂, Ŝ))‖2 = ‖ − ΩA((I −M)(X − X̂)) + ΩA(S − Ŝ)‖2

≤ ‖µΩA(X − X̂)‖2 + ‖ΩA(S − Ŝ)‖2,

where we have used that fact that the eigenvalues of M are within [0, 1] (See [1]).
Second,

‖Ω◦(V(X,S)− V(X̂, Ŝ))‖2 = ‖µΩ◦(X − X̂)‖2.

Finally,

‖P(V (X ,S)− V (X̂, Ŝ))‖2 = ‖µP(X − X̂) + P(C − S − µX)+ − P(C − Ŝ − µX̂)‖2.

It remains to be prove for five arbitrary real values c, x, x̂, s, ŝ,

(µ(x − x̂) + (c− s− µx)+ − (c− ŝ− µx̂)+)
2 ≤ µ2(x− x̂)2 + (s− ŝ)2.

This inequality is trivial when both c − s − µx and c − ŝ − µx̂ are positive or both of them are negative.
Suppose c− s− µx ≥ 0 while c− ŝ− µx̂ ≤ 0, then

µ(x− x̂) + (c− s− µx) ≤ µ(x− x̂) + ŝ+ µx̂− s− µx = ŝ− s

µ(x − x̂) + (c− s− µx) ≥ µ(x− x̂),

which ends the proof. �

It is clear that the equality holds if

ΩA(M(X − X̂)) = 0,

ΩA(I −M)(S − Ŝ) = 0,

Ω◦(S − Ŝ) = 0,

�

Remark 1. Note that the prove of Lemma 2 has utilized the fact that the domains of A(·) and P(·) do not
intersect–a special property of SDPR.
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