SUPPLEMENTAL MATERIALS

1. Summary of Notation

Useful notation is summarized in Table 1

2. Algorithm: Semedifinite Programming Relaxation (SDPR)

To make the supplemental material self-contained, we repeat the proposed semidefinite programming relaxation (SDPR) as follows

$$
\begin{array}{rlr}
\underset{\boldsymbol{x} \in \mathbb{R}^{n m}, \boldsymbol{X} \in \mathbb{S}^{n m}}{\operatorname{maximize}} & \sum_{i=1}^{n}\left\langle\boldsymbol{w}_{i}, \boldsymbol{x}_{i}\right\rangle+\sum_{(i, j) \in \mathcal{G}}\left\langle\boldsymbol{W}_{i j}, \boldsymbol{X}_{i j}\right\rangle \\
\text { subject to } & \mathbf{1}^{T} \boldsymbol{x}_{i}=1, & (1 \leq i \leq n) \\
& \boldsymbol{X}_{i i}=\operatorname{diag}\left(\boldsymbol{x}_{i}\right), & (1 \leq i \leq n) \\
& \boldsymbol{X}_{i j} \geq \mathbf{0}, & (i, j) \in \mathcal{G} \tag{3}
\end{array}
$$

$$
\left[\begin{array}{cc}
1 & \boldsymbol{x}^{T} \tag{4}\\
\boldsymbol{x} & \boldsymbol{X}
\end{array}\right] \succeq \mathbf{0}
$$

3. Proofs of Theorems in Section 2

3.1. Proofs of Theorem 1 ,

Theorem 1. The semidefinite constraint (4) and the linear constraints (1) and (2) induce the following linear constraints

$$
\boldsymbol{X}_{i j} \mathbf{1}=\boldsymbol{x}_{i}, \quad \boldsymbol{X}_{i j}^{T} \mathbf{1}=\boldsymbol{x}_{j}, \quad 1 \leq i<j \leq n
$$

The proof of Theorem 1 relies on the following lemma.
Lemma 1. Let $\boldsymbol{D}=\left(\begin{array}{cc}1 & 0 \\ 0 & \boldsymbol{I}_{n} \otimes \mathbf{1}\end{array}\right) \in \mathbb{R}^{(n m+1) \times m}$. Introduce $\boldsymbol{Y}=\boldsymbol{D}^{T}\left(\begin{array}{cc}1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X}\end{array}\right) \boldsymbol{D} \in \mathbb{R}^{(n+1) \times(n+1)}$. Then constraints (1), (2) and (4) lead to

$$
\boldsymbol{Y}=\mathbf{1} \cdot \mathbf{1}^{T} .
$$

Proof. If we represent $\boldsymbol{Y}:=\left[Y^{i j}\right]_{1 \leq i, j \leq n}$, then it is straightforward to see that $\boldsymbol{Y} \succeq 0$ and $Y^{11}=1$. Moreover,

$$
\begin{align*}
Y^{1 i}=\mathbf{1}^{T} \boldsymbol{x}_{i}=1, & 2 \leq i \leq n+1 \\
Y^{i i}=\mathbf{1}^{T} \operatorname{Diag}\left(\boldsymbol{x}_{i}\right) \mathbf{1}=1, & 2 \leq i \leq n+1 \tag{5}
\end{align*}
$$

Let us consider the following 3×3 principal minor of \boldsymbol{Y} coming from rows and columns with indices in $\{1, i, j\}$, where $2 \leq i<j \leq n+1$.

$$
\boldsymbol{Y}_{(1, i, j)}=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & Y^{i j} \\
1 & Y^{i j} & 1
\end{array}\right)
$$

which is necessarily positive semidefinite due to $\boldsymbol{Y} \succeq \mathbf{0}$. This implies that

$$
\operatorname{det}\left(\boldsymbol{Y}_{(1, i, j)}\right)=-\left(Y^{i j}-1\right)^{2} \geq 0
$$

which can only occur when $Y^{i j}=1$. This completes the proof.
$\left.\begin{array}{c|c}\hline \text { Symbol } & \text { Description } \\ \hline \boldsymbol{1} & \text { ones vector: a vector with all entries one } \\ \hline \boldsymbol{X}_{i j} & (i, j) \text {-th block of a block matrix } \boldsymbol{X} . \\ \hline\langle\boldsymbol{A}, \boldsymbol{B}\rangle & \text { matrix inner product, i.e. }\langle\boldsymbol{A}, \boldsymbol{B}\rangle=\sum_{i, j} a_{i j} b_{i j} . \\ \hline \operatorname{diag}(\boldsymbol{X}) & \text { a column vector formed from the diagonal of a square matrix } \boldsymbol{X} \\ \hline \text { Diag }(\boldsymbol{x}) & \text { a diagonal matrix that puts } \boldsymbol{x} \text { on the main diagonal } \\ \hline \boldsymbol{e}_{i} & \text { ith unit vector, whose } i \text { th component is } 1 \text { and all others } 0 \\ \hline & \text { tensor product, i.e. } \boldsymbol{A} \otimes \boldsymbol{B}=\left[\begin{array}{ccc}a_{1,1} \boldsymbol{B} & a_{1,2} \boldsymbol{B} & \cdots \\ a_{2,1} \boldsymbol{B} & a_{1, n_{2}} \boldsymbol{B} \\ \vdots & a_{2,2} \boldsymbol{B} & \cdots \\ \vdots & a_{2, n_{2}} \boldsymbol{B} \\ a_{n_{1}, 1} \boldsymbol{B} & a_{n_{1}, 2} \boldsymbol{B} & \cdots\end{array}\right] \quad a_{n_{1}, n_{2}} \boldsymbol{B}\end{array}\right]$.

TABLE 1. Summary of Notations

Proof of Theorem [1. Denote $r=\operatorname{rank}\left(\left[\begin{array}{cc}1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X}\end{array}\right]\right)$. As $\left(\begin{array}{cc}1 & \boldsymbol{x}^{T} \\ \boldsymbol{x} & \boldsymbol{X}\end{array}\right) \succeq \mathbf{0}$, we can find a matrix $\boldsymbol{Z}=$ $\left(\boldsymbol{z}, \boldsymbol{Z}_{1}, \cdots, \boldsymbol{Z}_{n}\right) \in \mathbb{R}^{r \times(n m+1)}$ with $\boldsymbol{z} \in \mathbb{R}^{r}, \boldsymbol{Z}_{i} \in \mathbb{R}^{r \times n}, 1 \leq i \leq n$ such that

$$
\left(\begin{array}{cc}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \boldsymbol{X}
\end{array}\right)=\boldsymbol{Z}^{T} \boldsymbol{Z}
$$

It follows from Lemma that

$$
\boldsymbol{D}^{T}\left(\begin{array}{cc}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \boldsymbol{X}
\end{array}\right) \boldsymbol{D}=(\boldsymbol{Z} \boldsymbol{D})^{T}(\boldsymbol{Z} \boldsymbol{D})=\mathbf{1 1}^{T}
$$

Simple algebraic manipulation indicates that: there exists a unitary matrix $\boldsymbol{U} \in \mathbb{R}^{r \times r}$ such that

$$
\boldsymbol{U} \boldsymbol{Z} \boldsymbol{D}=\boldsymbol{e}_{1} \cdot \mathbf{1}^{T}, \quad \Rightarrow \quad\left[\boldsymbol{U} \boldsymbol{z}, \boldsymbol{U} \boldsymbol{Z}_{1} \mathbf{1}, \cdots, \boldsymbol{U} \boldsymbol{Z}_{n} \mathbf{1}\right]=\boldsymbol{e}_{1} \cdot \mathbf{1}^{T}
$$

which immediately follows that

$$
\boldsymbol{Z}_{i} \mathbf{1}=\boldsymbol{z}, \quad 1 \leq i \leq n
$$

One can then derive

$$
\begin{aligned}
\boldsymbol{X}_{i j} \mathbf{1} & =\boldsymbol{Z}_{i}^{T} \boldsymbol{Z}_{j} \mathbf{1}=\boldsymbol{Z}_{i}^{T} \boldsymbol{z}=\boldsymbol{x}_{i} \\
\boldsymbol{X}_{i j}^{T} \mathbf{1} & =\boldsymbol{Z}_{j}^{T} \boldsymbol{Z}_{i} \mathbf{1}=\boldsymbol{Z}_{j}^{T} \boldsymbol{z}=\boldsymbol{x}_{j}
\end{aligned}
$$

which concludes the proof.
3.2. Proofs of Theorem 2. In the main paper, we introduced another SDP relaxation (referred to as SDPR2) via reparameterization of the variables. Denote by $\overline{\boldsymbol{w}}_{i}:=\boldsymbol{w}_{i}+\frac{1}{2}\left(\sum_{j:(i, j) \in \mathcal{G}} \boldsymbol{W}_{i j} \mathbf{1}+\sum_{j:(j, i) \in \mathcal{G}} \boldsymbol{W}_{j i}^{T} \mathbf{1}\right)$,
we repeat the convex formulation as follows

$$
\begin{array}{lll}
\operatorname{maximize} & \sum_{i=1}^{n}\left\langle\overline{\mathbf{w}}_{i}, \mathbf{y}_{i}\right\rangle+\frac{1}{2} \sum_{(i, j) \in \mathcal{G}}\left\langle\boldsymbol{W}_{i j}, Y_{i j}\right\rangle & \\
\text { subject to } & \left(\begin{array}{cc}
1 & \boldsymbol{y}^{T} \\
\boldsymbol{y} & \boldsymbol{Y}
\end{array}\right) \succeq \mathbf{0}, \\
& \mathbf{1 1}^{T}+\boldsymbol{y}_{i} \mathbf{1}^{T}+\mathbf{1} \boldsymbol{y}_{i}^{T}+\boldsymbol{Y}_{i i}=2 \operatorname{Diag}\left(\mathbf{1}+\boldsymbol{y}_{i}\right), & (1 \leq i \leq n), \\
& \mathbf{1}^{T} \boldsymbol{y}_{i}=2-m, & (1 \leq i \leq n), \\
& \boldsymbol{Y}_{i j}+\mathbf{1} \boldsymbol{y}_{j}^{T}+\boldsymbol{y}_{i} \mathbf{1}^{T}+\mathbf{1 1}^{T} \geq \mathbf{0} & (i, j) \in \mathcal{G} \tag{6}
\end{array}
$$

Theorem 2. $(\boldsymbol{x}, \boldsymbol{X})$ is an optimal solution to $S D P R$ if and only if $\left(\boldsymbol{y}:=2 \boldsymbol{x}-\mathbf{1}, \boldsymbol{Y}:=4 \boldsymbol{X}-2\left(\boldsymbol{x} \mathbf{1}^{T}+\mathbf{1} \boldsymbol{x}^{T}\right)+\right.$ $\mathbf{1 1}^{T}$) is an optimal solution to SDPR2.

Proof. We first prove that if $(\boldsymbol{x}, \boldsymbol{X})$ is a feasible point to SDPR, then $\left(\boldsymbol{y}:=2 \boldsymbol{x}-\mathbf{1}, \boldsymbol{Y}:=4 \boldsymbol{X}-2\left(\boldsymbol{x} \mathbf{1}^{T}+\right.\right.$ $\left.\mathbf{1} \boldsymbol{x}^{T}\right)+\mathbf{1 1}^{T}$) is a feasible point to SDPR2. In fact

$$
\begin{array}{rc}
\boldsymbol{Y}_{i j}+\boldsymbol{y}_{i} \mathbf{1}^{T}+\mathbf{1} \boldsymbol{y}_{j}^{T}+\mathbf{1 1} \mathbf{1}^{T}=4 \boldsymbol{X}_{i j} \geq \mathbf{0}, & (i, j) \in \mathcal{G} \\
\boldsymbol{Y}_{i i}+\boldsymbol{y}_{i} \mathbf{1}^{T}+\mathbf{1} \boldsymbol{y}_{i}^{T}+\mathbf{1 1}^{T}=4 \boldsymbol{X}_{i i}=2 \operatorname{Diag}\left(\mathbf{1}+\boldsymbol{y}_{i}\right), & 1 \leq i \leq n \\
\mathbf{1}^{T} \boldsymbol{y}_{i}=\mathbf{1}^{T}\left(2 \boldsymbol{x}_{i}-\mathbf{1}\right)=2-m . & 1 \leq i \leq n
\end{array}
$$

The property $\left(\begin{array}{cc}1 & \boldsymbol{y}^{T} \\ \boldsymbol{y} & \boldsymbol{Y}\end{array}\right) \succeq 0$ can be shown via the following observation

$$
\left(\begin{array}{cc}
1 & 0 \\
-\mathbf{1} & 2 \boldsymbol{I}
\end{array}\right)\left(\begin{array}{cc}
1 & \boldsymbol{x}^{T} \\
\boldsymbol{x} & \boldsymbol{X}
\end{array}\right)\left(\begin{array}{cc}
1 & -\boldsymbol{1}^{T} \\
0 & 2 \boldsymbol{I}
\end{array}\right)=\left(\begin{array}{cc}
1 & 2 \boldsymbol{x}^{T}-\mathbf{1}^{T} \\
2 \boldsymbol{x}-\mathbf{1} & 4 \boldsymbol{X}-2\left(\boldsymbol{x} \mathbf{1}^{T}+\boldsymbol{1}^{T}\right)+\mathbf{1 1}^{T}
\end{array}\right)=\left(\begin{array}{cc}
1 & \boldsymbol{y}^{T} \\
\boldsymbol{y} & \boldsymbol{Y}
\end{array}\right)
$$

Following the same procedure, we can prove that if $(\boldsymbol{y}, \boldsymbol{Y})$ is a feasible point to SDPR2, then $\left(\boldsymbol{x}:=\frac{1+\boldsymbol{y}}{2}, \boldsymbol{X}=\right.$ $\frac{\mathbf{1 1}^{T}+\boldsymbol{1} \boldsymbol{y}^{T}+\boldsymbol{y} \mathbf{1}^{T}+\boldsymbol{Y}}{4}$) is feasible for SDPR. We omit the details for brevity.

We conclude the proof by showing the following linear relation between the objective value of $(\boldsymbol{x}, \boldsymbol{X})$ in SDPR and the objective value of $(\boldsymbol{y}, \boldsymbol{Y})$ in SDPR2:

$$
\begin{aligned}
f_{\mathrm{SDPR}}= & \sum_{i=1}^{n}\left\langle\boldsymbol{w}_{i}, \boldsymbol{x}_{i}\right\rangle+\sum_{(i, j) \in \mathcal{G}}\left\langle\boldsymbol{W}_{i j}, \boldsymbol{X}_{i j}\right\rangle \\
= & \sum_{i=1}^{n}\left\langle\boldsymbol{w}_{i}, \frac{\mathbf{1}+\boldsymbol{y}_{i}}{2}\right\rangle+\sum_{(i, j) \in \mathcal{G}}\left\langle\boldsymbol{W}_{i j}, \frac{\mathbf{1 1}^{T}+\boldsymbol{y}_{i} \mathbf{1}^{T}+\mathbf{1} \boldsymbol{y}_{j}^{T}+\boldsymbol{Y}_{i j}}{4}\right\rangle \\
= & \frac{1}{2} \sum_{i=1}^{n}\left\langle\boldsymbol{w}_{i}+\frac{1}{2}\left(\sum_{j:(i, j) \in \mathcal{G}} \boldsymbol{W}_{i j} \mathbf{1}+\sum_{j:(j, i) \in \mathcal{G}} \boldsymbol{W}_{j i}^{T} \mathbf{1}\right), \boldsymbol{y}_{i}\right\rangle+\frac{1}{4} \sum_{(i, j) \in \mathcal{G}}\left\langle\boldsymbol{W}_{i j}, \boldsymbol{Y}_{i j}\right\rangle \\
& +\frac{1}{2} \sum_{i=1}^{n}\left\langle\boldsymbol{w}_{i}, \mathbf{1}\right\rangle+\frac{1}{4} \sum_{(i, j) \in \mathcal{G}}\left\langle\boldsymbol{W}_{i j}, \mathbf{1 1} \mathbf{1}^{T}\right\rangle \\
= & \frac{1}{2} f_{\mathrm{SDPR} 2}+\underbrace{\frac{1}{2} \sum_{i=1}^{n}\left\langle\boldsymbol{w}_{i}, \mathbf{1}\right\rangle+\frac{1}{4} \sum_{(i, j) \in \mathcal{G}}\left\langle\boldsymbol{W}_{i j}, \mathbf{1} \mathbf{1}^{T}\right\rangle}_{\Delta_{\mathrm{SDPR}}}
\end{aligned}
$$

where $\Delta_{\text {SDPR }}$ is a constant independent of the variables to optimize.

4. SDPAD-LRR

In this section, we present the derivation of the SDPAD-LRR, and prove its convergence properties. The methodology largely follows [1] which describes ADALM for general semidefinite programs.
4.1. Derivation of SDPAD-LR. As described in the main text, we consider the following simplified form of SDPR (with corresponding dual variables on the right hand side):

$$
\begin{array}{rlr}
\operatorname{minimize} & \langle\boldsymbol{C}, \overline{\boldsymbol{X}}\rangle & \text { dual variables } \\
\text { subject to } & \mathcal{A}(\overline{\boldsymbol{X}})=\boldsymbol{b}, & \boldsymbol{y} \\
& \mathcal{P}(\overline{\boldsymbol{X}}) \geq 0, & \boldsymbol{z} \geq 0 \\
& \boldsymbol{X} \succeq 0, & \boldsymbol{S} \succeq 0 \tag{7}
\end{array}
$$

It is easy to write down the Lagrangian multipler of SDPR as follows:

$$
\mathcal{L}^{\prime}=-\mathbf{b}^{T} \mathbf{y}+\left\langle\boldsymbol{C}+\mathcal{A}^{\star}(\mathbf{y})-\mathcal{P}^{\star}(\mathbf{z})-\boldsymbol{Z}, \overline{\boldsymbol{X}}\right\rangle
$$

The basic idea of ADALM is to consider the following augmented Largrangian, which adds a quadratic term that minimizes the dual feasibility:

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{y}, \boldsymbol{z}, \boldsymbol{S}, \overline{\boldsymbol{X}}) & =\langle\boldsymbol{b}, \boldsymbol{y}\rangle+\left\langle\mathcal{P}^{\star}(\boldsymbol{z})+\boldsymbol{S}-\boldsymbol{C}-\mathcal{A}^{\star}(\boldsymbol{y}), \overline{\boldsymbol{X}}\right\rangle \\
& +\frac{1}{2 \mu}\left\|\mathcal{P}^{\star}(\boldsymbol{z})+\boldsymbol{S}-\boldsymbol{C}-\mathcal{A}^{\star}(\boldsymbol{y})\right\|_{\mathcal{F}}^{2} .
\end{aligned}
$$

Note that the sign of \mathcal{L} is changed in order to make it consistent with the quadratic term.
ADALM alternates between optimizing the dual variables $\boldsymbol{y} . \boldsymbol{z}$ and \boldsymbol{S} and updating the primal variable $\overline{\boldsymbol{X}}$. Instead of optimizing the dual variables together, the key idea of ADALM is to optimize the dual variables in a sequential manner. Specifically, let superscript (k) denote the value of a variable. ADALM determines $\boldsymbol{y}^{(k)}, \boldsymbol{z}^{(k)}$ and $\overline{\boldsymbol{X}}$ by solving following sub-problems:

$$
\begin{aligned}
& \boldsymbol{y}^{(k)}=\underset{\boldsymbol{y}}{\arg \min } \mathcal{L}\left(\boldsymbol{y}, \boldsymbol{z}^{(k-1)}, \boldsymbol{S}^{(k-1)}, \overline{\boldsymbol{X}}^{(k-1)}\right), \\
& \boldsymbol{z}^{(k)}=\underset{\boldsymbol{z} \geq 0}{\arg \min } \mathcal{L}\left(\boldsymbol{y}^{(k)}, \boldsymbol{z}, \boldsymbol{S}^{(k-1)}, \overline{\boldsymbol{X}}^{(k-1)}\right), \\
& \boldsymbol{S}^{(k)}=\underset{\boldsymbol{S} \succeq 0}{\arg \min } \mathcal{L}\left(\boldsymbol{y}^{(k)}, \boldsymbol{z}^{(k)}, \boldsymbol{S}, \overline{\boldsymbol{X}}^{(k-1)}\right)
\end{aligned}
$$

Given $\boldsymbol{y}^{(k)}, \boldsymbol{z}^{(k)}$ and $\boldsymbol{S}^{(k)}$, ADALM then updates $\overline{\boldsymbol{X}}$ as

$$
\begin{equation*}
\overline{\boldsymbol{X}}^{(k)}=\overline{\boldsymbol{X}}^{(k-1)}+\frac{\mathcal{P}^{\star}\left(\boldsymbol{z}^{(k)}\right)+\boldsymbol{S}^{(k)}-\boldsymbol{C}-\mathcal{A}^{\star}\left(\boldsymbol{y}^{(k)}\right)}{\mu} \tag{8}
\end{equation*}
$$

It turns out $\boldsymbol{y}^{(k)}, \boldsymbol{z}^{(k)}$ and $\boldsymbol{S}^{(k)}$ can be computed analytically. After some standard linear algebra derivations (See [1] for details), we arrive at the following explicit formula for the dual variables:

$$
\begin{align*}
& \boldsymbol{y}^{(k)}=\left(\mathcal{A} \mathcal{A}^{*}\right)^{-1}\left(\mathcal{A}\left(\boldsymbol{S}^{(k-1)}+\mathcal{P}^{\star}\left(\boldsymbol{z}^{(k-1)}\right)-\boldsymbol{C}+\mu \overline{\boldsymbol{X}}^{(k-1)}\right)-\mu \boldsymbol{b}\right) \tag{9}\\
& \boldsymbol{z}^{(k)}=\mathcal{P}\left(\boldsymbol{C}+\mathcal{A}^{\star}\left(\boldsymbol{y}^{(k)}\right)-\boldsymbol{S}^{(k-1)}-\mu \overline{\boldsymbol{X}}^{(k-1)}\right)_{+} \tag{10}\\
& \boldsymbol{S}^{(k)}=\left(\boldsymbol{C}+\mathcal{A}^{\star}\left(\boldsymbol{y}^{(k)}\right)-\mathcal{P}^{\star}\left(\boldsymbol{z}^{(k)}\right)-\mu \overline{\boldsymbol{X}}^{(k-1)}\right)_{\succeq \mathbf{0}} \tag{11}
\end{align*}
$$

The key observation in developing the proposed SDPAD-LR is that the dual variable \boldsymbol{S} is redundant. In fact, (8) enables us to represent $\boldsymbol{S}^{(k)}$ using other dual variables as

$$
\begin{equation*}
\boldsymbol{S}^{(k)}=\boldsymbol{C}+\mathcal{A}^{\star}\left(\boldsymbol{y}^{(k)}\right)-\mathcal{P}^{\star}\left(\boldsymbol{z}^{(k)}\right)+\mu\left(\overline{\boldsymbol{X}}^{(k)}-\overline{\boldsymbol{X}}^{(k-1)}\right) \tag{12}
\end{equation*}
$$

Substituting 12 into (9) and (10), we obtain

$$
\begin{align*}
\boldsymbol{y}^{(k)} & =\left(\mathcal{A} \mathcal{A}^{\star}\right)^{-1}\left(\mathcal { A } \left(\boldsymbol{C}+\mathcal{A}^{\star}\left(\boldsymbol{y}^{(k-1)}\right)-\mathcal{P}^{\star}\left(\boldsymbol{z}^{(k-1)}\right)+\mu\left(\overline{\boldsymbol{X}}^{(k-1)}-\overline{\boldsymbol{X}}^{(k-2)}\right)\right.\right. \\
& \left.\left.+\mathcal{P}^{\star}\left(\boldsymbol{z}^{(k-1)}\right)-\boldsymbol{C}+\mu \overline{\boldsymbol{X}}^{(k-1)}\right)-\mu \boldsymbol{b}\right) \\
& =\boldsymbol{y}^{(k-1)}+\mu\left(\mathcal{A} \mathcal{A}^{\star}\right)^{-1}\left(\mathcal{A}\left(2 \overline{\boldsymbol{X}}^{(k-1)}-\overline{\boldsymbol{X}}^{(k-2)}\right)-\boldsymbol{b}\right) \tag{13}\\
\boldsymbol{z}^{(k)} & =\mathcal{P}\left(\boldsymbol{C}+\mathcal{A}^{\star}\left(\boldsymbol{y}^{(k)}\right)-\boldsymbol{C}-\mathcal{A}^{\star}\left(\boldsymbol{y}^{(k-1)}\right)+\mathcal{P}^{\star}\left(\boldsymbol{z}^{(k-1)}\right)-\mu\left(\overline{\boldsymbol{X}}^{(k-1)}-\overline{\boldsymbol{X}}^{(k-2)}\right)-\mu \overline{\boldsymbol{X}}^{(k-1)}\right)_{+} \\
& =\left(\boldsymbol{z}^{(k-1)}-\mu \mathcal{P}\left(\left(2 \overline{\boldsymbol{X}}^{(k-1)}-\overline{\boldsymbol{X}}^{(k-2)}\right)\right)\right)_{+} \tag{14}
\end{align*}
$$

Rewrite (12) as

$$
\boldsymbol{S}^{(k)}-\mu \overline{\boldsymbol{X}}^{(k)}=\left(\boldsymbol{C}+\mathcal{A}^{\star}\left(\boldsymbol{y}^{(k)}\right)-\mathcal{P}^{\star}\left(\boldsymbol{z}^{(k)}\right)-\mu \overline{\boldsymbol{X}}^{(k-1)}\right)
$$

and combine (11), we obtain the following explicit formula for computing $\overline{\boldsymbol{X}}^{(k)}$:

$$
\begin{equation*}
\overline{\boldsymbol{X}}^{(k)}=\left(\overline{\boldsymbol{X}}^{(k-1)}-\frac{\boldsymbol{C}+\mathcal{A}^{\star}\left(\boldsymbol{y}^{(k)}\right)-\mathcal{P}^{\star}\left(\boldsymbol{z}^{(k)}\right)}{\mu}\right)_{\succeq 0} . \tag{15}
\end{equation*}
$$

Collecting (13), (14) and (??), we obtain the proposed SDPAD-LRR, which is summarized as Algorithm 1 in the main text.

4.2. Convergence Analysis of SDPAD-LRR.

Theorem 3. The SDPAD-LRR method converges to an optimal solution to SDPR.
Proof. To prove the convergence of SDPAD-LRR, we utilize the original formulas, which involve the dual variable \boldsymbol{S}. The proof is similar to that of [1]. Define two matrix operators $\mathcal{D}(\cdot)$ and $\mathcal{V}(\cdot, \cdot)$ as follows

$$
\begin{align*}
\mathcal{D}(\boldsymbol{V}) & :=\left(\boldsymbol{V}_{\succeq 0}, \boldsymbol{V}_{\succeq 0}-\boldsymbol{V}\right), \tag{16}\\
\mathcal{V}(\boldsymbol{X}, \boldsymbol{S}) & :=\boldsymbol{C}+\mathcal{A}^{\star}(\boldsymbol{y}(\boldsymbol{X}, \boldsymbol{S}))-\mathcal{P}^{\star}(\boldsymbol{z}(\boldsymbol{X}, \boldsymbol{S}))-\mu \boldsymbol{X}, \quad \text { where } \\
\boldsymbol{y}(\boldsymbol{X}, \boldsymbol{S}) & :=\left(\mathcal{A} \mathcal{A}^{\star}\right)^{-1}(\mathcal{A}(\boldsymbol{S}+\mu \boldsymbol{X}-\boldsymbol{C})-\mu \boldsymbol{b}), \\
\boldsymbol{z}(\boldsymbol{X}, \boldsymbol{S}) & :=\mathcal{P}(\boldsymbol{C}-\boldsymbol{S}-\mu \boldsymbol{X})_{+} \tag{17}
\end{align*}
$$

[1] provides a framework for the proving the convergence of a ADALM method by proving that both $\mathcal{D}(\cdot)$ and $\mathcal{V}(\cdot, \cdot)$ are nonexpansive, i.e.,

$$
\begin{array}{r}
\| \mathcal{D}(\boldsymbol{V})-\mathcal{D}\left(\hat{\boldsymbol{V}}\left\|_{\mathcal{F}} \leq\right\| \boldsymbol{V}-\hat{\boldsymbol{V}} \|_{\mathcal{F}}\right. \\
\|\mathcal{V}(\boldsymbol{X}, \boldsymbol{S})-\mathcal{V}(\hat{\boldsymbol{X}}, \hat{\boldsymbol{S}})\|_{\mathcal{F}} \leq \|\left(\boldsymbol{S}-\hat{\boldsymbol{S}}, \mu(\boldsymbol{X}-\hat{\boldsymbol{X}}) \|_{\mathcal{F}}\right.
\end{array}
$$

This means the composite operator $\mathcal{D}(\mathcal{V}(\cdot, \cdot))$ is nonexpansive aswell, and one can prove the convergence of ADALM by the fact that is converges to a fixed point of $\mathcal{D}(\mathcal{V}(\cdot, \cdot))$. As 1] already provides a proof of the nonexpansiveness of \mathcal{D}, we only prove that $\mathcal{V}(\cdot, \cdot)$ is nonexpansive.
Lemma 2. For any symmetric matrices $\boldsymbol{X}, \hat{\boldsymbol{X}}, \boldsymbol{S}, \hat{\boldsymbol{S}}$,

$$
\|\mathcal{V}(\boldsymbol{X}, \boldsymbol{S})-\mathcal{V}(\hat{\boldsymbol{X}}, \hat{\boldsymbol{S}})\|_{\mathcal{F}} \leq \|\left(\boldsymbol{S}-\hat{\boldsymbol{S}}, \mu(\boldsymbol{X}-\hat{\boldsymbol{X}}) \|_{\mathcal{F}}\right.
$$

Proof. Since the domain of $\mathcal{P}(\cdot)$ and $\mathcal{A}(\cdot)$ do not intersect, we divide the elements of a matrix $\boldsymbol{V}(\boldsymbol{X}, \boldsymbol{X})$ into three subsets, $\Omega_{\mathcal{A}}, \Omega_{\mathcal{P}}$ and Ω°, i.e., $\Omega_{\mathcal{A}}$ and $\Omega_{\mathcal{P}}$ consist of elements that are constrained by $\mathcal{A}(\cdot)$ and $\mathcal{P}(\cdot)$, respectively, and Ω° includes the remaining elements. In the following, we use $\Omega_{\mathcal{A}}(\cdot)$ and $\Omega^{\circ}(\cdot)$ to denote the linear operator that pick elements in $\Omega_{\mathcal{A}}$ and Ω°, respectively.

Expanding $\boldsymbol{V}(\boldsymbol{X}, \boldsymbol{S})-\boldsymbol{V}(\hat{\boldsymbol{X}}, \hat{\boldsymbol{S}})$ out, we obtain

$$
\begin{aligned}
\boldsymbol{V}(\boldsymbol{X}, \boldsymbol{S})-\boldsymbol{V}(\hat{\boldsymbol{X}}, \hat{\boldsymbol{S}}) & \left.=\mathcal{A}^{*}(\boldsymbol{y}(\boldsymbol{X}, \boldsymbol{S})-\boldsymbol{y}(\hat{\boldsymbol{X}}, \hat{\boldsymbol{S}}))-\mathcal{P}^{\star}(\boldsymbol{z}(\boldsymbol{X}, \boldsymbol{S})-\boldsymbol{z}(\hat{\boldsymbol{X}}, \hat{\boldsymbol{S}}))\right)-\mu(\boldsymbol{X}-\hat{\boldsymbol{X}}) \\
& \left.=-\mu(\mathcal{I}-\mathcal{M})(\boldsymbol{X}-\hat{\boldsymbol{X}})-\mathcal{P}^{\star}(\boldsymbol{z}(\boldsymbol{X}, \boldsymbol{S})-\boldsymbol{z}(\hat{\boldsymbol{X}}, \hat{\boldsymbol{S}}))\right)+\mathcal{M}(\boldsymbol{S}-\hat{\boldsymbol{S}})
\end{aligned}
$$

where $\mathcal{M}=\mathcal{A}^{\star}\left(\mathcal{A} \mathcal{A}^{\star}\right)^{-1} \mathcal{A}$, and \mathcal{I} standards for the identity operator.

In the following, we prove that $\mathcal{V}(\cdot, \cdot$ is actually non-expansive on each type of elements. First,

$$
\begin{aligned}
\left\|\Omega_{\mathcal{A}}(\boldsymbol{V}(\boldsymbol{X}, \boldsymbol{S})-\boldsymbol{V}(\hat{\boldsymbol{X}}, \hat{\boldsymbol{S}}))\right\|^{2} & =\left\|-\Omega_{\mathcal{A}}((\mathcal{I}-\mathcal{M})(\boldsymbol{X}-\hat{\boldsymbol{X}}))+\Omega_{\mathcal{A}}(\boldsymbol{S}-\hat{\boldsymbol{S}})\right\|^{2} \\
& \leq\left\|\mu \Omega_{\mathcal{A}}(\boldsymbol{X}-\hat{\boldsymbol{X}})\right\|^{2}+\left\|\Omega_{\mathcal{A}}(\boldsymbol{S}-\hat{\boldsymbol{S}})\right\|^{2}
\end{aligned}
$$

where we have used that fact that the eigenvalues of \mathcal{M} are within $[0,1]$ (See [1]).
Second,

$$
\left\|\Omega^{\circ}(\mathcal{V}(\boldsymbol{X}, \boldsymbol{S})-\mathcal{V}(\hat{\boldsymbol{X}}, \hat{\boldsymbol{S}}))\right\|^{2}=\left\|\mu \Omega^{\circ}(\boldsymbol{X}-\hat{\boldsymbol{X}})\right\|^{2}
$$

Finally,

$$
\|\mathcal{P}(\boldsymbol{V}(\boldsymbol{X}, \boldsymbol{S})-\boldsymbol{V}(\hat{\boldsymbol{X}}, \hat{\boldsymbol{S}}))\|^{2}=\left\|\mu \mathcal{P}(\boldsymbol{X}-\hat{\boldsymbol{X}})+\mathcal{P}(\boldsymbol{C}-\boldsymbol{S}-\mu \boldsymbol{X})_{+}-\mathcal{P}(\boldsymbol{C}-\hat{\boldsymbol{S}}-\mu \hat{\boldsymbol{X}})\right\|^{2}
$$

It remains to be prove for five arbitrary real values $c, x, \hat{x}, s, \hat{s}$,

$$
\left(\mu(x-\hat{x})+(c-s-\mu x)_{+}-(c-\hat{s}-\mu \hat{x})_{+}\right)^{2} \leq \mu^{2}(x-\hat{x})^{2}+(s-\hat{s})^{2} .
$$

This inequality is trivial when both $c-s-\mu x$ and $c-\hat{s}-\mu \hat{x}$ are positive or both of them are negative. Suppose $c-s-\mu x \geq 0$ while $c-\hat{s}-\mu \hat{x} \leq 0$, then

$$
\begin{array}{r}
\mu(x-\hat{x})+(c-s-\mu x) \leq
\end{array} \quad \mu(x-\hat{x})+\hat{s}+\mu \hat{x}-s-\mu x=\hat{s}-s,
$$

which ends the proof.
It is clear that the equality holds if

$$
\begin{array}{r}
\Omega_{\mathcal{A}}(\mathcal{M}(\boldsymbol{X}-\hat{\boldsymbol{X}}))=0 \\
\Omega_{\mathcal{A}}(\mathcal{I}-\mathcal{M})(\boldsymbol{S}-\hat{\boldsymbol{S}})=0 \\
\Omega^{\circ}(\boldsymbol{S}-\hat{\boldsymbol{S}})=0
\end{array}
$$

Remark 1. Note that the prove of Lemma 2 has utilized the fact that the domains of $\mathcal{A}(\cdot)$ and $\mathcal{P}(\cdot)$ do not intersect-a special property of SDPR.

References

[1] Z. Wen, D. Goldfarb, and W. Yin, "Alternating direction augmented Lagrangian methods for semidefinite programming," Math. Prog. Comp., vol. 2, no. 3-4, pp. 203-230, 2010. 44.14 .24 .24 .2

