
Supplementary material for Maximum Mean Discrepancy for Class

Ratio Estimation

1 Proofs and additional experiments

1.1 Detailed Proof of Lemma 1

With probability at least 1− δ,

‖Â(n)θ∗ − â(n)‖2 − ‖Â(n)θ̂(n)− â(n)‖2 ≤ R2

c2 + 2c+ 2
nu

+
c∑

y=0

2
ny

(1 +

√
log

2
δ

)2

Proof. First note that ‖Â(n)θ∗ − â(n)‖2 − ‖Â(n)θ̂(n) − â(n)‖2 ≤ ‖Â(n)θ∗ − â(n)‖2. Now, we upper-
bound the RHS. Let f(X0, . . . , Xc, Xu) ≡ Â(n)θ∗ − â(n) =

∑c
y=0 θ

∗
yΦ̂y(ny) − Φ̂U (nu), where Xy, Xu

denote independent samples of size ny, nu from PD(x|y) and PU (x) respectively. We will proceed to
prove this result in two steps:

1. Show that with probability 1− δ, ‖f‖ ≤ E‖f‖+R

√
log 2

δ

(∑c
y=0

2
ny

+ 2
nu

)
.

2. Show that E‖f‖ ≤
(
R
√

c2+2c+2
nu

+
∑c

y=0
2
ny

)
Combining the results from the two steps gives us the final result. Next, we give proofs for the two

steps.

Step 1: We would like to now first show that ‖f‖ satisfies the bounded difference property. Take a
point xi from class ỹ and replace that point with x′i. Let the new class average of class ỹ be denoted as
Φ̂′ỹ(nỹ). Note that the number of points in the class do not change. Let the new value of f be denoted
as f ′ỹ. Therefore,

‖f ′ỹ‖ =

∥∥∥∥∥∥∥∥
c∑

y=0
y 6=ỹ

θ∗yΦ̂y(ny) + θ∗ỹΦ̂
′
ỹ(nỹ)− Φ̂U (nu)

∥∥∥∥∥∥∥∥
=

∥∥∥∥∥∥
c∑

y=0

θ∗yΦ̂y(ny) + θ∗ỹΦ̂
′
ỹ(nỹ)− θ∗ỹΦ̂ỹ(nỹ)− Φ̂U (nu)

∥∥∥∥∥∥
In the second step, we just added and subtracted θ∗ỹΦ̂ỹ(nỹ). Now using triangle inequality, we can see
that,

‖f ′ỹ‖ ≤ ‖f‖+ |θ∗ỹ|‖Φ̂′ỹ(nỹ)− Φ̂ỹ(nỹ)‖
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Therefore,

‖f ′ỹ‖ − ‖f‖ ≤ |θ∗ỹ|‖Φ̂′ỹ(nỹ)− Φ̂ỹ(nỹ)‖ ≤
1
nỹ
‖Φ(x′i)− Φ(xi)‖ ≤

2R
nỹ

The second inequality is obtained by noting the facts that 1] θ∗ỹ ≤ 1, 2] the number of points in class ỹ
continue to be nỹ and 3] only one point has changed in the class and therefore the others will cancel out
in the difference. Again using triangle inequality but starting from ‖f‖ instead of ‖f ′ỹ‖, we can show
that ‖f‖ − ‖f ′ỹ‖ ≤ 2R

nỹ
. Similar bounds can be achieved for any point in any other class. For points in

the unlabeled set, again using triangle inequality, we can show that the difference is bounded by 2R
nu

.
This shows that ‖f‖ satisfies the bounded difference property. Therefore, we can apply McDiarmid’s
Inequality,

Pr(|‖f‖ − E‖f‖| ≥ ε) ≤ 2 exp

(
−2ε2∑c

y=0
4R2

ny
+ 4R2

nu

)

By setting RHS to δ, we can say that with at least probability 1− δ,

‖f‖ ≤ E‖f‖+R

√√√√√log
2
δ

 c∑
y=0

2
ny

+
2
nu


Step 2: Next we present the proof of the final step in Lemma 1 of the paper. We would like to show
that, E‖f(X0, . . . , Xc, Xu)‖ = ‖Âθ∗− â‖ ≤

(
R
√

c2+2c+2
nu

+
∑c

y=0
2
ny

)
where the symbols are as defined

in Lemma 1 of the paper.

f2 =
c∑

y=0

θ∗2y
n2
y

ny∑
i,j=1

k(xi,xj)

+
c∑

y=0

c∑
y′=0
y 6=y′

θ∗yθ
∗
y′

nyny′

ny∑
i=1

ny′∑
j=1

k(xi,xj)

+
1
n2
u

nu∑
i,j=1

k(xi,xj)

−2
c∑

y=0

θ∗y
nuny

nu∑
i=1

ny∑
j=1

k(xi,xj)

Now, we can take expectation Ef2. When we have two summations indexed by the same set Xk,
we need to ensure that we handle the case xi, xj ∈ Xk, i 6= j and xi, xj ∈ Xk, i = j separately. Thus,
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we get,

Ef2 =
c∑

y=0

θ∗2y

(
1− 1

ny

)
EPD(x|y),PD(x̃|y)[k(x, x̃)] +

θ∗2y
ny

EPD(x|y)[k(x,x)]

+
c∑

y=0

c∑
y′=0
y 6=y′

θ∗yθ
∗
y′EPD(x|y),PD(x̃|y′)[k(x, x̃)]

+
(

1− 1
nu

)
EPU (x),PU (x̃)[k(x, x̃)] +

1
nu

EPU (x)[k(x,x)]

−2
c∑

y=0

θ∗yEPU (x),PD(x̃|y)k(x, x̃) (1)

We know that,

PU (x) =
c∑

y=0

PU (y)PU (x|y) =
c∑

y=0

θ∗yPD(x|y)

Therefore,

EPU (x),PU (x̃)[k(x, x̃)] =
c∑

y=0

c∑
y′=0

θ∗yθ
∗
y′EPD(x|y),PD(x̃|y′)[k(x, x̃)] (2)

and

EPU (x),PD(x̃|y′)[k(x, x̃)] =
c∑

y=0

θ∗yEPD(x|y),PD(x̃|y′)[k(x, x̃)] (3)

Substituting Equation (2) and (3) in Equation (1), we get

Ef2 =
c∑

y=0

θ∗2y

(
1− 1

ny

)
EPD(x|y),PD(x̃|y)[k(x, x̃)] +

θ∗2y
ny

EPD(x|y)[k(x,x)]

+
c∑

y=0

c∑
y′=0
y 6=y′

θ∗yθ
∗
y′EPD(x|y),PD(x̃|y′)[k(x, x̃)]

+
c∑

y=0

c∑
y′=0

θ∗yθ
∗
y′

(
1− 1

nu

)
EPD(x|y),PD(x̃|y′)[k(x, x̃)] +

1
nu

EPU (x)[k(x,x)]

−2
c∑

y=0

c∑
y′=0

θ∗yθ
∗
y′EPD(x|y),PD(x̃|y′)[k(x, x̃)]
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Rearranging we get,

Ef2 =
c∑

y=0

θ∗2y

(
1− 1

ny
+ 1− 1

nu
− 2
)

EPD(x|y),PD(x̃|y)[k(x, x̃)]

+
c∑

y=0

θ∗2y
ny

EPD(x|y)[k(x,x)]

+
c∑

y=0

c∑
y′=0
y 6=y′

θ∗yθ
∗
y′EPD(x|y),PD(x̃|y′)[k(x, x̃)]

+
c∑

y=0

c∑
y′=0
y 6=y′

θ∗yθ
∗
y′

(
1− 1

nu

)
EPD(x|y),PD(x̃|y′)[k(x, x̃)] +

1
nu

EPU (x)[k(x,x)]

−2
c∑

y=0

c∑
y′=0
y 6=y′

θ∗yθ
∗
y′EPD(x|y),PD(x̃|y′)[k(x, x̃)]

Performing cancellation in third, fourth and the sixth term, and then we get,

Ef2 = −
c∑

y=0

θ∗2y

(
1
ny

+
1
nu

)
EPD(x|y),PD(x̃|y)[k(x, x̃)]

+
c∑

y=0

θ∗2y
ny

EPD(x|y)[k(x,x)]

+
c∑

y=0

c∑
y′=0
y 6=y′

θ∗yθ
∗
y′

(
− 1
nu

)
EPD(x|y),PD(x̃|y′)[k(x, x̃)] +

1
nu

EPU (x)[k(x,x)]

Given that R = maxx∈X ‖Φ(x)‖,

Ef2 ≤
c∑

y=0

(
R2

ny
+
R2

nu

)
+

c∑
y=0

R2

ny
+

c∑
y=0

c∑
y′=0
y 6=y′

(
R2

nu

)
+
R2

nu

= R2

c2 + 2c+ 2
nu

+
c∑

y=0

2
ny


Since f is a norm, Ef ≤

√
Ef2 ≤ R

√
c2+2c+2

nu
+
∑c

y=0
2
ny

.

1.2 Proof required for Lemma 2.2

Lemma 2.2 uses the following claim that we prove here:

Lemma 1. mineig(Ā>Ā))−mineig(Â(n)>Â(n)) ≤ ‖Ā>Ā− Â(n)>Â(n)‖F
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Proof. Let e = argminy:‖y‖=1y
>[Â(n)>Â(n)]y. That is, e is the minimum eigen vector of Â(n)>Â(n).

mineig(Ā>Ā) − mineig(Â(n)>Â(n))
= argminy:‖y‖=1y

>[Ā>Ā]y − e>[Â(n)>Â(n)]e

≤ e>[Ā>Ā− Â(n)>Â(n)]e
≤ max

y:‖y‖=1
y>[Ā>Ā− Â(n)>Â(n)]y

= max
y:‖y‖=1

< Ā>Ā− Â(n)>Â(n),yyT >

≤ ‖Ā>Ā− Â(n)>Â(n)‖F max
y:‖y‖=1

‖yyT ‖F (Cauchy-Schwartz)

≤ ‖Ā>Ā− Â(n)>Â(n)‖F

1.3 Sub-Gradient expression needed in Section 3

In this section, we derive the sub-gradient expression for the second term of the objective function given
in Section 3.2.

Let f(w) ≡ maxeig
(∑nk

j=1−wjÂ>j Âj
)

. We can write f as,

f(w) = max
‖x‖=1

x>

 nk∑
j=1

−wjÂ>j Âj

x

= max
y∈S

w>y

where y =

 −x>Â>1 Â1x
...

−x>Â>nk
Ânk

x

 and S = {

 −x>Â>1 Â1x
...

−x>Â>nk
Ânk

x

 : ‖x‖ = 1}.

Therefore,
f(w) = max

y∈dom(f∗)
w>y − f∗(y) (4)

where f∗(y) =

{
0, if y ∈ dom(f∗)
∞, otherwise

and dom(f∗) = S.

With (4), we have that f , f∗ are conjugates and hence we obtain that:

∇f(w) =

 −x>Â>1 Â1x
...

−x>Â>nk
Ânk

x


where x is any eigenvector corresponding to the maximum eigenvalue of

(∑nk
j=1−wjÂ>j Âj

)
.

1.4 Results for svm-cr

We created a second baseline svm-cr as a representative of a classifier that is trained to handle shifted
class ratios. Here, we modified the training objective of a SVM classifier to minimize errors in class
ratio estimation on various test dataset sampled as for the mmd-mkl method below. We trained using
the structured learning framework of [1] but estimated class ratios as in smo-mkl.

In Figure 1, we present results for svm-cr. The results of this model are presented on the five
UCI datasets. We can observe that svm-cr is worse than smo-mkl on all datasets except one.
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Figure 1: Class ratio estimation error (|θ∗0 − θ̂0|) on Y-axis against varying true fractions (θ∗0) for five
binary datasets including the svm-cr method. The methods compared are same in all datasets; the
legend is present in only one of them to reduce clutter.
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Figure 2: Comparing the methods pe-dr, mmd and mmd-mkl on the 5 UCI datasets and their corre-
sponding variance in their estimation errors on these datasets

1.5 Error-bars in estimation for pe-dr, mmd and mmd-mkl

In Figure 2, we plot the average error of pe-dr, mmd and mmd-mkl on the 5 UCI datasets with the
corresponding variance in the estimation error. pe-dr shows high variance in its estimates whereas
mmd and mmd-mkl show lower variance in their estimates. mmd-mkl has overall better accuracy than
both mmd and pe-dr.

1.6 Median Bandwidth vs Selection via Cross Validation

In our experiments, we selected the bandwidth for mmd via cross validation over the set of bandwidths
given in Section 4 of the paper. In Figure 3, we present results where we compare accuracy on the 5
UCI datasets for mmd whose bandwidth is selected via cross validation from our set (mmd-cv) versus
accuracies given by mmd whose bandwidth is simply selected as the median bandwidth (mmd-med). We
observe that bandwidth selected as per our method performs better than simply selecting the median
bandwidth.
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Figure 3: Absolute difference (on the Y axis) between estimated and true negative fraction for different
estimation algorithms against different true negative fraction of the test set (on the X axis). The five
graphs correspond to the five different datasets as shown in the graph’s title.
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