Supplementary Material

Paper: On p-norm Path Following in Multiple Kernel Learning for Non-linear Feature
Selection

Paper ID: 128

Abstract

Here we present: i) the proof of Theorem 3 stated in the main paper, ii) the proof of Theorem 4 stated
in the main paper, iii) a lemma, analogous to Lemma 1 stated in the main paper, that holds for the case of
generalized KL-divergence, iv) Formulation for the second order derivative along the solution path, and v) Tables
corresponding to Table 2 and Table 3 in the main paper, displaying mean accuracies with standard deviations.

We follow the notation described in the submission. This text may refer to equations/theorems/lemmas in the orig-
inal submission using the appropriate numbers therein. To avoid any confusion, the equations/theorems/lemmas
appearing in this text are numbered using a prefix ‘0.". We begin with the proof of Theorem 3:

Proof of Theorem 3

Eliminating o’s from (7) results in the following optimization problem
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The above problem is convex and KKT conditions for its optimal solution are
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where ¢ = 1,...,r. Since the base kernels are orthogonal with unit rank and unit trace, the term Q; L in the above
KKT condition can be simplified.

Next, we compute the derivate ‘i{}’j along the solution path of optimal 1)’s by employing: dG; (7, p) = ; %Cni dn;+
88(;')" dp = 0. We get
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The proof follows from observing the sign of the above derivative expression and from the fact that e” » is a
monotonically increasing function of p.

Proof of Theorem 4

The KKT conditions for optimality for the convex optimization problem (7) are:

1 _ _ -
Gi(n.p) = —5y " Qy KiQy 'y + dapnf ' =0 (0.3)



where Q,, = >, miK; + ﬁ and ¢ = 1,...,r. In the following, we first obtain a particular p’(> 1) where
77 (p") = 0. Next, from (0.3), we show that 7] is zero only at p = p/.

Letnf = 0 at p = p’. From the KKT conditions (0.3) corresponding to G (7, p), we get yTleKl Q;ly =0
(as i = 0). Employing the Sherman-Morrison formula for computing @, ! and simplifying the L.H.S. of the
above expression yields
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Since we have y ' Ko K1y > y " K1y > 0, it follows 75 > 0. Similarly, from the KKT conditions (0.3) corre-
sponding to Ga(7, p), we obtain

(0.5)
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Note that y ' Ko 1y > 0=y Ko K1 K>y > 0. Now, consider the following values of parameters (A1, \2):
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Note that both A1, A2 > 0 in the above case. Employing these in (0.4) and (0.5), we obtain the optimal kernel
weight (n7,n3) at p’ = 1.5 as (0,1). Moreover, with the above mentioned values of parameters (A1, A2), it also
follows that at optimality, (n} = 0) = (p’ = 1.5) and (] = 0) = (95 = 1). Hence, it follows that n; > 0 at any
l<p<yp.

Lemma for generalized KL-divergence

In the case of generalized KL-divergence as the Bregman divergence in (1), using the optimality conditions for the
non-trivial case (5) and Theorem 2, the following lemma is immediate:

Lemma 1. For any p, the deviation in the objective value of (1) obtained using the approximate path following
algorithm from the true optimal objective is upper bounded by r(A1€ + Aa(p — 1)€P).

Second order derivative along the solution path

Here, we derive the second order derivative along the optimal solution path of (1), which can be employed in

Algorithm 1, assuming that the function F' is thrice differentiable. From (6), we have the following form: % =

f(nf(p),p) where f is a function corresponding to the R.H.S. of (6). Hence, employing the total derivative formula
in the above equation, we get the following formulation for the second order derivative:
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where D = A\ F""(n7(p)) + Xap(p — 1)n; (p)?~2 and the term d7; (p)/dp can be obtained from (6).



Experimental Results

In this section, we report the tables corresponding to Table 2 and 3 of the main paper, with mean accuracies and
standard deviations. Table 1 corresponds to Table 2 of the main paper while Table 2 corresponds to Table 3 of the
main paper.

Table 1: The maximum classification accuracy achieved (mean and standard deviations) along the feature selection
path. Generalized [,,-KTA achieves significantly higher accuracies as compared to state-of-the-art KTA and [,,>1-
MKL formulations as well as leading feature selection techniques such as BAHSIC. The table reports mean and
standard deviations results averaged over 5-fold cross validation. ‘-’ denote results where the data set was too large
for the feature selection algorithm to generate results.

Arcene Madelon Relathe Pcmac Basehock Dorothea
Gen [,,-KTA 92.00£+£5.70 65.70+0.99 92.57+0.30 93.62+1.67 98.59+0.58 94.75+1.30
Centered-KTA  75.00 + 9.35 62.45 +2.07  90.40 £0.21 93.05+1.44 97.29+1.05 -
SMO-MKL 82.00 £ 5.70 62.05 £0.54 - - - -
BAHSIC 69.00 £ 6.52 53.90+£2.97 85.07+£1.42 89.554+0.22 93.58+1.38 90.63£0.77
PF-/,-MKL 81.00 + 6.52 62.76 +2.40 85.67+t£1.90 - - -
PF-1;-SVM 77.00 +£12.04 61.25£1.08 89.00+2.16 90.68 +0.59 97.24+£0.89 93.88 & 1.65
Uniform 81.00 £+ 6.52 59.85+0.84 90.96 £0.77 92.494+0.64 97.99+0.59 91.38 £1.42

Table 2: The maximum classification accuracy achieved on the ASU data sets (with the corresponding number of
selected features) along the feature selection path. In keeping with the ASU experimental protocol, all algorithms
are restricted to selecting at most 200 features and are allowed to train on only half the data. Generalized [,,-KTA
(RBF) outperforms all the linear techniques and this demonstrates the advantages of non-linear feature selection.
Amongst the linear methods, our proposed method with linear features is the best in general.

Arcene Madelon Relathe Pcmac Basehock Dorothea
Gen [,,-KTA (RBF) 76.80 & 9.25 64.50 +1.14 89.40£0.93 89.76 £0.87 95.46 +1.02 93.75+£1.18
Gen [,-KTA (Linear) 73.40+7.06 62.04£0.97 88.39+£0.87 88.88+2.61 94.76 £ 0.96 93.60 +1.30
Inf. Gain 72.00 = 5.89 61.63+0.95 84.39+£094 8899+1.22 9526+1.29 93.33£0.97
Chi-Square 71.20 +7.90 61.69+1.28 83.48+0.80 88.24+1.39 9528+1.26 93.33+1.34
Fisher Score 66.20 + 9.68 61.47+1.04 83.35+1.05 88.02£1.60 94.614+1.47 93.30+1.32
mRMR 68.20 £ 7.33 61.87 +£1.17 75.01 £1.01 83.34 +£1.18 88.88+£1.00 93.18+1.35
ReliefF 68.40 + 7.71 62.06 £1.21 77.08£2.73 80.76 +1.79 86.05+3.55 93.33 £0.93
Spectrum 64.00 = 6.60 60.19+0.76 69.99+1.90 66.74+£1.52 69.79 £1.31 90.28 + 1.25
Gini Index 64.60 £ 5.50 59.43 +£2.38 69.50£2.09 66.60+1.37 69.49+1.35 90.28 £1.25
K.-Wallis 60.20 +10.26 55.04 +1.23 70.97 £2.02 65.20 +1.31 70.37 £1.05  90.08 £+ 1.07




