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A. Overview

This document is supplementary material for Global
graph kernels using geometric embeddings. It is orga-
nized as follows. In Section B, we prove Lemmas 1, 2
and 4. In Section C, we prove the Theorems 1 and 2
about sample complexity of the Lovász ϑ kernel and
the svm-ϑ kernel. In Section D, we prove Lemma 3
about the margin of the Lovász ϑ kernel. In Section E,
we give and prove a result about the margin of the
svm-ϑ kernel.

B. Proofs of smaller lemmas

We restate and prove the smaller lemmas from the
paper.

Lemma 1 (Restated). Given a graph G = (V,E),
with orthogonal representation U , as in (2), for any
subset B ⊂ V , with H the subgraph of G induced by
B, the following holds,

ϑ(H) ≤ ϑB(G) ≤ ϑV (G) = ϑ(G) .

Proof. First, we note that

ϑ(H) ≤ ϑB(G)

holds, by the definition of ϑ(G) in (2), as ϑ(H) is the
smallest of all orthogonal representations of the sub-
graph induced by V . Second,

ϑB(H) ≤ ϑV (G)

holds because of (2). This is clear, since ϑV (G) and
ϑB(G) concern the same orthogonal representation,

and thus adding nodes to B to form V implies adding
indices to the maximization in (2). Clearly, the value
can not decrease. The last equality holds by definition
of ϑ.

Lemma 2 (Restated). The Lovász ϑ kernel, as de-
fined in (3), is a positive semi-definite kernel.

Lemma 4 (Restated). The svm-ϑ kernel, as defined
in (9), is a positive semi-definite kernel.

Proof of Lemmas 2 and 4. The kernels in (3) and (9)
are instances of Haussler’s R-convolution kernel (Haus-
sler, 1999). The R-convolution kernel for points x ∈ χ,
each associated with a finite subset χ′x of a common
space χ′, and a kernel k : χ′ × χ′ → R is defined
as (Haussler, 1999)

K(x, y) =
∑

(x′,y′)∈χ′
x×χ′

y

k(x′, y′) .

Now, the Lovász ϑ kernel, (9) and svm-ϑ kernel, (9)
share a common form

K(G,G′) =
∑
B⊆V

∑
C⊆V ′

|C|=|B|

1

Z|B|
k(fB(G), fC(G′))

with fB(G) = ϑB(G) for the Lovász ϑ kernel and
fB(G) =

∑
j∈B αj(G) for the svm-ϑ kernel.

In our setting, we set χ = G = {G(1), . . . , G(M)} such
that G(m) = (V (m), E(m)). Then, let χ′ = R, and with
each x = G(m), we associate a set

χ′x = {fB(G(m)) : B ⊆ V (m)} ⊂ χ′
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We make a note that χ′x may be a multiset, but a
straight-forward extension of Lemma 1 in (Haussler,
1999) proves that this is also a p.s.d. kernel.

C. Sample complexity of the ϑ kernels

We prove here Theorems 1 and 2 using a particular
multiplicative Chernoff bound.

C.1. Sample complexity of the Lovász ϑ kernel

For convenience we restate the theorem as given in the
main paper.

Theorem 1 (Restated). For graphs of n nodes,
each coordinate ϕ(d) of the feature vector of the lin-
ear Lovász ϑ kernel can be estimated by ϕ̂(d) such that

Pr [ϕ̂(d) ≥ (1 + ε)ϕ(d)] ≤ O(1/n)

Pr [ϕ̂(d) ≤ (1− ε)ϕ(d)] ≤ O(1/n)

using sd = O(n log n/ε2) samples.

First, consider the following form of multiplicative
Chernoff bound.

Lemma C.1. Let X = 1
s (X1 + · · · + Xs), with

X1, . . . , Xs independent variables such that with prob-
ability 1, 0 ≤ Xi ≤ C. Then,

P [X ≥ (1 + ε)EX] ≤ e−
sEXε2

3C

P [X ≤ (1− ε)EX] ≤ e−
sEXε2

2C .

Proof of Theorem 1. We want to bound the error of a
coordinate ϕ̂(d) in the sampled feature vector ϕ̂ of the
Lovász ϑ kernel for a graph G = (V,E). Recall that

ϕ(d) =
1

Z

∑
B⊆V
|B|=d

ϑB(G) .

We let

X = ϕ̂(d) =
1

s

s∑
r=1

ϑVr
(G) ,

and thus
Xr = ϑVr (G) ,

for random subsets Vr ⊆ V , r = 1, . . . , s, |Vr| = d.
In order to use Lemma C.1, we bound EX. We have
that 1 ≤ ϑ(G) ≤ n and together with (1), we get
1 ≤ ϑB(G) ≤ n for B ⊆ V . Hence,

EX ≥ 1

and with C = n, we get

P [X ≥ (1 + ε)EX] ≤ e−
sε2

3n

P [X ≤ (1− ε)EX] ≤ e−
sε2

2n .

We make a note that EX = ϕ(d), by linearity of ex-
pectation. Choosing s = Dn log n/ε2 for some D, we
obtain the result.

C.2. Sample complexity of the svm-ϑ kernel

We use the same Chernoff bound from the previous
section to prove a result on the sample complexity of
the svm-ϑ kernel.

Theorem 2 (Restated) (Sample complexity of the
svm-ϑ kernel). For graphs of n nodes, each coordinate
ϕ(d) of the feature vector of the linear svm-ϑ kernel
can be estimated by ϕ̂(d) such that

Pr [ϕ̂(d) ≥ (1 + ε)ϕ(d)] ≤ O(1/n)

Pr [ϕ̂(d) ≤ (1− ε)ϕ(d)] ≤ O(1/n)

using sd = O(n2 log n/ε2) samples.

Proof. To apply Lemma C.1, we choose

Xr :=
∑
j∈Vr

αj

and

X :=
1

s

s∑
r=1

Xr ,

for random subsets Vr ⊆ V , r = 1, . . . , s, |Vr| = d.
Now, by definition, because we sample subsets uni-
formly, and by linearity of expectation,

EX = ϕ(d) =

(
n

d

)−1 ∑
B⊆V
|B|=d

∑
j∈B

αj

and similar to the following section, we note We are
now interested in bounding EX from below. We let
α0 denote the smallest maximum α,

α0 := min
G

max
i
αi(G)

and note that any graph G will have at least one node
with this value associated with it. Thus, for any graph
If we assume with j0 := arg maxj αj , we have

EX =

(
n

d

)−1 ∑
B⊆V
|B|=d

∑
j

αj

≥
(
n

d

)−1 ∑
B⊆V
|B|=d
j0∈B

α0

=

(
n

d

)−1(
n− 1

d− 1

)
α0

≥ dα0

n
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Now, we can prove that α0 ≥ 1/n if ρ ≥ 1, with ρ ≥
−λn(A) where A is the adjacency matrix of G, as in
(4). Assuming α0 < 1/n, clearly

∑
i αi < 1. We look

now att the Karush-Kuhn-Tucker conditions for (8)
and thus αi,

αi +
1

ρ

∑
(i,j)∈E

Aijαj = 1 + µi

such that µiαi = 0, µi ≥ 0 .

We note that it can not be that ∀i, αi = 0. Thus,
α0 > 0. We consider i such that αi > 0 (and then
µi = 0),

1 = αi +
1

ρ

∑
(i,j)∈E

Aijαj

≤ αi +
1

ρ

∑
j 6=i

αj

<
1

n
+

1

ρ

We obtain a contradiction for ρ ≥ 1 − 1
n . Thus, for

any such ρ, α0 ≥ 1
n

Further, we note that αi ≤ 1 for all i ∈ V and we
can thus choose C = d. Thus using EX ≥ d/n2 as
derived above, we obtain the desired result by choosing
s = Dn2 log n/ε2 for some D.

D. The margin of the Lovász ϑ kernel

We proceed to prove the following result for the Lovász
ϑ kernel.

Lemma 3 (Restated). There exist, with high prob-
ability, Pr ≥ 1 − O(1/n), a linear separator in lin-
ear Lovász ϑ kernel space, separating G(n, p) and

G(n, 1−p, k) graphs, k = 2t
√

n(1−p)
p , where p(1−p) =

Ω(n−1 log4 n), with margin

γ ≥ (t− c)

√
n(1− p)

p
− o(
√
n) ,

for some constant c, and large enough t ≥ 1.

To help in proving Lemma 3, we restate known results
about the value of ϑ for random and planted clique
graphs.

Lemma D.1 (Coja-Oghlan (2005); Juhász (1982)).
For G(n, p) graphs, for 0 < p ≤ 0.99, and n > n0 for
some n0 > 0,

ϑ(G(n, p)) = Θ

(√
n(1− p)

p

)
with probability ≥ 1−O(e−n).

Lemma D.2 (Jethava et al. (2014); Feige &
Krauthgamer (2000)). For G = G(n, 1 − p, k), where

p(1 − p) = Ω(n−1 log4 n) and k = 2t
√
n
√

n(1−p)
p (1 +

o(1)) for any t ≥ 1, with probability ≥ 1−O(1/n),

ϑ(Ḡ) = k

where Ḡ denotes the complement graph of G.

Proof (of Lemma 3). We will prove the assertion of
Lemma 3 by bounding the margin using the feature
vectors ϕ of the linear Lovász ϑ kernel.

For the linear kernel k(x, y) = xy, we can compute the
feature vectors ϕ of the Lovász ϑ kernel explicitely, see
(4) by,

ϕ(d) =

(
n

d

)−1 ∑
B⊆V
|B|=d

ϑB

for a graph G = (V,E). We denote by ϕR(d), and
ϕQ(d), the feature vectors of G(n, p) and Ḡ(n, 1−p, k)
graphs respectively. Showing that ϕR(d), and ϕQ(d)
are separated by a certain margin gives us our desired
result.

A simple lower bound on the margin can be obtained
by noting that ϕQ(d) ≥ ϕR(d), leaving out errors.
This holds because planting a clique k into Ḡ corre-
sponds to removing edges from G, while Ḡ(n, 1− p) is
equivalent to G(n, p). Removing edges from a graph
can only increase ϑ(G) and thus ϑB(G) and ϕ(d) in-
crease. Clearly, in this case, ϕQ(d) and ϕR(d) are
linearly separable and we can place a separating line
crossing the midpoint between the vectors. We have,
with probability ≥ 1−O(1/n),

2γ ≥ ‖ϕQ −ϕR‖2
≥ |ϕQ(n)− ϕR(n)|

≥ (2t− c)

√
n(1− p)

p
− o(
√
n)

for some constant c and error terms.

In the second inequality, we consider only the last co-
ordinates of the feature vectors, and it holds because
of the triangle inequality. This amounts to compar-
ing only the values ϑ of the entire graphs. The third
inequality holds by Lemmas D.1 and D.2.

We note that we can get a better bound for γ by con-
sidering all coordinates of the feature vectors, or equiv-
alently, subgraphs of d ≤ n nodes.
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E. The margin of the svm-ϑ kernel

We prove a result similar to that of the previous sec-
tion, but now for the svm-ϑ kernel. Following (Jethava
et al., 2014) we will talk about planted clique graphs
although most of the details of the proofs deal with
the complement of such graphs. However, in terms of
this application, they are equivalent.

Lemma E.1. There exist, with high probability, Pr ≥
1 − O(1/n), a linear separator in linear svm-ϑ ker-
nel space, separating G(n, p) and G(n, 1−p, k) graphs,

k = 2t
√

n(1−p)
p , where p(1 − p) = Ω(n−1 log4 n), with

margin,

γ ≥ c · t
√
n−O

(
log n

p

)
for some constant c, and large enough t ≥ 1.

Proof. For the linear kernel k(x, y) = xy, we can com-
pute the feature vectors ϕ of the svm-ϑ kernel ex-
plicitely, similarly to (4) by,

ϕ(i)(d) =

(
ni
d

)−1 ∑
B⊆V (i)

|B|=d

∑
j∈B

α
(i)
j .

Showing that the feature vectors ϕR and ϕQ of G(n, p)

and Ḡ(n, 1 − p, k) are separated by a certain margin
gives us our desired result.

We give some results obtained by (Jethava et al.,
2014).

For a G(n, p) graphs, we have for p in the regime np ≥
1, and with δ > 0, ρ = 2(1 + δ)

√
np(1− p), with

K = KLS(G) as in (4), the optimizers of (8),

β := αi = 2(1 + δ)

√
1− p
np

± εR for all i ∈ V ,

Similarly, we note that for Ḡ(n, 1 − p, k) graphs with
S ⊂ V , the planted clique, the following holds for
k = o(n), K = KLS(G) as in (4) and ρ = (1 +
δ)(2

√
np(1− p) + kp) with probability ≥ 1−O(1/n),

αi =

{
β1 ± εQ for i ∈ S
β2 ± εQ for i 6∈ S

where for small δ,

β1 =
(t+ 1)2

(t+ 1)2 + 1
2

√
np
1−p

1
1+δ

,

β2 =
(t+ 1)

(t+ 1) + 1
2

√
np
1−p

1
1+δ

.

Now, we have, for the d:th component of the feature
vector ϕR(d) of G(n, p), with probability ≥ 1−O(1/n),

ϕR(d) =
1

Z

∑
B⊆V (i)

|B|=d

∑
j∈B

β + d · εR

= d · β + d · εR

and for the feature vector ϕQ(d) of Ḡ(n, 1−p, k), with
sufficiently large n,

ϕQ(d) =
1

Z

∑
B⊆V (i)

|B|=d

∑
j∈B
j∈S

β1 +
∑
j∈B
j 6∈S

β2 + d · εQ

= d

(
k

n
β1 +

(n− k)

n
β2

)
+ d · εQ

This gives us (since the margin between two points is
at least the margin in one dimension), (factor 2 since
margin from midpoint), with high probability,

2γ ≥ |ϕQ(n)− ϕR(n)| − n · (εR + εQ)

≥ k · β1 + (n− k)β2 − n · β − n · (εR + εQ)

=
k(t+ 1)2

(t+ 1)2 + 1
u

+
(n− k)(t+ 1)

(t+ 1) + 1
u

−O
(

log n

p

)
= t

√
nO(δ)−O

(
log n

p

)
with u = 2(1+δ)

√
1−p
np and n · (εR+ εQ) = O (log n/p)

due to (Jethava et al., 2014). The first row holds with
high probability since adding edges can only decrease
ϑ(G). The last line holds due to (Jethava et al., 2014,
Eq. 36).
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