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A. Overview

This document is supplementary material for Global
graph kernels using geometric embeddings. It is orga-
nized as follows. In Section [B] we prove Lemmas
and A In Section [C} we prove the Theorems [I] and
about sample complexity of the Lovasz ¢ kernel and
the svM-9 kernel. In Section [D} we prove Lemma
about the margin of the Lovdsz ¥ kernel. In Section [E]
we give and prove a result about the margin of the
SsvM-19 kernel.

B. Proofs of smaller lemmas

We restate and prove the smaller lemmas from the
paper.

Lemma (1| (Restated). Given a graph G = (V, E),
with orthogonal representation U, as in , for any

subset B C V', with H the subgraph of G induced by
B, the following holds,

HH) <9p(G) <y (G) =9G) .
Proof. First, we note that
J(H) < 9p(G)

holds, by the definition of ¥(G) in (2), as 9(H) is the
smallest of all orthogonal representations of the sub-
graph induced by V. Second,

Ip(H) < Iv(G)

holds because of (2)). This is clear, since ¥y (G) and
¥5(G) concern the same orthogonal representation,

and thus adding nodes to B to form V implies adding
indices to the maximization in . Clearly, the value
can not decrease. The last equality holds by definition
of V. O

Lemma [2| (Restated). The Lovdsz ¥ kernel, as de-
fined in (3)), is a positive semi-definite kernel.

Lemma [4] (Restated). The SvM-U kernel, as defined
n @D, s a positive semi-definite kernel.

Proof of Lemmas|g and[f} The kernels in and @D
are instances of Haussler’s R-convolution kernel (Haus-
sler,|1999). The R-convolution kernel for points x € Y,
each associated with a finite subset x/, of a common
space X', and a kernel k : x’ x ¥’ — R is defined
as (Haussler| [1999)

K(:C’y): Z

(=’,y") EX XX,

k(z',y') .

Now, the Lovész ¢ kernel, @ and svM-9 kernel, (@
share a common form

KG.0)= Y 3 5 MIn(G) fel(@)

BCV ccv’
|Cl=|B|

with fp(G) = Up(G) for the Lovész ¥ kernel and
fB(G) =3 ,cp a;j(G) for the svM-9 kernel.

In our setting, we set x = G = {GM,...,G®} such
that G(™) = (V™) E(™), Then, let ' = R, and with
each x = G(m)7 we associate a set

Xe = {fe(G™):BCV™}cy
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We make a note that x, may be a multiset, but a
straight-forward extension of Lemma 1 in (Haussler,
1999) proves that this is also a p.s.d. kernel. O

C. Sample complexity of the ¥ kernels

We prove here Theorems [I] and [2[ using a particular
multiplicative Chernoff bound.

C.1. Sample complexity of the Lovasz 1 kernel

For convenience we restate the theorem as given in the
main paper.

Theorem (Restated). For graphs of n nodes,
each coordinate ¢(d) of the feature vector of the lin-
ear Lovasz 9 kernel can be estimated by ¢(d) such that

Pr(p(d) = (14 €)e(d)] < O(1/n)
Prp(d) < (1 —e)e(d)] < O(1/n)

using sq = O(nlogn/e?) samples.

First, consider the following form of multiplicative
Chernoff bound.

Lemma C.1. Let X = Y(X; + -+ + X,), with
X1,...,Xs independent variables such that with prob-
ability 1, 0 < X; < C. Then,

_ sEXe2
3C

PIX>(1+eEX] < e
PIX<(1-9EX] < e

_ sEXe2

2C
Proof of Theorem[], We want to bound the error of a
coordinate ¢(d) in the sampled feature vector ¢ of the
Lovész ¥ kernel for a graph G = (V, E)). Recall that

old) =7 3 I5(G).
BT

We let

. 1$
X =p(d) == v, (G),
r=1

and thus

XT = 19‘/7(G) I
for random subsets V,, C V, r = 1,...,s, |V;| = d.
In order to use Lemma [C:I} we bound EX. We have
that 1 < ¥(G) < n and together with , we get
1 <9p(G) <n for BC V. Hence,

EX >1
and with C' = n, we get

P[X > (1 +¢)EX]
P[X < (1 - ¢)EX]

A
(]

|

ol
3

INA
(]

|

W
3

We make a note that EX = ¢(d), by linearity of ex-
pectation. Choosing s = Dnlogn/e? for some D, we
obtain the result. O

C.2. Sample complexity of the svM-v¥ kernel

We use the same Chernoff bound from the previous
section to prove a result on the sample complexity of
the svM-9 kernel.

Theorem [2] (Restated) (Sample complexity of the
svM-¥ kernel). For graphs of n nodes, each coordinate
p(d) of the feature vector of the linear SVM-9 kernel
can be estimated by @(d) such that

Prp(d) = (14 €)e(d)] <

< O(1/n)
Prig(d) < (1 - 9p(d)] < 01

O(1/n
O(1/n)
using sq = O(n?logn/e?) samples.
Proof. To apply Lemma we choose
XT = Z (&%}
JEVr

and
1 S
X::g _ElXT- s

for random subsets V,, C V, r = 1,...,s, |V;| = d.
Now, by definition, because we sample subsets uni-
formly, and by linearity of expectation,

EX = (d) = @_1 PIDILT

and similar to the following section, we note We are
now interested in bounding EX from below. We let
g denote the smallest maximum «,

ap = min max «; (G)
G i

and note that any graph G will have at least one node
with this value associated with it. Thus, for any graph

If we assume with jo := arg max; a;j, we have

EX = (Z)l BZC:VZJ:%-

IV
N
QU 3
N~
|

Q

o

v
|
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Now, we can prove that g > 1/n if p > 1, with p >
—An(A) where A is the adjacency matrix of G, as in
. Assuming ag < 1/n, clearly Y . o; < 1. We look
now att the Karush-Kuhn-Tucker conditions for
and thus «;,

1
ait = Y Aoy =1+4p
(i,4)EE
such that p;a; =0, pu; > 0.

We note that it can not be that Vi,a; = 0. Thus,
ap > 0. We consider 4 such that «; > 0 (and then

i :0)7

1
1 = OéiJr; Z Ajjoy
(i,)eE
1
< Oéi-l-*zoéj
P iz
1 1
< —4-=
nop

We obtain a contradiction for p > 1 — % Thus, for
any such p, ag > %

Further, we note that ; < 1 for all + € V and we
can thus choose C' = d. Thus using EX > al/n2 as
derived above, we obtain the desired result by choosing
s = Dn?logn/e? for some D. O

D. The margin of the Lovasz 9 kernel

We proceed to prove the following result for the Lovész
¥ kernel.

Lemma |3| (Restated). There exist, with high prob-
ability, Pr > 1 — O(1/n), a linear separator in lin-
ear Lovdsz ¥ kernel space, separating G(n,p) and

G(n,1—p, k) graphs, k = 2t4/ @, where p(1—p) =
Q(n~'log* n), with margin

v2 -y /" om)

p

for some constant c, and large enough t > 1.

To help in proving Lemmal[3] we restate known results
about the value of 9 for random and planted clique
graphs.

Lemma D.1 (Coja-Oghlan| (2005)); Juhasz| (1982)).
For G(n,p) graphs, for 0 < p < 0.99, and n > ng for

some ng > 0,
_ n(l—p)
9(G(n,p)) =© ( — >

with probability > 1 — O(e™").

Lemma D.2 (Jethava et al| (2014); [Feige &
Krauthgamer| (2000)). For G = G(n,1 — p, k), where

p(1 —p) = Qntlog*n) and k = 2t\/ﬁ\/@(l +
o(1)) for any t > 1, with probability > 1 — O(1/n),

IG) =k
where G denotes the complement graph of G.

Proof (of Lemma @ We will prove the assertion of
Lemma [3| by bounding the margin using the feature
vectors ¢ of the linear Lovasz ¥ kernel.

For the linear kernel k(z,y) = xy, we can compute the
feature vectors ¢ of the Lovasz 9 kernel explicitely, see

by,
a=(2) X v

BCV

|Bl=d
for a graph G = (V, E). We denote by ¢p(d), and
¥ (d), the feature vectors of G(n, p) and G(n,1—p, k)
graphs respectively. Showing that ¢x(d), and ¢4 (d)
are separated by a certain margin gives us our desired
result.

A simple lower bound on the margin can be obtained
by noting that ¢g(d) > ¢gr(d), leaving out errors.
This holds because planting a clique k into G corre-
sponds to removing edges from G, while G(n, 1 — p) is
equivalent to G(n,p). Removing edges from a graph
can only increase ¥(G) and thus 9p(G) and ¢(d) in-
crease. Clearly, in this case, pg(d) and ¢gr(d) are
linearly separable and we can place a separating line
crossing the midpoint between the vectors. We have,
with probability > 1 — O(1/n),

2y > lleg — ¥rll
> |pq(n) — ¢r(n)|
> -y [M oym)

for some constant ¢ and error terms.

In the second inequality, we consider only the last co-
ordinates of the feature vectors, and it holds because
of the triangle inequality. This amounts to compar-
ing only the values ¥} of the entire graphs. The third
inequality holds by Lemmas and O

We note that we can get a better bound for « by con-
sidering all coordinates of the feature vectors, or equiv-
alently, subgraphs of d < n nodes.
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E. The margin of the svM-¢ kernel

We prove a result similar to that of the previous sec-
tion, but now for the sSvM-1 kernel. Following (Jethava
et al., [2014)) we will talk about planted clique graphs
although most of the details of the proofs deal with
the complement of such graphs. However, in terms of
this application, they are equivalent.

Lemma E.1. There exist, with high probability, Pr >
1 —0(1/n), a linear separator in linear SVM-1Y ker-
nel space, separating G(n,p) and G(n,1—p, k) graphs,

k=2t @, where p(1 — p) = Q(n~"'log* n), with
margin,

ch.tf_o<logn>

p

for some constant ¢, and large enough t > 1.

Proof. For the linear kernel k(z,y) = xy, we can com-
pute the feature vectors ¢ of the svM-9 kernel ex-
plicitely, similarly to by,

—1
M=) T Tl
Bcy (@ jEB
|B|=d
Showing that the feature vectors ¢ and ¢g of G(n, p)
and G(n,1 — p, k) are separated by a certain margin
gives us our desired result.

We give some results obtained by (Jethava et al.|
2014)).

For a G(n, p) graphs, we have for p in the regime np >
1, and with 6 > 0, p = 2(1 4+ §)y/np(1 — p), with
K = K1 5(G) as in (4)), the optimizers of (8],

17
ﬂ::ai:2(1+5),/n—;’im forallieV |

Similarly, we note that for G(n,1 — p, k) graphs with
S C V, the planted clique, the following holds for
k= on), K = Krs(G) as in and p = (1 +
5)(24/np(1 — p) + kp) with probability > 1 — O(1/n),

) Biteg forieS
YT Bateg forigS
where for small ¢,
5 = (t+1)2
1 - ’
(t+1)2+ 3\ /75 5
By = (t+1)

Now, we have, for the d:th component of the feature
vector pr(d) of G(n,p), with probability > 1-0(1/n),

2 Shvdeen

BCv(® jeB
|Bl=d

d'B‘i‘d-éR

er(d) =

and for the feature vector pg(d) of G(n,1—p, k), with
sufficiently large n,

LY Y at Y hrd

Bgv(i) jVEB jIEB
|B|=d J€5 Jgs

d(:ﬁl-i- (n_k)ﬁ2> +d-eg

n

vq(d)

This gives us (since the margin between two points is
at least the margin in one dimension), (factor 2 since
margin from midpoint), with high probability,

lpq(n) — ¢r(n)| —n- (er + €q)

kE-Bi+(n—Fk)Bz—n-B—n-(ecr+eq)
o k(t+1)? (n—K)(t+1)  (logn
12+ @+ 42 O( p)

2y >
>

= +V/nO@) -0 (bi”)

with u = 2(149),/ % and n-(er+eg) = O (logn/p)
due to (Jethava et al.,[2014]). The first row holds with
high probability since adding edges can only decrease
Y(G). The last line holds due to (Jethava et al.l |2014}
Eq. 36). O
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