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Abstract
Bayesian models provide powerful tools for an-
alyzing complex time series data, but perform-
ing inference with large datasets is a challenge.
Stochastic variational inference (SVI) provides a
new framework for approximating model poste-
riors with only a small number of passes through
the data, enabling such models to be fit at scale.
However, its application to time series models
has not been studied.

In this paper we develop SVI algorithms for
several common Bayesian time series models,
namely the hidden Markov model (HMM), hid-
den semi-Markov model (HSMM), and the non-
parametric HDP-HMM and HDP-HSMM. In ad-
dition, because HSMM inference can be expen-
sive even in the minibatch setting of SVI, we de-
velop fast approximate updates for HSMMs with
durations distributions that are negative binomi-
als or mixtures of negative binomials.

1. Introduction
Bayesian time series models can be applied to complex
data in many domains, including data arising from behav-
ior and motion (Fox et al., 2010; 2011), home energy con-
sumption (Johnson & Willsky, 2013), physiological signals
(Lehman et al., 2012), single-molecule biophysics (Lindén
et al., 2013), brain-machine interfaces (Hudson, 2008), and
natural language and text (Griffiths et al., 2004; Liang et al.,
2007). However, scaling inference in these models to large
datasets is a challenge.

Many Bayesian inference algorithms require a complete
pass over the data in each iteration and thus do not scale
well. In contrast, some recent Bayesian inference methods
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require only a small number of passes and can even operate
in the single-pass or streaming settings (Broderick et al.,
2013). In particular, stochastic variational inference (SVI)
(Hoffman et al., 2013) provides a general framework for
scalable inference based on mean field and stochastic gra-
dient optimization. However, while SVI has been studied
extensively for topic models (Hoffman et al., 2010; Wang
et al., 2011; Bryant & Sudderth, 2012; Wang & Blei, 2012;
Ranganath et al., 2013; Hoffman et al., 2013), it has not
been applied to time series.

In this paper, we develop SVI algorithms for the core
Bayesian time series models based on the hidden Markov
model (HMM), namely the Bayesian HMM and hidden
semi-Markov model (HSMM), as well as their nonpara-
metric extensions based on the hierarchical Dirichlet pro-
cess (HDP), the HDP-HMM and HDP-HSMM. Both the
HMM and HDP-HMM are ubiquitous in time series mod-
eling, and so the SVI algorithms developed in Sections 3
and 4 are widely applicable.

The HSMM and HDP-HSMM extend their HMM coun-
terparts by allowing explicit modeling of state durations
with arbitrary distributions. However, HSMM inference
subroutines have time complexity that scales quadratically
with the observation sequence length, which can be expen-
sive even in the minibatch setting of SVI. To address this
shortcoming, in Section 5 we develop a new method for
Bayesian inference in (HDP-)HSMMs with negative bino-
mial durations that allows approximate SVI updates with
time complexity that scales only linearly with sequence
length. The methods in this paper also provide the first
batch mean field algorithm for HDP-HSMMs.

Our code is available at github.com/mattjj/pyhsmm.

2. Background
Here we review the key ingredients of SVI, namely
stochastic gradient algorithms, the mean field variational
inference problem, and natural gradients of the mean field
objective for models with complete-data conjugacy.

https://www.github.com/mattjj/pyhsmm
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2.1. Stochastic gradient ascent

Consider the optimization problem

max
φ

f(φ, ȳ) where f(φ, ȳ) =

K∑
k=1

g(φ, ȳ(k))

and where ȳ = {ȳ(k)}Kk=1 is fixed. Then if k̂ is sampled
uniformly over {1, 2, . . . ,K}, we have

∇φf(φ) = K · Ek̂
[
∇φg(φ, ȳ(k̂))

]
.

Thus we can generate approximate gradients of the objec-
tive using only one ȳ(k) at a time. A stochastic gradient
algorithm for a sequence of stepsizes ρ(t) and positive def-
inite matrices G(t) is given in Algorithm 1. From stan-
dard results (Robbins & Monro, 1951; Bottou, 1998), if∑∞
t=1 ρ

(t) = ∞ and
∑∞
t=1(ρ(t))2 < ∞ and G(t) has

uniformly bounded eigenvalues, then the algorithm con-
verges to a stationary point, i.e. φ∗ , lim

t→∞
φ(t) satisfies

∇φf(φ∗, ȳ) = 0.

Since each update in the stochastic gradient ascent algo-
rithm only operates on one ȳ(k), or minibatch, at a time, it
can scale to the case where ȳ is large.

Algorithm 1 Stochastic gradient ascent

Initialize φ(0)

for t = 1, 2, . . . do
k̂(t) ← Uniform({1, 2, . . . ,K})
φ(t) ← ρ(t)KG(t)∇φg(φ(t−1), ȳ(k̂(t)))

2.2. Stochastic variational inference

Given a probabilistic model

p(φ, z, y) = p(φ)

K∏
k=1

p(z(k)|φ)p(y(k)|z(k), φ)

that includes global latent variables φ, local latent vari-
ables z = {z(k)}Kk=1, and observations y = {y(k)}Kk=1,
the mean field problem is to approximate the posterior
p(φ, z|ȳ) for fixed data ȳ with a distribution of the form
q(φ)q(z) = q(φ)

∏
k q(z

(k)) by finding a local minimum
of the KL divergence from the approximating distribution
to the posterior or, equivalently, finding a local maximum
of the marginal likelihood lower bound

L , Eq(φ)q(z)

[
ln
p(φ, z, ȳ)

q(φ)q(z)

]
≤ p(ȳ). (1)

SVI optimizes the objective (1) using a stochastic natural
gradient ascent algorithm over the global factors q(φ).

Natural gradients of L with respect to the parameters of
q(φ) have a convenient form if the prior p(φ) and each

complete-data likelihood p(z(k), y(k)|φ) are a conjugate
pair of exponential family distributions. That is, if

ln p(φ)=〈ηφ, tφ(φ)〉 −Aφ(ηφ)

ln p(z(k), y(k)|φ)=〈ηzy(φ), tzy(z(k), y(k))〉−Azy(ηzy(φ))

then conjugacy (Bernardo & Smith, 2009, Proposition 5.4)
implies that tφ(φ) = (ηzy(φ),−Azy(ηzy(φ)), so that

p(φ|z(k), ȳ(k)) ∝ exp{〈ηφ + (tzy(z(k), ȳ(k)), 1), tφ(φ)〉}.

Conjugacy also implies the optimal q(φ) is in the same
family, i.e. q(φ) = exp {〈η̃φ, tφ(φ)〉 −Aφ(η̃φ)} for some
parameter η̃φ (Bishop & Nasrabadi, 2006, Section 10.4.1).

With this structure, there is a simple expression for the gra-
dient of L with respect to η̃φ. To simplify notation, we
write t(z, ȳ) ,

∑K
k=1(tzy(z(k), ȳ(k)), 1), η̃ , η̃φ, η , ηφ,

andA , Aφ. Then dropping terms constant over η̃ we have

L = Eq(φ)q(z) [ln p(φ|z, ȳ)− ln q(φ)]

= 〈η + Eq(z)[t(z, ȳ)],∇A(η̃)〉 − (〈η̃,∇A(η̃)〉−A(η̃))

where we have used the exponential family identity
Eq(φ) [tφ(φ)] = ∇A(η̃). Differentiating over η̃, we have

∇η̃L =
(
∇2A(η̃)

) (
η + Eq(z)[t(z, ȳ)]− η̃

)
.

The natural gradient ∇̃η̃ is defined (Hoffman et al., 2013)
as ∇̃η̃ ,

(
∇2A(η̃)

)−1∇η̃ , and so expanding we have

∇̃η̃L = η +

K∑
k=1

Eq(z(k))[(tzy(z(k), ȳ(k)), 1)]− η̃.

Therefore a stochastic natural gradient ascent algorithm on
the global variational parameter η̃φ proceeds at iteration t
by sampling a minibatch ȳ(k) and taking a step of some size
ρ(t) in an approximate natural gradient direction via

η̃φ ← (1−ρ(t))η̃φ+ρ(t)(ηφ+s ·Eq∗(z(k))[t(z
(k), ȳ(k))])

where s , |ȳ|/|ȳ(k)| scales the minibatch statistics to rep-
resent the full dataset. In each step we find the optimal lo-
cal factor q∗(z(k)) with standard mean field updates and the
current value of q(φ). There are automatic methods to tune
the sequence of stepsizes (Snoek et al., 2012; Ranganath
et al., 2013), though we do not explore them here.

2.3. Hidden Markov Models

A Bayesian Hidden Markov Model (HMM) onN states in-
cludes priors on the model parameters, namely the initial
state distribution and transition matrix rows π = {π(i)}Ni=0
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and the observation parameters θ = {θ(i)}Ni=1. The full
generative model over the parameters, a state sequence
x1:T of length T , and an observation sequence y1:T is

θ(i) iid∼ p(θ), π(i) ∼ Dir(α(i)), A ,

(
π(1)

...
π(N)

)
x1 ∼ π(0), xt+1 ∼ π(xt), yt ∼ p(yt|θ(xt))

where we abuse notation slightly here and use p(θ) and
p(yt|θ) to denote the prior distribution over θ and the con-
ditional observation distribution, respectively. When con-
venient, we collect the transition rows {π(i)}Ni=1 into the
transition matrix A and write q(A) ,

∏N
i=1 q(π

(i)).

Conditioned on the model parameters (π, θ) and a fixed ob-
servation sequence ȳ1:T , the distribution of x1:T is Markov
on a chain graph. Defining likelihood potentials L by
Lt,i , p(ȳt|θ(i)), the density p(x1:T |ȳ1:T , π, θ) is

exp

{
lnπ

(0)
x1 +

T−1∑
t=1

lnAxt,xt+1
+

T∑
t=1

lnLt,xt
− Z

}
.

(2)
where Z is the normalizing constant for the distribution.
We say p(x1:T |ȳ1:T , π, θ) = HMM(A, π(0), L).

In mean field inference for HMMs (Beal, 2003), we ap-
proximate the full posterior p(π, θ, x1:T |ȳ1:T ) with a mean
field variational family q(π)q(θ)q(x1:T ) and update each
variational factor in turn while fixing the others. When up-
dating q(x1:T ), by taking expectations of the log of (2) with
respect to the variational distribution over parameters, we
see the update sets q(x1:T ) = HMM(Ã, π̃(0), L̃) with

Ãi,j , exp
{
Eq(π) lnAi,j

}
π̃

(0)
i , exp

{
lnEq(π(0))π

(0)
i

}
L̃t,i , exp

{
Eq(θi) ln p(ȳt|xt = i)

}
. (3)

We can compute the expectations with respect to q(x1:T )
necessary for the other factors’ updates using the standard
HMM message passing recursions for forward messages F
and backward messages B using these HMM parameters:

Ft,i ,
N∑
j=1

Ft−1,jÃjiL̃t,i F1,i , π̃
(0)
i (4)

Bt,i ,
N∑
j=1

ÃijL̃t+1,jBt+1,j BT,i , 1. (5)

The messages can be computed in O(TN2) time.

2.4. Hidden semi-Markov Models

The Hidden semi-Markov Model (HSMM) (Murphy, 2002;
Hudson, 2008; Johnson & Willsky, 2013) augments the
generative process of the HMM by sampling a duration

from a state-specific duration distribution each time a state
is entered. That is, if state i is entered at time t, a duration
d is sampled d ∼ p(d|ϑ(i)) for some parameter ϑ(i) and
the state stays fixed until xt+d−1, when a Markov transi-
tion step selects a new state for xt+d. For identifiability,
self-transitions are often ruled out; the transition matrix A
is constrained via Ai,i = 0 and the Dirichlet prior on each
row is placed on the off-diagonal entries. The parameters
π(0) and θ are treated as in the HMM.

Analogous to the HMM case, for a fixed observation
sequence ȳ1:T , we define likelihood potentials L by
Lt,i , p(ȳt|θ(i)) and now define duration potentials D
via Dd,i , p(d|ϑ(i)) and say p(x1:T |ȳ1:T , π, θ, ϑ) =
HSMM(A, π(0), L,D). In mean field inference for
HSMMs, as developed in (Hudson, 2008), we approximate
the posterior p(θ, ϑ, π, x1:T |ȳ1:T ) with a variational family
q(θ)q(ϑ)q(π)q(x1:T ). When updating the factor q(x1:T )

we have q(x1:T ) = HSMM(Ã, π̃(0), L̃, D̃) using the defi-
nitions in (3) and

D̃d,i , exp
{
Eq(ϑ(i)) ln p(d|ϑ(i))

}
.

Expectations with respect to q(x1:T ) can be computed in
terms of the standard HSMM forward messages (F, F ∗)
and backward messages (B,B∗) via the recursions (Mur-
phy, 2002):

Ft,i,
t−1∑
d=1

F ∗t−d,iD̃d,iL̃t−d+1:t,i, F ∗t,i,
N∑
j=1

Ãj,iFt,j (6)

B∗t,i,
T−t∑
d=1

Bt+d,iD̃d,iL̃t+1:t+d,i Bt,i,
N∑
j=1

B∗t,jÃi,j (7)

with F ∗1,i , π
(0)
i and BT,i , 1. These messages require

O(T 2N +TN2) time to compute for general duration dis-
tributions.

3. SVI for HMMs and HSMMs
In this section we apply SVI to both HMMs and HSMMs
and express the SVI updates in terms of HMM and HSMM
messages. For notational simplicity, we consider a dataset
of K sequences each of length T , written ȳ = {ȳ(k)

1:T }Kk=1,
and take each minibatch to be a single sequence, which we
write without the superscript index as ȳ1:T .

3.1. SVI update for HMMs

In terms of the notation in Section 2.2, the global variables
are the HMM parameters and the local variables are the hid-
den states; that is, φ = (A, π(0), θ) and z = x1:T . To make
the updates explicit, we assume the observation parameter
priors p(θ(i)) and likelihoods p(yt|θ(i)) are conjugate pairs
of exponential family distributions for each i so that the
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conditionals have the form

p(θ(i)|y) ∝ exp
{
〈η(i)
θ + (t(i)y (y), 1), t

(i)
θ (θ(i))〉

}
.

At each iteration of the SVI algorithm we sample a se-
quence ȳ1:T from the dataset and perform a stochastic gra-
dient step on q(A)q(π(0))q(θ) of some size ρ. To compute
the gradient, we need to collect expected sufficient statis-
tics with respect to the optimal factor for q(x1:T ), which in
turn depends on the current value of q(A)q(π(0))q(θ).

Writing the priors and mean field factors as

p(π(i)) = Dir(α), p(θ(i)) ∝ exp
{
〈η(i)
θ , t

(i)
θ (θ(i))〉

}
,

q(π(i)) = Dir(α̃(i)), q(θ(i)) ∝ exp
{
〈η̃(i)
θ , t

(i)
θ (θ(i))〉

}
and using the messages F andB as in (4) and (5), we define

t̂(i)y , Eq(x1:T )

∑T
t=1I[xt = i]t(i)y (ȳt)

=
∑T
t=1Ft,iBt,i · (t

(i)
y (ȳt), 1)/Z (8)

(t̂
(i)
trans)j , Eq(x1:T )

∑T−1
t=1 I[xt = i, xt+1 = j]

=
∑T−1
t=1 Ft,iÃi,jL̃t+1,jBt+1,j/Z (9)

(t̂init)i , Eq(x1:T )I[x1 = i] = π̃0B1,i/Z

where I[·] is 1 if its argument is true and 0 otherwise and Z
is the normalizing constant Z ,

∑N
i=1 FT,i.

With these expected statistics, taking a natural gradient step
in the parameters of q(A), q(π0), and q(θ) of size ρ is

η̃θ
(i) ← (1− ρ)η̃θ

(i) + ρ(η
(i)
θ + s · t̂(i)y ) (10)

α̃(i) ← (1− ρ)α̃(i) + ρ(α(i) + s · t̂(i)trans) (11)

α̃(0) ← (1− ρ)α̃(0) + ρ(α(0) + s · t̂(i)init) (12)

where s , |ȳ|/|ȳ1:T | as in Section 2.2.

3.2. SVI update for HSMMs

The SVI updates for the HSMM are very similar to those
for the HMM with the addition of a duration update, but
writing the expectations in terms of the HSMM messages
is substantially different. The form of these expected statis-
tics follow from the standard HSMM E-step (Murphy,
2002; Hudson, 2008).

Using the HSMM messages (F, F ∗) and (B,B∗) defined
in (6)-(7), we can write

(t̂
(i)
trans)j , Eq(x1:T )

∑T−1
t=1 I[xt = i, xt+1 = j, xt 6= xt+1]

=
∑T−1
t=1 Ft,iB

∗
t,jÃi,j/Z

where Z is the normalizer Z ,
∑N
i=1B

∗
1,iπ̃

(0)
i .

To be written in terms of the HSMM messages the expected
state indicators I[xt = i] must be expanded to

I[xt = i] =
∑
τ<t

I[xτ+1 = i 6= xτ ]− I[xτ = i 6= xτ+1]

Intuitively, this expansion expresses that a state is occupied
after a transition into it occurs and until a transition out
occurs while it is occupied. Then we have

Eq(x1:T )I[xt+1 = i, xt 6= xt+1] = F ∗t,iB
∗
t,i/Z

Eq(x1:T )I[xt = i, xt 6= xt+1] = Ft,iBt,i/Z.

from which we can compute Eq(x1:T )I[xt = i], which we
use in the definition of t̂(i)y given in (8).

Finally, we compute the expected duration statistics as in-
dicators on every possible duration d = 1, 2, . . . , T via

(t̂
(i)
dur)d , E

∑
t
I[xt 6= xt+1, xt+1:t+d = i, xt+d+1 6= i]

=

T−d+1∑
t=1

D̃d,iF
∗
t,iBt+d,i(

∏t+d
t′=tL̃t′,i)/Z. (13)

Note that this step alone requires O(T 2N) time even after
the messages have been computed.

If the priors and mean field factors over duration param-
eters are p(ϑ(i)) ∝ exp{〈η(i)

ϑ , t
(i)
ϑ (ϑ(i))〉} and q(ϑ(i)) ∝

exp{〈η̃(i)
ϑ , t

(i)
ϑ (ϑ(i))〉}, and the duration likelihood is

p(d|ϑ(i)) = exp{〈t(i)ϑ (ϑ(i)), (td(d), 1)〉} then the duration
factor update is

η̃
(i)
ϑ ← (1− ρ)η̃

(i)
ϑ + ρ(η

(i)
ϑ + s(

T∑
d=1

(t̂
(i)
dur)d · (td(d), 1))).

4. SVI for HDP-HMMs and HDP-HSMMs
In this section we extend our methods to the Bayesian
nonparametric versions of these models, the HDP-HMM
and the HDP-HSMM. The generative model for the HDP-
HMM with scalar concentration parameters α, γ > 0 is

β ∼ GEM(γ), π(i) ∼ DP(αβ), θ(i) iid∼ p(θ(i))

x1 ∼ π(0), xt+1 ∼ π(xt), yt ∼ p(yt|θ(xt))

where β ∼ GEM(γ) denotes sampling from a stick break-
ing distribution defined by

vj
iid∼ Beta(1, γ), βk =

∏
j<k

(1− vj)vk

and π(i) ∼ DP(αβ) denotes sampling a Dirichlet process

w ∼ GEM(α), zk
iid∼ β, π(i) =

∞∑
k=1

wkδzk .
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To perform mean field inference in HDP models, we ap-
proximate the posterior with a truncated variational dis-
tribution. While a common truncation is to limit the two
stick-breaking distributions in the definition of the HDP
(Hoffman et al., 2013), a more convenient truncation for
our models is the “direct assignment” truncation, used in
(Liang et al., 2007) for batch mean field with the HDP-
HMM and in (Bryant & Sudderth, 2012) in an SVI algo-
rithm for LDA. The direct assignment truncation limits the
support of q(x1:T ) to the finite set {1, 2, . . . ,K}T for a
truncation parameter K, i.e. fixing q(x1:T ) = 0 when any
xt > K. Thus the other factors, namely q(π), q(β), and
q(θ), only differ from their priors in their distribution over
the firstK components. As opposed to standard truncation,
this family of approximations is nested over K, enabling a
search procedure over the truncation parameter as devel-
oped in (Bryant & Sudderth, 2012). A similar search pro-
cedure can be used with the HDP-HMM and HDP-HSMM
algorithms in this paper, though we do not explore it here.

A disadvantage to the direct assignment truncation is that
the update to q(β) is not conjugate given the other factors
as in Hoffman et al. (2013). Following Liang et al. (2007),
to simplify the update we use a point estimate by writing
q(β) = δβ∗(β). Since the main effect of β is to enforce
shared sparsity among the π(i), it is reasonable to expect
that a point approximation for q(β) will suffice.

The updates to the factors q(θ) and q(x1:T ) are iden-
tical to those derived in the previous sections. To de-
rive the SVI update for q(π), we write the relevant
part of the untruncated model and truncated variational
factors as p((π

(i)
1:K , π

(i)
rest)) = Dir(α · (β1:K , βrest)) and

q((π
(i)
1:K , π

(i)
rest)) = Dir(α̃(i)), respectively, where π(i)

rest ,

1−
∑K
k=1 π

(i)
k and βrest , 1−

∑K
k=1 βk for i = 1, . . . ,K.

Therefore the updates to q(π(i)) are identical to those
in (11) except the number of variational parameters is
K + 1 and the prior hyperparameters are replaced with
α · (β1:K , βrest).

The gradient of the variational objective with respect to β∗

is given by

∇β∗L = ∇β∗
{
Eq(π)

[
ln

p(β, π)

q(β)q(π)

]}
= ∇β∗

{
ln p(β∗) +

K∑
i=1

Eq(π(i)) ln p(π(i)|β∗)
}

∂
∂β∗k

ln p(β∗) = 2
∑
i≥k

1
1−

∑
j<i

β∗j
− (γ − 1)

∑
i≥k

1
1−

∑
j≤i

β∗j

∂
∂β∗k

Eq(π)[ln p(π
(i)|β∗)]

= γψ(α̃
(i)
k )− γψ(α̃

(i)
K+1)+γψ(γ

K+1∑
j=1

β∗j )− γψ(β∗k).

We use this gradient expression to take a truncated gradient
step on β∗ during each SVI update, using a backtracking
line search to ensure the updated value satisfies β∗ ≥ 0.

The updates for q(π) and q(β) in the HDP-HSMM differ
only in that the variational lower bound expression changes
slightly because the support of each q(π(i)) is restricted to
the off-diagonal (and renormalized). We can adapt q(π(i))
by simply dropping the ith component from the represen-
tation and writing

q((π
(i)
1:K\i, π

(i)
rest)) = Dir(α̃(i)

\i ),

and we change the second term in the gradient for β∗ to
∂
∂β∗k

Eq(π)[ln p(π
(i)|β∗)]

= γψ(α̃
(i)
k )− γψ(α̃

(i)
K+1) + γψ(γ

∑
j 6=i

β∗j )− γψ(β∗k)

when k 6= i, otherwise the partial derivative is 0.

Using these gradient expressions for β∗ and a suitable
gradient-based batch optimization procedure we can also
perform batch mean field updates for the HDP-HSMM.

5. Fast updates for negative binomial HSMMs
General HSMM inference is much more expensive than
HMM inference, having runtime O(T 2N + TN2) com-
pared to justO(TN2) onN states and a sequence of length
T . The quadratic dependence on T can be severely limiting
even in the minibatch setting of SVI, since minibatches of-
ten must be sufficiently large for good performance (Hoff-
man et al., 2013; Broderick et al., 2013).

A common approach to mitigate HSMM computational
complexity (Hudson, 2008; Johnson & Willsky, 2013) is
to limit the support of the duration distributions, either in
the model or as an approximation in the message passing
computation, and thus limit the terms in the sums of (6)
and (7). This truncation approach can be readily applied
to the algorithms presented in this paper. However, trun-
cation can be undesirable or ineffective if states have long
durations. In the this section, we develop approximate up-
dates for a particular class of duration distributions with
unbounded support for which the computational complex-
ity is only linear in T .

5.1. HMM embeddings of negative binomial HSMMs

The negative binomial distribution we use has two param-
eters (r, p), where 0 < p < 1 and r is a positive integer. Its
probability mass function (PMF) for k = 1, 2, . . . is

p(k|r, p) =

(
k + r − 2

k − 1

)
exp{(k− 1) ln p+ r ln(1− p)}.

(14)
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Fixing r, the family of distributions parameterized by p is
an exponential family and admits a conjugate Beta prior.
However, as a family over (r, p) it is not exponential be-
cause the of the binomial coefficient base measure term
which depends on r. When r = 1 the distribution is geo-
metric, and so the class of HSMMs with negative binomial
durations include HMMs. By varying r and p, the mean
and variance can be controlled separately, making the neg-
ative binomial a popular choice for duration distributions
(Bulla & Bulla, 2006; Fearnhead, 2006).

A negative binomial random variable can be represented as
a sum of r geometric random variables: if x ∼ NB(r, p)
and y = 1 +

∑r
i=1 zi with p(zi = k) = pk(1 − p), then

x ∼ y. Therefore given an HSMM in which the durations
of state i are distributed as NB(r(i), p(i)) we can construct
an HMM on

∑N
i=1 r

(i) states that encodes the same pro-
cess, where HSMM state i corresponds to ri states in the
HMM. We call this construction an HMM embedding of
the HSMM, and the resulting HMM transition matrix Ā is

Ā ,

(
C1 Ā12 ···
Ā21 C2

...

)

Ci,

(
p(i) 1−p(i)

. . .
p(i) 1−p(i)

)
, Āij,


Aij p̄

(ij)
1 ··· Aij p̄

(ij)

r(j)



where p̄(ij) is defined in the supplementary materials. We
write the HMM embedding state sequence as x̄1:T , where
each x̄t decomposes as x̄t = (xt, k) for k = 1, 2, . . . , r(xt)

according to the block structure of Ā. If we define
R , 1

N

∑N
i=1 r

(i), then passing messages in this structured
HMM embedding can be done in O(TNR+ TN2) time.

This construction draws on ideas from HSMMs with “para-
metric macro-states” (Guédon, 2005, Section 3) and on
expanded-state HMMs (ESHMMs) (Russell & Moore,
1985; Russell & Cook, 1987; Johnson, 2005). However,
this precise construction for negative binomial durations
does not appear in those works. Furthermore, we extend
these ideas by applying Bayesian inference as well as meth-
ods to fit (a posterior over) the r(i) parameter, as we discuss
in the next section.

If every r(i) is fixed and the p(i) are the only duration pa-
rameters, we can use the HMM embedding to perform ef-
ficient conjugate SVI (or batch mean field) updates to the
duration factors q(p(i)). We write the duration prior and
mean field factors as

p(p(i)) = Beta(a(i), b(i)) q(p(i)) = Beta(ã(i), b̃(i)).

The embedding allows us to write the variational lower
bound for the HSMM as an equivalent HMM vari-
ational lower bound with effective transition matrix

Eq(π)q(p)q(θ) ln Ā. Defining q(x̄1:T ) as the corresponding
distribution over HMM states, we can write expected suf-
ficient statistics t̂(i)d , (t̂

(i)
1 , t̂

(i)
0 ) for the duration factors

in terms of the expected transition statistics in the HMM
embedding:

t̂
(i)
d,1 , Eq(x̄1:T )

T−1∑
t=1

r(i)∑
k=1

I[x̄t = x̄t+1 = (i, k)]

t̂
(i)
d,0 , Eq(x̄1:T )

T−1∑
t=1

r(i)∑
k=1

I[x̄t = (i, k), x̄t+1 6= x̄t+1].

We can compute these expected transition statistics effi-
ciently from the HMM messages using (9). The SVI update
to the duration factors is then of the form

ã(i) ← (1− ρ)ã(i) + ρ(a(i) + s · t̂(i)d,1) (15)

b̃(i) ← (1− ρ)̃b(i) + ρ(b(i) + s · t̂(i)d,0) (16)

for some stepsize ρ and minibatch scaling s. We can
similarly write the transition, initial state, and observation
statistics for the other HSMM mean field factors in terms
of its embedding:

t̂(i)y , Eq(x̄1:T )

∑T
t=1

∑r(i)

k=1I[x̄t = (i, k)]t(i)y (ȳt)

(t̂
(i)
trans)j , Eq(x̄1:T )

∑T−1
t=1 I[x̄t = (i, r(i)) 6= x̄t+1]

(t̂init)i , Eq(x̄1:T )I[x̄1 = (xt, 1)].

Using these statistics we perform SVI updates to the corre-
sponding the mean field factors as in (10)-(12).

We have shown that by working with an efficient HMM
embedding representation we can compute updates to the
HSMM mean field factors in time O(TNR+ TN2) when
durations are negative binomially distributed with fixed r.
In the next subsection we extend these fast updates to in-
clude a variational representation to the posterior of r.

5.2. Approximate updates for fitting q(r, p)

By learning r as well as p, negative binomial HSMMs can
learn to be HMMs when appropriate and generally provide
a much more flexible class of duration distributions. In this
subsection, we derive an exact SVI update step for fitting
both r and p, explain its computational difficulties, and pro-
pose a fast approximate alternative based on sampling.

We define mean field factors q(r(i))q(p(i)|r(i)), where each
q(r(i)) is a categorical distribution with finite support taken
to be {1, 2, . . . , r(i)

max} and each q(p(i)|r(i)) is Beta, i.e.

q(r(i)) ∝ exp{〈ν̃(i), Ir(i)〉}

q(p(i)|r(i)) = Beta(ã(i,r), b̃(i,r)).
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where Ir(i) is an indicator vector with the r(i)th entry set
to 1 and the others to zero. The priors are defined simi-
larly. To simplify notation, in this section we often drop
the superscript i from the notation.

Two challenges arise in computing updates to q(r, p). First,
the optimal variational factor on the HSMM states is

q(x1:T ) ∝ expEq(π)q(r,p)q(θ) ln p(x1:T |ȳ1:T , π, r, p, θ).

Due to the expectation over q(r), this factor does not have
the form required to use the efficient HMM embedding of
Section 5.1, and so the corresponding general HSMM mes-
sages require O(T 2N + TN2) time to compute. Second,
as we show next, due to the base measure term in (14), to
compute an exact update to q(r, p) requires computing the
expected duration indicator statistics of (13), a computation
which itself requires O(T 2N) time even after computing
the HSMM messages.

First, we show that the update to q(p|r) is straightforward.
To derive an update for q(p|r), we write the relevant part of
the variational lower bound as

L , Eq(r,p)q(x1:T )

[
ln
p(r, p,D)

q(r, p)

]
(17)

= Eq(r) ln
p(r)

q(r)
+ Eq(r)q(x1:T )h(r,D)

+ Eq(r)
{
Eq(p|r) ln

p(p)p̄(D|r, p)
q(p|r)

}
where D is the set of relevant durations in x1:T , h(r,D) ,∑
k∈D ln

(
r+k−2
k−1

)
arises from the negative binomial base

measure term, and ln p̄(D|r, p) ,
∑
k∈D k ln p+ r ln(1−

p) collects the negative binomial PMF terms excluding the
base measure. The only terms in (17) that depend on q(p|r)
are in the final bracketed term. Furthermore, each of these
terms corresponds to the variational lower bound for the
fixed-r case described in Section 5.1, and so each q(p|r)
factor can be updated with Eqs. (15)-(16).

To compute an update for q(r), we note that since it is a
distribution with finite support we can write its complete-
data conditional in exponential family form trivially via

p(r|p,D) ∝ exp{〈ν + tr(p,D), Ir〉}
tr(p,D)j ,

∑
k∈D ln p(p|k, r = j) + lnh(j, k)

and so from the results in Section 2.2 the natural gradient
of (17) with respect to the parameters of q(r) is

∇̃ν̃L = ν + Eq(p|r)q(x1:T )tr(p,D)− ν̃. (18)

Due to the base measure term h(j, k), to compute this up-
date requires evaluating the expected statistics of Eq. (13),
which require O(T 2N) time.

Therefore computing an exact SVI update on the q(r, p)
factors is expensive both because the HSMM messages
cannot be computed using the methods of Section 5.1 and
because given the messages the required statistics are ex-
pensive to compute. To achieve an update running time that
is linear in T , we propose to use a sample approximation
to q(x1:T ) inspired by the method developed in (Wang &
Blei, 2012). That is, we sample negative binomial HSMM
models from the distribution q(π)q(θ)q(r, p) and use the
embedding to generate a sample of x1:T under each model.
Using the message passing methods of Section 5.1, the first
state sequence sample for each model can be collected in
timeO(TNR+TN2), and additional state sequence sam-
ples from the same model can be collected in timeO(TN).

As discussed in Wang & Blei (2012), this sampling ap-
proximation does not optimize the variational lower bound
over q(x1:T ) and so it should yield an inferior objective
value. Indeed, while the optimal mean field update sets
q(x1:T ) ∝ exp{Eq[ln p(π, θ, ϑ, x1:T , ȳ1:T )]}, this update
approximates q(x1:T ) ∝ Eq[p(π, θ, ϑ, x1:T , ȳ1:T )]. How-
ever, Wang & Blei (2012) found this approximate update
yielded better predictive performance in some topic mod-
els, and provided an interpretation as an approximate ex-
pectation propagation (EP) update.

With the collected samples S , {x(k)
1:T }Sk=1, we set the

factor q̂(x1:T ) = 1
S

∑
x̂1:T∈S δx̂1:T

(x1:T ), where we use
the notation q̂(x1:T ) to emphasize that it is a sample-based
representation. It is straightforward to compute the expec-
tation over states in (18) by plugging in the sampled dura-
tions. The update to the parameters of q(r(i), p(i)) is

ν̃(i) ← (1− ρ)ν̃(i) + ρ(ν(i) + s · t̂(i)r )

ã(i,r) ← (1− ρ)ã(i,r) + ρ(a(i) + s · t̂(i,r)a )

b̃(i,r) ← (1− ρ)̃b(i,r) + ρ(b(i) + s · t̂(i,r)b )

t̂(i,r)a ,
1

S

∑
x̂∈S

∑
d∈D(i)(x̂)

(d− 1)

t̂
(i,r)
b ,

1

S

∑
x̂∈S

∑
d∈D(i)(x̂)

r

(t̂(i)r )r , (ã(i,r) + t̂(i,r)a − 1)Eq(p|r)[ln(p(i,r))]

+ (̃b(i,r) + t̂
(i,r)
b − 1)Eq(p|r)[ln(1− p(i,r))]

+
∑
x̂∈S

∑
d∈D(i)(x̂)

ln

(
d+ r − 2

d− 1

)

and where D(i)(x̂1:T ) denotes the set of durations of state
i in the sequence x̂1:T . The updates to the other factors are
as before but with expectations taken over q̂(x1:T ).

The methods presented in this section for HSMMs with
negative binomial durations can be extended in several
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ways. In particular, one can use similar methods to perform
efficient updates when state durations are modeled as mix-
tures of negative binomial distributions. Since each neg-
ative binomial can separately parameterize mean and vari-
ance, in this way one can generate a flexible and convenient
family of duration distributions analogous to the Gaussian
mixture model pervasive in density modeling.

6. Experiments
We conclude with a numerical study to validate these al-
gorithms and in particular measure the effectiveness of the
approximate updates proposed in Section 5.2. As a perfor-
mance metric, we evaluate an approximate posterior pre-
dictive density on held-out data, writing

p(ȳtest|ȳtrain) =

∫ ∫
p(ȳtest|πθ)p(π, θ|ȳtrain)dπdθ

≈ Eq(π)q(θ)p(ȳtest|π, θ)

and approximating the expectation by sampling models
from the variational distribution. To reproduce these fig-
ures, see the code in the supplementary materials.

First, we compare the performance of SVI and batch mean
field algorithms for the HDP-HMM. We sampled a 10-state
HMM with 2-dimensional Gaussian emissions and gener-
ated a dataset of 100 observation sequences of length 3000
each. We chose a random subset of 95% of the sequences
as training sequences and held out 5% as test sequences.
We repeated the fitting procedures 5 times with identical
initializations drawn from the prior, and we report the me-
dian performance with standard deviation error bars. The
SVI procedure made only one pass through the training set.
Figure 1(a) shows that the SVI algorithm produces fits that
are comparable in performance in the time it takes the batch
algorithm to complete a single iteration.

Similarly, we compare the SVI and batch mean field algo-
rithms for the HDP-HSMM with Poisson durations. Due to
the much greater computational complexity of HSMM in-
ference, we generated a set of 30 sequences of length 2000
each and used 90% of the sequences in the training set.
Figure 1(b) again demonstrates that the SVI algorithm can
fit such models in the time it takes the batch algorithm to
complete a single iteration.

Finally, we compare the performance of the exact SVI up-
date for the HSMM with that of the fast approximate up-
date proposed in Section 5. We again generated data us-
ing Poisson duration distributions, but we train models us-
ing negative binomial durations where p ∼ Beta(1, 1) and
r ∼ Uniform({1, 2, . . . , 10}). We generated 55 observa-
tion sequences of length 3000 and used 90% of the se-
quences in the training set. We compare the sampling al-
gorithm’s performance for several numbers of samples S.
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Figure 1. Synthetic numerical experiments.

Figure 1(c) shows that the approximate update from Sec-
tion 5 results in higher predictive performance than that of
the model trained with the exact update even using a single
sample. This performance is likely dataset-dependent, but
the experiment demonstrates that the approximate update
may be very effective in some cases.

7. Conclusion
This paper develops scalable SVI-based inference for
HMMs, HSMMs, HDP-HMMs, and HDP-HSMMs, and
provides a technique to make Bayesian inference in nega-
tive binomial HSMMs much more practical. These models
are widely applicable to time series inference, so these al-
gorithms and our code may be immediately useful to the
community.
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Bernardo, José M and Smith, Adrian FM. Bayesian theory, vol-
ume 405. Wiley. com, 2009.

Bishop, Christopher M and Nasrabadi, Nasser M. Pattern recog-
nition and machine learning, volume 1. springer New York,
2006.
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