
Supplement:

Memory (and Time) Efficient Sequential Monte

Carlo

1 Notation used in the supplement and more
background on standard SMC

Let Xr = E1 × . . . Er be the target space at each generation (SMC iteration)
r ∈ {1, . . . , R} with corresponding product σ-algebra Fr. We denote the target
measures for each generation by πr : Fr → R+. Given a test function φ and a
measure π, we denote by πφ the integral of φ under π, πφ =

∫
φ dπ.

The two main inference questions we are interested in are to compute the
data likelihood (normalization), and to compute expectations under the normal-
ized measure. To succinctly study the approximation of both of these quantities,
we introduce the following notations: given any positive measure λ on X , we
write ‖λ‖ = λ(X ) and λ̄(A) = λ(A)/‖λ‖. Note that with this notation, pos-
terior expectations take the form π̄Rφ, and the data likelihood is πR(XR) or,
equivalently, πRφ1, where φ1 ≡ 1. Note that our notation in the supplement
is slightly different than in the main paper, where the notation π was already
assumed to be normalized.

We assume that the target distribution is known only up to an unnormalized
density, γr (the pointwise product of a prior times a likelihood in Bayesian
applications) and we assume that a regular proposal distribution νr,x(A) with
density qx(y) is provided (and we drop the dependency on r to simplify the
notation). In order to concisely describe our method, we define the following
random operators on measures:

Definition 1 Given the arbitrary positive measure λ, the output of the random
operator resK λ (respectively propK λ) is a new measure defined as follows: for
any test function φ,

(resK λ)(φ) = ‖λ‖ 1

K

K∑
k=1

φ(Sk),

(propK λ)(φ) = ‖λ‖ 1

K

K∑
k=1

w(Sk, S
′
k)φ(S′k),
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where Si ∼ λ̄, and S′i|Si ∼ νSi independently, and w is the standard SMC
weight formula for state space models:

wr(x, y) =
γr(y)

γr−1(x)

1

qx(y)
. (1)

With this notation, the standard particle filter described in the Background
section can be describe succinctly. We call the output of each generation of
the filter a particle population, formally a discrete measure, πr,K defined on the
product space Xr. This measure can be written as:

πr,K = propK πr−1,K ,

since propK incorporates both the resampling step (via the sampling of the Si
from π̄r−1,K), and the proposal step (via the sampling of S′i from νSi). Here K
is constant and is a tuning parameter, the number of particle, which controls
the accuracy of the method.

2 Measure-theoretic formulation of IPSMC

Note that with the notation of the previous section, our algorithm can be suc-
cinctly described as follows:

πIP
r,K = resK

(
propN(K,M) π

IP
r−1,K

)
,

where M and N(K,M) are described in the paper.
There are two resampling stages in the above expression, one in the form of

the outer res operator, the other one included inside prop. Note that these two
resampling stages are needed: since at iteration r we do not know in advance
how many times the output discrete measure will be sampled from at iteration
r + 1, we use the resK operator to ensure that the memory bound K will be
respected no matter what is the behavior at iteration r + 1. While this would
be detrimental in a standard particle filter, this is not a problem in our scheme
since the number of proposal calls at each iteration is suitably expanded via
the stopping time N . This comes at a cost of a theoretically higher running
time, but as our experiments demonstrate, in practice the running time of our
method is competitive with standard SMC methods due to the lower frequency
of memory writes.

3 Stream-based resampling

In the second task group, it is useful to identify which of the N implicit particles
are selected by the contraction operator in a streaming fashion.

To do this, first recall that samplingK times from a multinomial is equivalent
to arranging the normalized weights into a partition of a stick of unit length,
to sample K independent uniform random variables and to look how many
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variables fall in each stick segment. Note that equivalently, we can generate the
spacings T1, T2, . . . , TK between consecutive uniform variables.

In other words, if V1, V2, . . . , VK are independent uniform random variables,
and V(1), V(2), . . . , V(K) are the sorted uniforms, then T1 = V(1), and Tk = V(k)−
V(k−1) for k ≥ 2. Note that Tk|T1, . . . , Tk−1 can be easily simulated as (1 −∑k−1
j=1 Tj)Bk, where Bk ∼ Beta(1,K − k + 1).
See Algorithm 3 to see how this method is integrated in Task Group 2.

4 Algorithms

Algorithm 1 : IP-SMC

πIP
0,K ← init()
z ← 1
for r = 1, 2, . . . , R do
U·, U

′
· ← seeds(r)

ξ ← task-group-1(πIP
r−1,K ,K, U·)

(πIP
r,K , Ir, zr)← task-group-2(πIP

r−1,K ,K, U·, ξ, φr)
z ← z × zr

end for
return (z, I1, . . . , IR)

Algorithm 2 : task-group-1(πIP
r−1,K ,K, U·)

ξ ← (0, 0, 0)
for n = 1, 2, . . . , N∗ do
xr−1 ∼ πIP

r−1,K [U2n] {The bracket notation means that the seed of the
sampling is fixed by U2k}
xr|xr−1 ∼ νxr−1

[U2n−1]
w ← w(xr−1, xr)
ξ ← ξ + (w0, w1, w2) {Note that higher, but still finite dimensional terms
might be needed in the context of a large number of particles (see Section 3.4
of the main text)}
if bin-approx(m) > αK then

return ξ
end if

end for
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Algorithm 3 : task-group-2(πIP
r−1,K ,K, U·, ξ, φr)

j ← 1
t← 0 {sum of uniform spacings visited so far}
s← 0 {sum of weights visited so far}
I ← 0 {Monte Carlo partial sum}
z ← 0 {Estimate of the normalization}
for n = 1, 2, . . . , ξ0 do
xr−1 ∼ πIP

r−1,K [U2n] {The bracket notation means that the seed of the
sampling is fixed by U2k}
xr|xr−1 ∼ νxr−1

[U2n−1]
w ← w(xr−1, xr)/ξ1
I ← I + w × π(xr)
z ← z + w × ξ1/ξ0
r ← s+ w
for k ≤ K do
t′ ← t+ sample-interval(k,K, t) {See Section 3.}
if t′ < r then

Add (xr, 1/K) to πIP
r,K

k ← k + 1
t← t′

else
Break inner loop

end if
end for
s← r

end for
return (πIP

r,K , I, z)

Algorithm 4 : bin-approx(ξ)

return ξ0 −
(
ξ0
2

)
ξ2

(ξ1)2 {See Section 3.4 of the main text for higher order

approximations}

5 Proofs

5.1 Expectation

We now prove Proposition 1.
Proof: Let Tn be the number of times particle n is sampled. Then, we have

that the number of distinct samples is:

D := |{S1, . . . , SK}|

=

N∑
n=1

1(Tn > 0).
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Using P(Tn > 0) = 1− (1− w̄n)K , we can write the expected value of D as:

ED = E
N∑
n=1

Tn =

N∑
n=1

ETn

=

N∑
n=1

P(Tn = 1)

=

N∑
n=1

1− (1− w̄n)K

= N −
N∑
n=1

(1− w̄n)K .

5.2 Concentration Inequality

We also provide here a basic concentration inequality showing that the above
expectation is a reasonable approximation of the realized number of unique
particles after resampling.

Proposition 2 Let Yk denote the indicator that sample Sk ∈ (1, . . . , N) picks

a particle not yet picked by any samples from 1, 2, . . . , k − 1. Let S =
K∑
k=1

Yk,

the number of distinct particles sampled from a multinomial distribution. Then
Var(S) ≤ 3K whenever maxi w̄i < 1/2. And therefore using Chebyshev’s in-
equality, for ε > 0,

P (|S − ES| ≥ εES) ≤ 3K

ε2(ES)2

Proof:
We can express the variance as:

Var(S) = Var

(
K∑
k=2

Yk

)
=

K∑
k=2

Var(Yk) + 2

K∑
k=2

K−k∑
∆=1

Cov(Yk, Yk+∆)

Using P(Yk = 1) =
∑n
i=1 w̄i(1− w̄i)k−1, we can bound the covariance:
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Cov(Yk, Yk+∆) = EYkYk+∆ − EYkEYk+∆

=
∑
i1 6=i2

(1− w̄i1 − w̄i2)k−1w̄i1(1− w̄i2)∆−1w̄i2

−
∑
i1,i2

(1− w̄i1)k−1w̄i1(1− w̄i2)k+∆−1w̄i2

=
∑
i1,i2

w̄k+1
i1

w̄k+1
i2

(1− w̄i2)∆−1 −
n∑
i=1

(1− 2w̄i)
k−1(1− w̄i)∆−1w̄2

i

≤
∑
i1,i2

w̄i1w̄i2(w̄∗)k = (w̄∗)k

the inequality from the second last line to the last line is true because the
second term in the second last line is greater than equal to 0. Therefore,

2

K∑
k=2

K−k∑
∆=1

Cov(Yk, Yk+∆) ≤
∑

2≤k 6=k′ 6=K

(w̄∗)min{k,k′}

≤ K
K∑
k=2

(w̄∗)k

≤ KC ′

Here, we can use C ′ = 2 using the assumption that maxi w̄i < 1/2.
Therefore, we have Var(S) ≤ K+KC ′ and setting C = 1 +C ′, we have the

desired result.
Next, we show that if N∗ > N(K) and K > 10, the condition maxi w̄i < 1/2

is automatically satisfied, by construction of the stopping time:
Proof: Suppose the contrary. Then, since the large weight is sampled at

least half of the time in expectation, we have:

ψ((w1, . . . , wN ),K) ≤ ceiling

(
K

2

)
+ 1.

But on the other hand, the stopping criterion implies that

ψ((w1, . . . , wN+1),K) > αK.

This is a contradiction for α = 1 − (1 − 1/K)K ≈ 1 − exp(−1) and K > 10,
since:

|ψ((w1, . . . , wN ),K)− ψ((w1, . . . , wN+1),K| ≤ 1.
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5.3 Consistency

Lemma 3 For any positive measure λ with ‖λ‖ <∞, we have

E[(propK λ)φ] = (propλ)φ, (2)

E[(resK λ)φ] = λφ, (3)

where:

(propλ)φ =

∫
λ( dx)

∫
ν+
x ( dy)w(x, y)φ(y).

Proof: We obtain Equation (2) by linearity of expectation:

E[(propK λ)φ] = ‖λ‖K
K

E[w(S1, S
′
1)φ(S′1)]

= ‖λ‖
∫
λ̄( dx)

∫
νx( dy)w(x, y)φ(y) = (propλ)φ.

Equation (3) follows by the same argument.

Lemma 4 For any positive measure λ with ‖λ‖ <∞, we have:

E [(propK λ)φ− (propλ)φ]
2 ≤ (C1C2)2‖λ‖2

K
(4)

E [(resK λ)φ− λφ]
2 ≤ C2

1‖λ‖2

K
(5)

Proof: From Lemma 3, we can rewrite the left-hand sides as variances of
sums. Next, using independence of (Sk, S

′
k) and (Sk′ , S

′
k′), k 6= k′ in the defini-

tion of propK , we have:

E [(propK λ)φ− (propλ)φ]
2

=
‖λ‖2

K
Var[w(Sk, S

′
k)φ(S′k)] ≤ (C1C2)2‖λ‖2

K
.

Equation (5) follows by the same argument.

Corollary 5 For any stopping time N(K) with N(K) ≥ K, we have:

E
[
(propN(K) λ)φ− (propλ)φ

]2
≤ (C1C2)2‖λ‖2

K
(6)

Note that the condition N(K) ≥ K is satisfied when N(K) = N(K,αK)
with α = 1 − (1 − 1/K)K ≈ 1 − exp(−1): in this case, we will have N(K)
minimized when the weights are uniform, in which case Proposition 2 implies
that N(K) = K.
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Proof: Using the assumption N(K) ≥ K and Lemma 4, we get:

E
[
(propN(K) λ)φ− (propλ)φ

]2
=

∞∑
n=K

P(N(K) = n) E [(propn λ)φ− (propλ)φ]
2

≤
∞∑
n=K

P(N(K) = n)
(C1C2)2‖λ‖2

n

≤
∞∑
n=K

P(N(K) = n)
(C1C2)2‖λ‖2

K

=
(C1C2)2‖λ‖2

K

Next, the following lemma follows from Lemma 9 in [3]:

Lemma 6 For all r, propπr = πr+1.

Lemma 7 If for all bounded measurable φ,

πr,Kφ
L2

−→ πrφ, (7)

then we also have:

(propπr,K)φ
L2

−→ (propπr)φ. (8)

Moreover, by Lemma 6 the right-hand side of Equation (8) is equal to πr+1φ.

Proof: Let φ̃(x) =
∫
A
ν+
x ( dy)w(x, y)φ(y). As w < C2, |φ| < C implies |φ̃′| <

CC2, we can use the test function φ̃ in Equation (7) to obtain Equation (8).
We can now prove the main proposition:
Proof: We proceed by induction, showing for r ≥ 0, and for all bounded

φ, we have πIP
r,Kφ

L2

−→ πrφ. The base case is trivial, since πIP
0,K and π0 are equal

to a Dirac delta on the same atom. To prove the induction hypothesis, we
first decompose the L2 norm using Minkowski inequality, and control each term
separately:

E1/2

[
πIP
r+1,Kφ− πr+1φ

]2

≤ E1/2

[
πIP
r+1,Kφ−

(
propN(K) π

IP
r,K

)
φ

]2

(9)

+ E1/2

[(
propN(K) π

IP
r,K

)
φ−

(
propπIP

r,K

)
φ

]2

(10)

+ E1/2

[ (
propπIP

r,K

)
φ− πr+1φ

]2

(11)
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For the first term, we have,

Equation (9) = E1/2

[(
resK

(
propN(K) π

IP
r,K

))
φ−

(
propN(K) π

IP
r,K

)
φ

]2

= E1/2

[
resK λKφ− λKφ

]2

=
(
E
[
E
[
((resK λK)φ− λKφ)

2 |λK
]])1/2

≤
(
E
[
C2

1‖λK‖2

K

])1/2

≤ C1C
r
2√

K
,

where λK = propN(K) π
IP
r,K , and we use Lemma 4 to obtain the bound in the

penultimate line.
For the second term:

Equation (10) =

(
E
[
E
[((

propN(K) π
IP
r,K

)
φ−

(
propπIP

r,K

)
φ
)2

|πIP
r,K

]])1/2

≤ C1C
r
2√

K
,

where we have used Corollary 5.
Finally, by Lemma 7 and the induction hypothesis, Equation (11) also goes

to zero as K →∞.

6 Details on Experiments

6.1 Ising Example Posterior Estimates

In this section, we show the posterior estimates of P (X1 = +1) for the Ising
model experiment described in Section 4.1 of the main paper. Shown in Figure 1
is an average over three different runs; it can be seen that IPSMC (red) and the
standard SMC (blue) estimates approach to the true value of 0.5.

6.2 Phylogenetic Data Simulation

In this section, we explain the data simulation process for the phylogenetic
experiments in Section 4.2 of the main paper.

The data generation process requires as an input the number of taxa N and
the number of sites S. It also requires sampling of the phylogenetic tree that
defines the ancestral relationship between the N taxa as well as the rate matrix
Q, which describes the evolutionary process that takes place along the branches
of the tree.
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Figure 1: Posterior estimates of P (X1 = +1) obtained from three different runs
(averaged) of the Ising model experiment for IPSMC (red) and the standard
SMC (blue). It can be seen that both methods approach to the true value of
0.5.

First, we sample a binary tree t along with the branch lengths, that has N
leaves from the coalescent [2]. We refer to t as a phylogenetic tree. Then, we fix
a rate matrix Q using HKY model [1] and compute the stationary distribution
by solving for π:

πQ = 0

To generate data in the phylogenetic experiments in Section 4.2 of the main
paper, we sample a rate matrix according to the HKY model and fix it for each
of the 5 runs.

Once we are equipped with the phylogenetic tree t and a CTMC defined by
Q and π, we generate the sequences for each node in t in the pre-order traversal.
One way to view the pre-order traversal of the tree is as a node labelling process
by the integers i ∈ {1, . . . , 2N − 1} (where 2N − 1 is the total number of nodes
in the tree). For example, the root node would be labelled 1 whereas the right
most leaf node would be labelled 2N − 1.

For each node i, let us denote its parent node by pai. Furthermore, let Xi(s)
denote the sequence at site s of node i and let Xpai

(s) denote the sequence at
site s of node pai.

When i = 1, we generate the sequence Xi(s) ∼ Multinomial(π) for s ∈
{1, . . . , S}. For i ∈ {2, . . . , 2N − 1}, we compute the transition probability
matrix by exponentiating the rate matrix,

P (bi) = eQbi

where bi denotes the branch length from node i to its parent pai. Then for
each s ∈ {1, . . . , S},
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Xi(s)|Xpai
(s) ∼ Multinomial(PXpai(s)

,·(bi))

where PXpai(s)
,·(bi) denotes the row of the transition rate matrix correspond-

ing to state Xpai
(s).
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