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Abstract
Representing examples in a way that is compati-
ble with the underlying classifier can greatly en-
hance the performance of a learning system. In
this paper we investigate scalable techniques for
inducing discriminative features by taking ad-
vantage of simple second order structure in the
data. We focus on multiclass classification and
show that features extracted from the generalized
eigenvectors of the class conditional second mo-
ments lead to classifiers with excellent empirical
performance. Moreover, these features have at-
tractive theoretical properties, such as inducing
representations that are invariant to linear trans-
formations of the input. We evaluate classifiers
built from these features on three different tasks,
obtaining state of the art results.

1. Introduction
Supervised learning has been a great success story for ma-
chine learning, both in theory and in practice. In the-
ory, we have a good understanding of the conditions under
which supervised learning can succeed (Vapnik, 1998). In
practice, supervised learning approaches are profitably em-
ployed in many domains, from movie recommendation to
speech and image recognition (Koren et al., 2009; Hinton
et al., 2012a; Krizhevsky et al., 2012). The success of all
of these systems crucially hinges on the compatibility be-
tween the model and the representation used to solve the
problem.

For some problems, the kinds of representations and mod-
els that lead to good performance are well-known. In text
classification, for example, unigram and bigram features
together with linear classifiers are known to work well for
a variety of related tasks (Halevy et al., 2009). For other
problems, such as drug design, speech, and image recog-
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nition, far less is known about which combinations are ef-
fective. This has fueled interest in methods that can learn
the appropriate representations directly from the raw sig-
nal, with techniques such as dictionary learning (Mairal
et al., 2008) and deep learning (Krizhevsky et al., 2012;
Hinton et al., 2012a) achieving state of the art performance
in many important problems.

In this work, we explore conceptually and computation-
ally simple ways to create discriminative features that can
scale to a large number of examples, even when data is dis-
tributed across many machines. Our techniques are not a
panacea. They are exploiting simple second order structure
in the data and it is very easy to come up with sufficient
conditions under which they will not give any advantage
over learning using the raw signal. Nevertheless, they em-
pirically work remarkably well.

Our setup is the usual multiclass setting where we are given
labeled data {xi, yi}ni=1, sampled iid from a distribution
D on Rd × [k], and we need to come up with a classifier
h : Rd → [k] with low generalization error PD(h(x) 6= y).
Abusing notation, we will sometimes use y to refer to the
one hot encoding of y that identifies each class with one of
the vertices of the standard k−1-simplex. To keep the focus
on the quality of our feature representation we will restrict
ourselves to h being linear, such as a multiclass linear SVM
or multinomial logistic regression. We suspect representa-
tions that improve the performance of linear classifiers will
also beneficially compose with nonlinear techniques.

2. Method
One of the simplest possible statistics involving both fea-
tures and labels is the matrix E[xy>], which in multiclass
classification is the collection of class-conditional mean
feature vectors. This statistic has been thoroughly ex-
plored, e.g., Fisher LDA (Fisher, 1936) and Sliced Inverse
Regression (Li, 1991). However, in many practical appli-
cations we expect that the data distribution contains much
more information than that contained in the first moment
statistics. The natural next object of study is the tensor
E[x⊗ x⊗ y].



Discriminative Features via Generalized Eigenvectors

In multiclass classification, the tensor E[x⊗ x⊗ y] is sim-
ply a collection of the conditional second moment matrices
Ci = E[xx>|y = i]. There are many standard ways of
extracting features from these matrices. For example, one
could try per-class PCA (Wold & Sjostrom, 1977) which
will find directions that maximize v>E[xx>|y = i]v =
E[(v>x)2|y = i], or VCA (Livni et al., 2013) which will
find directions that minimize the same quantity. The sub-
tlety here is that there is no reason to believe that these
directions are specific to class i. In other words, the di-
rections we find might be very similar for all classes and,
therefore, not be discriminative.

A simple alternative is to work with the quotient

Rij(v) =
E[(v>x)2|y = i]

E[(v>x)2|y = j]
=
v>Civ

v>Cjv
, (1)

whose local maximizers are the generalized eigenvectors
solving Civ = λCjv.1 Efficient and robust routines for
solving these types of problems are part of mature software
packages such as LAPACK.

Since objective (1) is homogeneous in v, we will assume
that each eigenvector v is scaled such that v>Cjv = 1.
Then we have that v>Civ = λ, i.e. on average, the squared
projection of an example from class i on v will be λ while
the squared projection of an example from class j will be
1. As long as λ is far from 1, this gives us a direction along
which we expect to be able to discriminate the two classes
by simply using the magnitude of the projection. Moreover,
if there are many eigenvalues substantially different from 1
all associated eigenvectors can be used as feature detectors.

2.1. Useful Properties

The feature detectors resulting from maximizing equation
(1) have two useful properties which we list below. For
simplicity we state the results assuming full rank exact con-
ditional moment matrices, and then discuss the impact of
regularization and finite samples.

Proposition 1. (Invariance) Under the above assumptions,
the embedding v>x is invariant to invertible linear trans-
formations of x.

Proof. Let A ∈ Rd×d be invertible and x′ = Ax be
the transformed input. Let Cm = E[xx>|y = m] be
the second moment matrix given y = m for the origi-
nal data with Cholesky factorization Cm = LmL

>
m. For

the transformed data, the conditional second moments are
E[x′x′>|y = m] = AE[xx>|y = m]A> = ACmA

>

1An alternative would be to use the covariance matrix instead
of the second moment in the denominator. This leads to an offset
term in our feature detector that sometimes leads to better empir-
ical results. For ease of exposition we do not explore this in the
remainder of this paper.

and the corresponding generalized eigenvector v′ satisfies
ACiA

>v′ = λACjA
>v′. Letting v′ = A−>L−>j u′ we

see that u′ also satisfies L−1j CiL
−>
j u′ = λu′. Finally,

the embedding involves only v′>x′ = u′>L−1j A−1Ax =

u>L−1j x which is the same as the embedding for the origi-
nal data.

It is worth pointing out that the results of some popular
methods, such as PCA, are not invariant to linear trans-
formations of the inputs. For such methods, differences
in preprocessing and normalization can lead to vastly dif-
ferent results. The practical utility of an “off the shelf”
classifier is greatly improved by this invariance, which pro-
vides robustness to data specification, e.g., differing units
of measurement across the original features.

Proposition 2. (Diversity) Two feature detectors v1 and
v2 extracted from the same ordered class pair (i, j) have
uncorrelated responses E[(v>1 x)(v>2 x)|y = j] = 0.

Proof. This follows from the orthogonality of the eigen-
vectors in the induced problem L−1j CiL

−>
j u = λu

(c.f. proof of Proposition 1) and the connection v =
L−>j u. If u1 and u2 are eigenvectors of L−1j CiL

−>
j then

0 = u>1 u2 = v>1 LjL
>
j v2 = v>1 E[xx>|y = j]v2 =

E[(v>1 x)(v>2 x)|y = j].

Diversity indicates the different generalized eigenvectors
per class pair provide complementary information, and that
techniques which only use the first generalized eigenvector
are not maximally exploiting the data.

2.2. Finite Sample Considerations

Even though we have shown the properties of our method
assuming knowledge of the expectations E[xx>|y = m],
in practice we estimate these quantities from our training
samples. The empirical average

Ĉm =

∑n
i=1 I[yi = m]xix

>
i∑n

i=1 I[yi = m]
(2)

converges to the expectation at a rate of O(n−1/2). Here
and below we are suppressing the dependence upon the
dimensionality d, which we consider fixed. Typical fi-
nite sample tail bounds become meaningful once n =
O(d log d) (Vershynin, 2010).

Given Ĉm = Cm + Em with ||Em||2 = O(n−1/2), we
can use results from matrix perturbation theory to establish
that our finite sample results cannot be too far from those
obtained using the expected values. For example, if the
Crawford number

c(Ci, Cj)
.
= min
||v||=1

(v>Civ)2 + (v>Cjv)2 > 0,
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Algorithm 1 Generalized Eigenvectors for Multiclass
Require: S = {(xi, yi)}ni=1, θ ≥ 0 and γ ≥ 0

1: F ← ∅
2: for (i, j 6= i) ∈ {1, . . . , k}2 do
3: Solve ĈiV = (Ĉj + γ

d Trace(Ĉj)I)V Λ
4: F ← F ∪ {Vq|Λqq ≥ θ}
5: end for
6: ψv,α,δ(x)

.
= max(0, δv>x)α/2

7: φ(x)
.
= [ψv,α,δ(x)|v, α, δ ∈ F × {1, 2, 3} × {−1, 1}]

8: w = MultiLogit({(φ(x), y)|(x, y) ∈ S})

and the perturbations Ei and Ej satisfy

||Ei||22 + ||Ej ||22 < c(Ci, Cj),

then (Golub & Van Loan, 2012) for all q ∈ [d]

tan(| tan−1(λq)− tan−1(λ̂q)|) ≤ O
(

1√
nc(Ci, Cj)

)
,

where λq, λ̂q are the q-th generalized eigenvalues of the
matrix pairs Ci, Cj and Ĉi, Ĉj respectively. Similar results
apply to the sine of the angle between an estimated gener-
alized eigenvector and the true one (Demmel et al., 2000)
Section 5.7.

2.3. Regularization

An additional concern with finite samples is that Ĉm may
not be full rank as we have assumed until now. In partic-
ular, if there are fewer than d examples in class m, then
Ĉm is guaranteed to be rank deficient. When such a matrix
appears in the denominator of (1), estimation of the eigen-
vectors can be unstable and overly sensitive to the sample
at hand. A common solution (Platt et al., 2010) is to regu-
larize the denominator matrix by adding a multiple of the
identity to the denominator, i.e., maximizing

Rγij(v) =
v>Ĉiv

v>(Ĉj + γI)v
, (3)

which is equivalent to maximizing equation (1) with an ad-
ditional upper-bound constraint on the norm of v. We typi-
cally set γ to be a small multiple of the average eigenvalue
of Ĉj (Friedman, 1989) which can be easily obtained as the
trace of Ĉj divided by d. In Section 4 we find this strategy
empirically effective.

2.4. An Algorithm

We are left with specifying a full algorithm for multiclass
classification. First we need to specify how to use the
eigenvectors {vi}. The eigenvectors define an embedding
for each example x using the projection magnitudes {v>i x}

as new coordinates. However the embedding is linear,
therefore composition with a linear classifier is equivalent
to learning a linear classifier in the original space, perhaps
with a different regularization. This motivates the use of
nonlinear functions of the projection magnitude.

To construct nonlinear maps, we can get inspiration from
the optimization criterion in equation (1), i.e., the ratio
of expected projection magnitudes conditional on different
class labels. For example, we could use a nonlinear map
such as (v>x)2. This type of nonlinearity can be sensitive
(for example, it is not Lipschitz) so in practice more robust
proxies can be used such as |v>x| or even |v>x|1/2.2 In
principle, smoothing splines or any other flexible set of uni-
variate basis functions could be used. In our experiments
we simply fit a piecewise cubic polynomial on |v>x|1/2.
The polynomial has only two pieces, one for v>x > 0 and
one for v>x ≤ 0. We briefly experimented with interaction
terms between projection magnitudes, but did not find them
beneficial.

Additionally, we need to address from which class pairs
to extract eigenvectors. A simple and empirically effective
approach, suitable when the number of classes is modest, is
to just use all ordered pairs of classes. This can be wasteful
if two classes are never confused. The alternative, how-
ever, of leaving out a pair (i, j) is that the classifier might
have no way of distinguishing between these two classes.
Since we do not know upfront which pairs of classes will
be confused, our brute force approach is just a safe way
to endow the classifier with enough flexibility to deal with
any pair of classes that could potentially be confused. Of
course, as the number of classes grows, this brute force ap-
proach becomes less viable both computationally (due to
the quadratic increase in generalized eigenvalue problems)
and statistically (due to the increase in the number of fea-
tures for the final classifier). We discuss issues regarding
large numbers of classes in Section 5.

Finally, the generalized eigenvalues can guide us in pick-
ing a subset of the d generalized eigenvectors we could
extract from each class pair, i.e., generalized eigenvalues
are useful for feature selection. A generalized eigenvec-
tor v with eigenvalue λ has E[(v>x)2|y] equal to 1 for
the denominator class y = j and equal to λ for the nu-
merator class y = i. Therefore, eigenvalues far from 1
correspond to highly discriminative features. Similar to
(Platt et al., 2010), we extract the top few eigenvectors,
as top eigenspaces are cheaper to compute than bottom
eigenspaces. To guard against picking non-discriminative
eigenvectors, we discard those whose eigenvalues are less
than a threshold θ > 1.

2 These choices are simple and yield only slightly worse re-
sults than what we report in our experiments.
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Method Signal Noise
PCA E[xx>] I
VCA I E[xx>]

Fisher LDA Ey[E[x|y]E[x|y]>]
∑
y Cov[x|y]

SIR
∑
y E[w|y]E[w|y]> I

Oriented PCA E[xx>] E[zz>]
Our method E[xx>|y = i] E[xx>|y = j]

Table 1. Table of related methods (assuming E[x] = 0) for finding
directions that maximize the signal to noise ratio. Cov[x|y] refers
to the conditional covariance matrix of x given y, w is a whitened
version of x, and z is any type of noise meaningful to the task at
hand.
The above observations lead to the GEM procedure out-
lined in Algorithm 1. Although Algorithm 1 has proven
sufficiently versatile for the experiments described herein,
it is merely an example of how to use generalized eigen-
value based features for multiclass classification. Other
classification techniques could benefit from using the raw
projection values without any nonlinear manipulation, e.g.,
decision trees; additionally the generalized eigenvectors
could be used to initialize a neural network architecture as
a form of pre-training.

We remark that each step in Algorithm 1 is highly amenable
to distributed implementation: empirical class-conditional
second moment matrices can be computed using map-
reduce techniques, the generalized eigenvalue problems
can be solved independently in parallel, and the logistic re-
gression optimization is convex and therefore highly scal-
able (Agarwal et al., 2011).

3. Related Work
Our approach resembles many existing methods that work
by finding eigenvectors of matrices constructed from data.
One can think of all these approaches as procedures for
finding directions v that maximize a signal to noise ratio,
with symmetric matrices S and N chosen such that the
quadratic forms v>Sv and v>Nv represent the signal and
the noise, respectively, captured along direction v,

R(v) =
v>Sv

v>Nv
. (4)

In Table 1 we present many well known approaches that
could be cast in this framework. Principal Component
Analysis (PCA) finds the directions of maximal variance
without any particular noise model. The recently proposed
Vanishing Component Analysis (VCA) (Livni et al., 2013)
finds the directions on which the projections vanish so it
can be thought as swapping the roles of signal and noise
in PCA. Fisher LDA maximizes the variability in the class
means while minimizing the within class variance. Sliced
Inverse Regression first whitens x, and then uses the sec-
ond moment matrix of the conditional whitened means as

Figure 1. Pictures of the top 5 generalized eigenvectors for
MNIST for class pairs (3, 2) (top row), (8, 5) (second row), (3, 5)
(third row), (8, 0) (fourth row), and (4, 9) (bottom row) with
γ = 0.5. Filters have large response on the first class and small
response on the second class. Best viewed in color.

the signal and, like PCA, has no particular noise model.
Finally, oriented PCA (Diamantaras & Kung, 1996; Platt
et al., 2010) is a very general framework in which the noise
matrix can be the correlation matrix of any type of noise z
meaningful to the task at hand.

By closely examining the signal and noise matrices, it is
clear that each method can be further distinguished accord-
ing to two other capabilities: whether it is possible to ex-
tract many directions, and whether the directions are dis-
criminative. For example, PCA and VCA can extract many
directions but these are not discriminative. In contrast,
Fisher LDA and SIR are discriminative but they work with
rank-k matrices so the number of directions that could be
extracted is limited by the number of classes. Furthermore
both of these methods lose valuable fidelity about the data
by using the conditional means.

Oriented PCA is sufficiently general to encompass our
technique as a special case. Nonetheless, to the best of our
knowledge, the specific signal and noise models in this pa-
per are novel and, as we show in Section 4, they empirically
work very well.

4. Experiments
4.1. MNIST

We begin with the MNIST database of handwritten dig-
its (LeCun et al., 1998), for which we can visualize the
generalized eigenvectors, providing intuition regarding the
discriminative nature of the computed directions. For each
of the ten classes, we estimated Cm = E[xx>|y = m] us-
ing (2) and then extracted generalized eigenvectors for each
class pair (i, j) by solving Ĉiv = λ(γd Trace(Ĉj)I+ Ĉj)v.
Figure 1 shows a sample of results from this procedure for
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Figure 2. Boxplot of the projection onto the first generalized
eigenvector for class pair (3, 2) across the MNIST training set
grouped by label. Squared projection magnitude on 2s is on aver-
age unity, whereas on 3s it is the eigenvalue. Large responses can
appear in other classes (e.g., 5s and 8s), but this is not guaranteed
by construction.

five class pairs (one in each row) and γ = 0.5. In the top
row we use class pair (3, 2) and we observe that the eigen-
vectors are sensitive to the circular stroke of a typical 3
while remaining insensitive to the areas where 2s and 3s
overlap. Similar results are seen in the second and third
rows where we use class pairs (8, 5) and (3, 5): the strokes
we find are along areas used by the first class and mostly
avoided by the second class. In the fourth row we use class
pair (8, 0). Here we observe two patterns. First, a dot in
the center that avoids the 0s. The other 4 detectors consist
of positive (red) and negative (blue) strokes arranged in a
way that would cancel each other if we take the inner prod-
uct of the detector with a radially symmetric pattern such
as a 0. Similarly in the bottom row with class pair (4, 9),
the detector attempts to cancel the horizontal stroke corre-
sponding to the top of the 9, where a typical 4 would be
open.

Figure 2 shows for each of the ten classes the distribution of
values obtained by projecting the training examples in that
class onto the first eigenvector for class pair (3, 2), i.e., the
top left image in Figure 1. The projection pattern inspires
two comments. First, while the magnitude of the projec-
tion is itself discriminative for distinguishing between 2s
and 3s, there is additional information in knowing the sign
of the projection. This motivates our particular choice of
nonlinear expansion in Algorithm 1. Second, the detector
is discriminative for class 3 vs. class 2 as per design, but
also useful for distinguishing other classes from 2s. How-
ever certain classes such as 1s and 7s would be completely
confused with 2s were this the only feature. The number
of classes in MNIST is modest (k = 10) so we can easily
afford to extract features for all k(k− 1) class pairs for ex-
cellent discrimination. For problems with a large number

Method Test Errors
Random 283
Dropout 120

DropConnect 112
GEM 108

deep GEM 96
Maxout 94

Table 2. Test errors on MNIST. All techniques are permutation
invariant and do not augment the training set.

of classes, however, we need to carefully pick the subprob-
lems we need to solve so that the resulting set of features is
discriminative, diverse, and complete. We revisit this topic
in Section 5.

Table 2 contains results for algorithm 1 on the MNIST test
set. To determine the hyperparameter settings γ and θ, we
held out a fraction of the training set for validation. Once
γ and θ were determined, we trained on the entire training
set. We also include baseline results with (an equal number
of) randomly generated directions to help isolate the con-
tribution of the generalized eigenvector extraction from the
subsequent nonlinear basis expansion. This is denoted as
“Random”.

For “deep GEM” we applied GEM to the representation
created by GEM, i.e., line 7 of Algorithm 1. Because of the
intermediate nonlinearity this is not equivalent to a single
application of GEM, and we do observe an improvement
in generalization. Subsequent recursive compositions of
GEM degrade generalization, e.g., 3 levels of GEM yields
110 test errors. We would like to better understand the con-
ditions under which composing GEM with itself is benefi-
cial.

Our results occupy an intermediate position amongst state
of the art results on MNIST. For comparison we include re-
sults from other permutation-invariant methods from (Wan
et al., 2013) and (Goodfellow et al., 2013). These meth-
ods rely on generic non-convex optimization techniques
and face challenging scaling issues in a distributed set-
ting (Dean et al., 2012). While maximization of the
Rayleigh quotient (1) is non-convex, mature implementa-
tions are computationally efficient and numerically robust.
The final classifier is built using convex techniques and our
pipeline is particularly well suited to the distributed setting,
as discussed in Section 5.

4.2. Covertype

Covertype is a multiclass data set whose task is to pre-
dict one of 7 forest cover types using 54 cartographic vari-
ables (Blackard & Dean, 1999). RBF kernels provide state
of the art performance on Covertype, and consequently it
has been a benchmark dataset for fast approximate ker-
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Method Test Error Rate
GEM 12.9%
RFF 12.7%

deep GEM 9.8%
GEM + RFF 8.4%

RBF kernel (exact) 8.8%

Table 3. Test error rates on Covertype. The RBF kernel result is
from (Jose et al., 2013) where they also use a 90%-10% (but dif-
ferent) train-test split.

nel techniques (Rahimi & Recht, 2007; Jose et al., 2013).
Here, we demonstrate that generalized eigenvector extrac-
tion composes well with randomized feature maps in the
primal. This approximates generalized eigenfunction ex-
traction in the RKHS, while retaining the speed and com-
pactness of primal approaches.

Covertype does not come with a designated test set, so
we randomly permuted the data set and used the last 10%
for testing, utilizing the same train-test split for all experi-
ments. We followed the same experimental protocol as the
previous section, i.e., held out a portion of the training set
for validation to select hyperparameters.

Table 3 summarizes the results.3 GEM and deep GEM
are exactly the same as in the previous section, i.e., Al-
gorithm 1 without and with self-composition respectively.
RFF stands for Random Fourier Features (Rahimi & Recht,
2007), in which the Gaussian kernel is approximated in the
primal by a randomized cosine map; we used logistic re-
gression for the primal learning algorithm. We treated the
bandwidth and number of cosines as hyperparameters to be
optimized.

The relatively poor classification performance of RFF on
Covertype has been noted before (Rahimi & Recht, 2007),
a result we reproduce here. Instead of using the randomized
feature map directly, however, we can apply Algorithm 1
to the representation induced by RFF, which we denote
GEM + RFF. This improves the classification error with
only modest increase in computation cost, e.g., in MAT-
LAB it takes 8 seconds to compute the randomized Fourier
features, 58 seconds to (sequentially) solve the generalized
eigenvalue problems and compute the GEM feature repre-
sentation, and 372 seconds to optimize the logistic regres-
sion. The final error rate of 8.4% is a new record for this
task.

4.3. TIMIT

TIMIT is a corpus of phonemically and lexically anno-
tated speech of English speakers of multiple genders and
dialects (Fisher et al., 1986). Although the ultimate prob-
lem is sequence annotation, there is a derived multiclass

3When comparing with other published results, be aware that
many authors adjust the task to be a binary classification task.

classification problem of predicting the phonemic annota-
tion associated with a short segment of audio. Such a clas-
sifier can be composed with standard sequence modeling
techniques to produce an overall solution, which has made
the multiclass problem a subject of research (Hinton et al.,
2012b; Hutchinson et al., 2012). In this experiment we fo-
cus exclusively on the multiclass problem.

We use a standard preprocessing of TIMIT as our initial
representation (Hutchinson et al., 2012). Specifically the
speech is converted into feature vectors via the first to
twelfth Mel frequency cepstral coefficients and energy plus
first and second temporal derivatives. This results in 39
coefficients per frame, which is concatenated with 5 pre-
ceding and 5 following frames to produce a 429 coefficient
input to the classifier. The targets for the classifier are the
183 phone states (i.e., 61 phones each in 3 possible states).

We use the standard training, development, and test sets
of TIMIT. As in previous experiments herein, hyperparam-
eters are optimized on the development set (using cross-
entropy as the objective), but unlike previous experiments
we do not retrain with the development set once hyperpa-
rameters are determined, in correspondence with the exper-
imental protocol used with the T-DSN (Hutchinson et al.,
2012).

With 183 classes the all-pairs approach for generalized
eigenvector extraction is unwieldy, so we used a random-
ized procedure to select from which class pairs to ex-
tract features, by randomly positioning the class labels on
a hypercube and extracting generalized eigenvectors only
for immediate hyperneighbors. For k classes this results
in O(k log k) generalized eigenvalue problems. Although
we did not attempt a thorough exploration of different
strategies for subproblem selection, the hypercube heuristic
yielded better results for a given feature budget than either
uniform random selection over all class pairs or stratified
random selection over class pairs ensuring equal numbers
of denominator or numerator classes. The resulting per-
formance for five different choices of random hypercube is
shown in the row of Table 4 denoted GEM. We show both
multiclass error rate as well as cross entropy, the objective
we are actually optimizing.

The random subproblem selection creates an opportunity
to ensemble, and empirically the resulting classifiers are
sufficiently diverse that ensembling yields a substantial im-
provement. In Table 4, denoted GEM ensemble, we show
the performance of the ensemble prediction of the 5 classi-
fiers using the geometric mean prediction (this is the pre-
diction that minimizes its average KL-divergence to each
element of the ensemble). The result matches the classi-
fication error and improves upon the cross-entropy loss of
the best published T-DSN. This is remarkable considering
the T-DSN is a deep architecture employing between 8 and
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Method Frame Cross
State Error (%) Entropy

GEM 41.87± 0.073 1.637± 0.001
T-DSN 40.9 2.02

GEM (ensemble) 40.86 1.581

Table 4. Results on TIMIT test set. T-DSN is the best result
from (Hutchinson et al., 2012).

13 stacked layers of nonlinear transformations, whereas the
GEM procedure produces a shallow architecture with a sin-
gle nonlinear layer.

5. Discussion
Given the simplicity and empirical success of our method,
we were surprised to find considerable work on methods
that only extract the first generalized eigenvector (Mika
et al., 2003) but very little work on using the topm general-
ized eigenvectors. Our experience is that additional eigen-
vectors provide complementary information. Empirically,
their inclusion in the final classifier far outweighs the nec-
essary increase in sample complexity, especially given typ-
ical modern data set sizes. Thus we believe this technique
should be valuable in other domains.

Of course our method will not be able to extract anything
useful if all classes have the same second moment but dif-
ferent higher order statistics. While our limited experience
here suggests second moments are informative for natu-
ral datasets, there are potential benefits in using higher or-
der moments. For example, we could replace our class-
conditional second moment matrix with a second moment
matrix conditioned on other events, informed by higher or-
der moments.

As the number of class labels increases, say k ≥ 1000, our
brute force all-pairs approach, which scales as O(k2), be-
comes increasingly difficult both computationally and sta-
tistically: we need to solve O(k2) eigenvector problems
(possibly in parallel) and deal with O(k2) features in the
ultimate classifier. Taking a step back, the object of our
attention is the tensor E[x ⊗ x ⊗ y] and in this paper we
only studied one way of selecting pairs of slices from it.
In particular, our slices are tensor contractions with one of
the standard basis vectors in Rk. Clearly, contracting the
tensor with any vector u in Rk is possible. This contraction
leads to a d× d second moment matrix which averages the
examples of the different classes in the way prescribed by
u. Any sensible, data-dependent way of picking a good set
of vectors u should be able to reduce the dependence on k2.

The same issues also arise with a continuous y: how to
define and estimate the pairs of matrices whose general-
ized eigenvectors should be extracted is not immediately
clear. Still, the case where y is multidimensional (vector
regression) can be reduced to the case of univariate y using

the same technique of contraction with a vector u. Feature
extraction from a continuous y can be done by discretiza-
tion (solely for the purpose of feature extraction), which is
much easier in the univariate case than in the multivariate
case.

In domains where examples exhibit large variation, or when
labeled data is scarce, incorporating prior knowledge is ex-
tremely important. For example, in image recognition, con-
volutions and local pooling are popular ways to generate
representations that are invariant to localized distortions.
Directly exploiting the spatial or temporal structure of the
input signal, as well as incorporating other kinds of invari-
ances in our framework, is a direction for future work.

High dimensional problems create both computational and
statistical challenges. Computationally, when d > 106,
the solution of generalized eigenvalue problems can only
be performed via specialized libraries such as ScaLA-
PACK, or via randomized techniques, such as those out-
lined in (Halko et al., 2011; Saibaba & Kitanidis, 2013).
Statistically, the finite-sample second moment estimates
can be inaccurate when the number of dimensions over-
whelms the number of examples. The effect of this inac-
curacy on the extracted eigenvectors needs further investi-
gation. In particular, it might be unimportant for datasets
encountered in practice, e.g., if the true class-conditional
second moment matrices have low effective rank (Bunea &
Xiao, 2012).

Finally, our approach is simple to implement and well
suited to the distributed setting. Although a distributed im-
plementation is out of the scope of this paper, we do note
that aspects of Algorithm 1 were motivated by the desire
for efficient distributed implementation. The recent suc-
cess of non-convex learning systems has sparked renewed
interest in non-convex representation learning. However,
generic distributed non-convex optimization is extremely
challenging. Our approach first decomposes the prob-
lem into tractable non-convex subproblems and then subse-
quently composes with convex techniques. Ultimately we
hope that judicious application of convenient non-convex
objectives, coupled with convex optimization techniques,
will yield competitive and scalable learning algorithms.

6. Conclusion
We have shown a method for creating discriminative fea-
tures via solving generalized eigenvalue problems, and
demonstrated empirical efficacy via multiple experiments.
The method has multiple computational and statistical
desiderata. Computationally, generalized eigenvalue ex-
traction is a mature numerical primitive, and the matrices
which are decomposed can be estimated using map-reduce
techniques. Statistically, the method is invariant to invert-
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ible linear transformations, estimation of the eigenvectors
is robust when the number of examples exceeds the num-
ber of variables, and estimation of the resulting classifier
parameters is eased due to the parsimony of the derived
representation.

Due to this combination of empirical, computational, and
statistical properties, we believe the method introduced
herein has utility for a wide variety of machine learning
problems.
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