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Abstract
We present the hierarchical Dirichlet scal-
ing process (HDSP), a Bayesian nonparametric
mixed membership model for multi-labeled data.
We construct the HDSP based on the gamma rep-
resentation of the hierarchical Dirichlet process
(HDP) which allows scaling the mixture com-
ponents. With such construction, HDSP allo-
cates a latent location to each label and mixture
component in a space, and uses the distance be-
tween them to guide membership probabilities.
We develop a variational Bayes algorithm for
the approximate posterior inference of the HDSP.
Through experiments on synthetic datasets as
well as datasets of newswire, medical journal ar-
ticles, and Wikipedia, we show that the HDSP re-
sults in better predictive performance than HDP,
labeled LDA and partially labeled LDA.

1. Introduction
The Hierarchical Dirichlet process (HDP) is an important
nonparametric Bayesian prior for mixed membership mod-
els, and the HDP topic model is useful for a wide variety of
tasks involving unstructured text (Teh et al., 2006). To ex-
tend the HDP topic model, there has been active research in
dependent random probability measures as priors for mod-
eling the underlying association between the latent seman-
tic structure and explanatory variables, such as time stamps
and spatial coordinates (Ahmed & Xing, 2010; Ren et al.,
2011).

A large body of this research is rooted in the depen-
dent Dirichlet process (DP) (MacEachern, 1999) where the
probabilistic random measure is defined as a function of
some covariate. Most dependent DP approaches rely on
the generalization of Sethuraman’s stick breaking represen-

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

−4 −3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

ARTS,CULTURE,ENTERTAINMENT

HEALTH

ELECTIONS

ECONOMICS

film,movie,music

beat,play,champ
soccer,play,match

clinton,president,dole

tobacco,smoke,cigarette

bank,rate,percent

disease,cow,infect
net,loss,share

profit,million,half

Figure 1. Locations of observed labels (capital letters in red) and
latent topics (small letters in blue) inferred by HDSP from the
Reuters corpus. HDSP uses the distances between labels and top-
ics to scale the topic proportions such that the topics closer to the
observed labels in a document are given higher probabilities.

tation of DP (Sethuraman, 1991), incorporating the time
difference between two or more data points or the spatial
difference among observed data into the predictor depen-
dent stick breaking process (Duan et al., 2007; Dunson &
Park, 2008). Some of these priors can be integrated into the
hierarchical construction of DP (Srebro & Roweis, 2005),
resulting in topic models where temporally- or spatially-
proximate data are more likely to be clustered.

Many datasets, however, come with labels, or categorical
side information, which cannot be modeled with these ex-
isting dependent DP approaches. Labels, like temporal and
spatial information, are correlated with the latent semantics
of the documents, but they cannot be used to directly de-
fine the distance between two documents. This is because
labels are categorical, so there is no simple way to measure
distances between labels. Moreover, labels and documents
do not have a one-to-one correspondence, as there may be
zero, one, or more labels per document.

We develop the hierarchical Dirichlet scaling process
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(HDPS) which models the latent locations of topics and
labels in a space and uses the distances between them to
guide the topic proportions. Figure 1 visualizes how the
HDSP discovers the latent locations of the topics and the
labels from the Reuters articles with news categories as la-
bels. In this example, an article under the news category
“ECONOMICS” would be endowed high probabilities for
topics <net, loss, share> and <bank, rate, percent>,
and low probabilities for topics <beat, play, champ> and
<film, movie, music>.

In the next section, we describe the gamma process con-
struction of the HDP and how the scale parameter is used
to develop the HDSP. In section 3, we derive a variational
inference for the latent variables by directly placing a prior
over the distances between the latent locations. In sec-
tion 4, we verify our approach on a synthetic dataset and
demonstrate the improved predictive power of our model
on multi- and partially-labeled corpora.

Related Work Previously proposed topic models for la-
beled documents take an approach quite distinct from the
dependent DP literature. Labeled LDA (L-LDA) allocates
one dimension of the topic simplex per label and generates
words from only the topics that correspond to the labels
in each document (Ramage et al., 2009). An extension of
this model, partially labeled LDA (PLDA), adds more flex-
ibility by allocating a pre-defined number of topics per la-
bel and including a background label to handle documents
with no labels (Ramage et al., 2011). The Dirichlet process
with mixed random measures (DP-MRM) is a nonparamet-
ric topic model which generates an unbounded number of
topics per label but still excludes topics from labels that are
not observed in the document (Kim et al., 2012).

2. Hierarchical Dirichlet Scaling Process
In this section, we describe the hierarchical Dirichlet scal-
ing process (HDSP) for multi-labeled data. First we review
the HDP and the gamma process construction of the sec-
ond level DP. We then present the HDSP where the second
level DP incorporates the latent locations for the mixture
components and the labels.

2.1. The gamma process construction of HDP

In the HDP1, there are two levels of the DP where the mea-
sure drawn from the upper level DP is the base distribution
of the lower level DP. The hierarchical representation of the
process is

G0 ∼ DP(αH), Gm ∼ DP(βG0), (1)

1In this paper, we limit our discussions of the HDP to the two
level construction of the DP and refer to it simply as the HDP.

where H is a base distribution, α, and β are concentration
parameters, and index m represents multiple draws from
the second level DP. For the mixed membership model,
xmn, observation n in group m, can be drawn from

θmn ∼ Gm, xmn ∼ f(θmn), (2)

where f(·) is a data distribution parameterized by θ. In the
context of topic models, the base distribution H is usually
a Dirichlet distribution over the vocabulary, so the atoms
of the first level random measure G0 are an infinite set of
topics drawn from H . The second level random measure
Gm is distributed based on the first level random measure
G0, so the second level shares the same set of topics, the
atoms of the first level random measure.

The constructive definition of the DP can be represented
as a stick breaking process (Sethuraman, 1991), and in the
HDP inference algorithm based on stick breaking, the first
level DP is given by the following conditional distributions:

Vk ∼ Beta(1, α) pk = Vk

j<k∏
j=1

(1− Vj)

φk ∼ H G0 =

∞∑
k=1

pkδφk
, (3)

where Vk defines a corpus level topic distribution for topic
φk. The second level random measures are conditionally
distributed on the first level discrete random measure G0:

πml ∼ Beta(1, β) pml = πml

j<l∏
j=1

(1− πmj)

θml ∼ G0 Gm =

∞∑
l=1

pmlδθml
, (4)

where the second level atom θml corresponds to one of the
first level atoms φk. This stick breaking construction is the
most widely used method for the hierarchical construction
(Wang et al., 2011; Teh et al., 2006).

An alternative construction of the HDP is based on the nor-
malized gamma process (Paisley et al., 2012). While the
first level construction remains the same, the gamma pro-
cess changes the second level construction from Eq. 4 to

πmk ∼ Gamma(βpk, 1)

Gm =

∞∑
k=1

πmk∑∞
j=1 πmj

δφk, (5)

where Gamma(x; a, b) = bax(a−1)e−bx/Γ(a). Unlike the
stick breaking construction, the atom of the πmk of the
gamma process is the same as the atom of the kth stick of
the first level. Therefore, during inference, the model does
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not need to keep track of which second level atoms corre-
spond to which first level atoms. Furthermore, by placing a
proper random variable on the rate parameter of the gamma
distribution, the model can infer the correlations among the
topics (Paisley et al., 2012) through the Gaussian process
(Rasmussen & Williams, 2005).

2.2. Hierarchical Dirichlet Scaling Process

In the hierarchical Dirichlet scaling process (HDSP), we
start with the gamma process construction of the HDP with
a proper prior for the rate parameter to guide the topic pro-
portions based on the labels of the document. In the model,
each topic and label has a latent location, and the topic pro-
portion of a document is proportional to the distances be-
tween the topics and the labels. With the assumption that
the locations of topics and labels are drawn from a distri-
bution over the space, the first level DP of HDSP is drawn
from the product of two base distributions,

G0 ∼ DP(αH ⊗ L), G0 =

∞∑
k=1

pkδ{φk,lk} (6)

where H is a distribution over the topic parameter θk, L is
a distribution over the latent locations of topic k and label
j, and pk is a stick length for topic k, pk = Vk

∏k′<k
k′=1(1−

Vk′). There are J observable labels, and for each observ-
able label j, a latent location lj is drawn from the distri-
bution L. Through the first level DP, the model draws an
infinite number of topics φk as well as their corresponding
locations lk.

In the second level DP, the gamma process is used to incor-
porate the distances between the location of topics and ob-
served labels. Let rmj be an indicator variable, if the label j
is observed in documentm then rmj is 1 otherwise 0. First,
as in the HDP, draw a random measure G′m ∼ DP(βG0)
for each document. Second, scale the topics based on the
product of the inverse distances between topics and the ob-
served labels of the document

Gm({φk, lk}) ∝ G′m({φk, lk})
J∏
j=1

d(lj , lk)−rmj , (7)

where d(lj , lk) is a distance measure of the location of label
lj and the location of topic lk. Through this process, topics
that are closely located to the observed labels would have
larger proportions in the final random measure Gm.

The constructive definition of HDSP is similar to the HDP,
but the difference comes from the location variables and
the distance terms. The first level stick breaking for HDSP

is

Vk ∼ Beta(1, α) pk = Vk

j<k∏
j=1

(1− Vj)

φk ∼ H, lk ∼ L G0 =

∞∑
k=1

pkδ{φk,lk}. (8)

Also, for each observable label, lj is drawn i.i.d from L.

The second level gamma process for HDSP is

πmk ∼ Gamma(βpk,

J∏
j=1

d(lj , lk)rmj )

Gm =

∞∑
k=1

πmk∑∞
j=1 πmj

δφk
. (9)

The distance terms are directly incorporated into the sec-
ond parameter of the gamma distribution since the scaled
gamma random variable y = kx ∼ Gamma(a, 1) is equal
to y ∼Gamma(a, k−1). For the mixed membership model,
nth observation in mth group is drawn as follows:

φk ∼ Gm, xmn ∼ f(φk). (10)

For topic modeling, Gm and xmn correspond to document
m and word n in document m, respectively.

3. Variational Inference for HDSP
The posterior inference for Bayesian nonparametric models
is important because it is intractable to compute the poste-
rior over an infinite dimensional space. Approximation al-
gorithms, such as marginalized MCMC (Escobar & West,
1995; Teh et al., 2006) and variational inference (Blei &
Jordan, 2006; Teh et al., 2008), have been developed for
the Bayesian nonparametric mixture models. We develop a
mean field variational inference (Jordan et al., 1999; Wain-
wright & Jordan, 2008) algorithm for approximate poste-
rior inference of the HDSP topic model. The objective
of variational inference is to minimize the KL divergence
between a distribution over the hidden variables and the
true posterior, which is equivalent to maximizing the lower
bound of the marginal log likelihood of observed data.

For simple and efficient inference, we devise a simple
model from the same perspective. Since we are interested
in the distances between topics and labels, we directly place
a prior over the distance between a topic and label d(lj , lk).
Let wjk be the inverse distance between the latent location
of label j and topic k, i.e. wjk = d(lj , lk)−1, we approxi-
mate wjk by placing an inverse-Gamma prior over wjk:

wjk ∼ invGamma(aw, bw) (11)
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Figure 2. Graphical model of the hierarchical Dirichlet scaling process.

As a consequence, the second level gamma process can be
rewritten from Equation 9 to

πmk ∼ Gamma(βpk,

J∏
j=1

w
−rmj

jk ). (12)

Excluding the locations from the model, it becomes unnec-
essary to place a proper distribution L over the space, in
order to place a proper distance measure and to infer the
latent locations of labels and topics. Hence, we can reduce
the model complexity and derive a relatively simple and
efficient inference algorithm, excluding the need for more
complex metric learning problems (Xing et al., 2002) or the
kernel based dependent DP construction (Dunson & Park,
2008; Ren et al., 2011). Now, we derive a variational Bayes
inference using this approximation approach.

We use a fully factorized variational distribution and per-
form a mean-field variational inference. There are five la-
tent variables of interest: the corpus level stick proportion
Vk, the document level stick proportion πmk, the inverse
distance between topic and label wjk, the topic assignment
for each word zmn, and the word topic distribution φk.
Thus the variational distribution q(z, π, V, w, φ) can be fac-
torized into

q(z, π, V, w, φ) =

T∏
k=1

M∏
m=1

J∏
j=1

Nm∏
n=1

q(zmn)q(πmk)q(Vk)q(φk)q(wjk), (13)

where the variational distributions are

q(zmn) = Multinomial(zmn|γmn)

q(πmk) = Gamma(πmk|aπmk, bπmk)

q(wjk) = InvGamma(wjk|awjk, bwjk)

q(φk) = Dirichlet(φk|ηk)

q(Vk) = δVk
.

For the corpus level stick proportion Vk, we use the delta
function as a variational distribution for simplicity and
tractability in inference steps (Liang et al., 2007). In-
finite dimensions over the posterior is a key problem in
Bayesian nonparametric models and requires an approxi-
mation method. In variational treatment, we truncate the
unbounded dimensionality to T by letting VT = 1. Thus
the model still keeps the infinite dimensionality while al-
lowing approximation to be carried out under the bounded
variational distributions.

Using standard variational theory, we derive the lower
bound of the marginal log likelihood of the observed data
D = (xm, rm)Mm=1,

log p(D|α, β, aw, bw, η)

≥ Eq[log p(D, z, π, V, w, φ)] +H(q) = L(q), (14)

where H(q) is the entropy for the variational distribution.
By taking the derivative of this lower bound, we derive the
following coordinate ascent algorithm.

Document-level Updates: At the document level, we up-
date the variational distribution for the topic assignment
zmn and the document level stick proportion πmk. The up-
date for q(zmn|γmn) is

γmnk ∝ exp (Eq[ln ηk,xmn
] + Eq[lnπmk]) . (15)

Updating q(πmk|aπmk, bπmk) requires computing the expec-
tation term E[ln

∑T
k=1 πmk]. Following (Blei & Lafferty,

2007), we approximate the lower bound of the expectation
by using the first-order Taylor expansion,

−Eq[ln
T∑
k=1

πmk] ≥ − ln ξm −
∑T
k=1 Eq[πmk]− ξm

ξm
,

(16)

where the update for ξ =
∑K
k=1 Eq[πmk]. Then, the update
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for πmk is

aπmk = βpk +

Nm∑
n=1

γmnk

bπmk =
∏
j

Eq[w
−rmj

jk ] +
Nm
ξm

. (17)

Note again rmj is equal to 1 when jth label is observed in
mth document, otherwise 0.

Corpus-level Updates: At the corpus level, we update the
variational distribution for the inverse distance wjk, corpus
level stick length Vk and word topic distribution ηki.

The optimal form of a variational distribution can be ob-
tained by exponentiating the variational lower bound with
all expectations except the parameter of interest (Bishop &
Nasrabadi, 2006). For wjk, we can derive the optimal form
of variational distribution as follows

q(wjk) ∼ InvGamma(a′, b′) (18)

a′ = Eq[βpk]
∑
m

rmj + aw

b′ =
∑
m′

∏
j′/j

Eq[w−1j′k]Eq[πm′k] + bw,

where m′ = {m : rmj = 1} and j′/j = {j′ : rmj′ =
1, j′ 6= j}. See the appendix for the complete derivation.
There is no closed form update for Vk, instead we use the
steepest ascent algorithm to jointly optimize Vk. The gra-
dient of Vk is

∂L
∂Vk

= − α− 1

1− Vk
(19)

− βpk
Vk
{
∑
m,j

rmjEq[lnπmk]− Eq[πmk] + ψ(βpk)}

+
∑
k′>k

βpk′

1− Vk
{
∑
m,j

rmjEq[lnπmk′ ]− Eq[πmk′ ] + ψ(βpk′)},

where ψ(·) is a digamma function. Finally, the update for
the word topic distribution q(φk|ηk) is

ηki = η +
∑
m,n

γmnk1(xmn = i), (20)

where i is a word index, and 1 is an indicator function (Blei
et al., 2003).
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Figure 3. Experiments with synthetic data. (a) is the synthetic
topic distribution of 5 topics over 10 terms. (b) and (c) are topic
distributions inferred by the HDSP and the HDP. Both models re-
cover the original topics. (d) shows the original locations of topics
and labels. (e) shows the original distances between the locations
of topics and labels. (f) shows that the HDSP recovers the dis-
tances. Note that the HDP cannot compute the distances.

The expectations under the variational distribution q are

Eq[πmk] = aπmk/b
π
mk

Eq[lnπmk] = ψ(aπmk)− ln bπmk

Eq[wjk] = bwjk/(a
w
jk − 1)

Eq[w−1jk ] = awjk/b
w
jk

Eq[lnwjk] = ln bwjk − ψ(awjk)

Eq[lnφki] = ψ(ηki)− ψ(
∑
i

ηki).

4. Experiments
We train the HDSP topic model with synthetic and real data
to verify the model and show the advantages over existing
models.

4.1. Synthetic data

There is no naturally-occurring dataset with observable lo-
cations of topics and labels, so we synthesize data based on
the model assumptions to verify our model and the approx-
imate inference. First, we check the difference between the
original topics and the inferred topics via simple visualiza-
tion. Then, we focus on the inferred locations and the orig-
inal locations. For all experiments with synthetic data, we
set the truncation level T at twice the number of topics. We
terminate variational inference when the fractional change
of the lower bound falls below 10−3, and we average all re-
sults over 10 individual runs with different initializations.
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Figure 4. Spearman’s correlation coefficient and mean absolute
error of the synthetic data with various volume of space (x3). As
the volume of space for locations increases, the mean absolute
error also increases (left). However, the model preserves the rel-
ative distances between topics and labels, shown by the high and
stabilized correlation between the original ordering and the recov-
ered ordering of label-topic pairs in terms of the distance between
the two (right). This is a key characteristic of the HDSP model
which scales the mixture components according to the inverse of
the distance.

With the first experiment, we show that HDSP correctly re-
covers the underlying topics and distances between topics
and labels. For the dataset, we generate 500 documents
using the following steps. We define five topics over ten
terms shown in Figure 3(a) and locations of five topics and
four labels shown in Figure 3(d). For each document, we
randomly draw Nm from the Poisson distribution and rmj
from the Bernoulli distribution. The average length of a
document is 20, and the average number of labels per doc-
ument is 2. We generate topic proportions of corpus and
documents by using Equations 8 and 9. For each word in a
document, we draw the topic and the word by using Equa-
tion 10. We set both α and β to 1.

Figure 3 shows the results of the HDP and the HDSP on the
synthetic dataset. Figure 3(b) and Figure 3(c) are the heat
maps of topics inferred from each model. We match the
inferred topics to the original topics using KL divergence
between the two topic distributions. There are no signifi-
cant differences between the inferred topics of HDSP and
HDP. In addition to the topics, HDSP infers the distances
between topics and labels, which are shown in Figure 3(f).

With the second experiment, we show that the distances
that HDSP infers preserve the relative distances between
labels and topics in the dataset. Recall that HDSP does
not directly infer the latent locations but instead infers the
distances between labels and topics, which are then used to
scale the topic proportions.

For this experiment, we generate 1,000 documents with
randomly drawn 10 topics from Dirichlet(0.1) with the vo-
cabulary size of 20. The locations of topics and labels are
drawn from Uniform(0, x) varying the x value from 1 to
20 for each experiment. We set the dimensionality of loca-
tions to 3, thus the volume of space is x3. We compute the

Table 1. Datasets used for the experiments in 4.2. As the last two
columns show, we experiment on datasets with a varied number
of unique labels, as well as the average number of labels per doc-
ument, including the Wikipedia corpus with many documents that
are unlabeled.

docs vocab labels labels/doc
Wikipedia 25,547 7,702 1093 0.6
RCV 23,149 9,911 117 3.2
OHSUMED 7,505 7,056 52 5.2

mean absolute error (MAE) and the spearman’s rank corre-
lation coefficient (rho) between the original distances and
the inferred distances. The spearman’s rho is designed to
measure the ranking correlation of two lists.

Figure 4 shows the results. The MAE increases as the vol-
ume of the space increases. However, spearman’s rho sta-
bilizes, indicating that the relative distances are preserved
even when the MAE increases. Since there are an infi-
nite number of configurations of distances that generate
the same expectation E[p(πm|βp,wj)] given πm and βp,
preserving the relative distances verifies our model’s capa-
bility of capturing the underlying structure of topics and
labels.

4.2. Real data

We evaluate the performance of HDSP and compare it
with the HDP, labeled LDA (L-LDA) and partially labeled
LDA (PLDA). The L-LDA defines a one-to-one corre-
spondence between latent topics and labels. We use two
multi-labeled corpora, RCV 2, newswire from Reuter’s, and
OHSUMED 3, a subset of the Medline journal articles, and
one partially labeled corpus, Wikipedia.

Experimental Settings: For the HDP and HDSP, we ini-
tialize the word-topic distribution with three iterations of
LDA for fast convergence to the posterior while prevent-
ing the posterior from falling into a local mode of LDA,
then reorder these topics by the size of the posterior word
count. For all experiments, we set the truncation level T to
200. We terminate variational inference when the fractional
change of the lower bound falls below 10−3, and we opti-
mize all hyper parameters during inference except η. For
the L-LDA and PLDA, we implement the collapsed Gibbs
sampling algorithm. For each model, we run 5,000 itera-
tions, the first 3,000 as burn-in and then using the samples
thereafter with gaps of 100 iterations. For PLDA, we set the
number of topics for each label to two and five (PLDA-2,
PLDA-5). We try five different values for the topic Dirich-
let parameter η: η = 0.1, 0.25, 0.5, 0.75, 1.0. Finally all
results are averaged over 20 runs with different random ini-
tialization. We do not report the standard errors because

2http://trec.nist.gov/data/reuters/reuters.html
3http://ir.ohsu.edu/ohsumed/ohsumed.html
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Figure 5. Perplexity of held-out documents. For HDSP, L-LDA and PLDA, the perplexity is measured given documents and observed
labels. For HDP, the model only uses the words of the documents. The HDSP which, instead of excluding topics from unobserved labels,
scales all topics according to distances to observed labels, shows the best heldout perplexity.

they are small enough to ignore.

Evaluation Metric: The goal of our model is to construct
the dependent random probability measure given labels.
Therefore, our interest is to see the increments of predic-
tive performance when the label information is given.

The predictive probability given label information for
held-out documents are approximated by the conditional
marginal,

p(x′|r′,Dtrain) = (21)∫
q

N∏
n=1

T∑
k=1

p(x′n|φk)p(z′n = k|π′)p(π′|V, r′)dq(V,w, φ),

where Dtrain = {xtrain, rtrain} is the training data, x′ is the
vector of N words of a held-out document, r′ are the labels
of the held-out document, z′n is the latent topic of word
n, and π′k is the kth topic proportion of the held-out docu-
ment. Since the integral is intractable, we approximate the
probability

p(x′|r′,Dtrain) ≈
N∏
n=1

T∑
k=1

π̃kφ̃k,x′
n
, (22)

where φ̃k and π̃k are the variational expectation for φk and
πk given label r′. This approximated likelihood is then
used to compute the perplexity of the held-out document

perplexity = exp

{− ln p(x′|r′,Dtrain)

N

}
. (23)

Lower perplexity indicates better performance. We also
take the same approach to compute the perplexity for L-
LDA, PLDA and HDP, but HDP does not use the labels
of held-out documents. To measure the predictive perfor-
mance, we leave 20% of the documents for testing and use
the remaining 80% to train the models.

Multi-labeled Data: We use two multi-labeled corpora,
the RCV Reuters news data and the OHSUMED medical
journal data. Both are multi-labeled, and every document
has at least one label. The average number of labels per ar-
ticle is 3.2 for RCV and 5.2 for OHSUMED. Table 1 con-
tains the details of the datasets.

The HDSP outperforms all comparison models, HDP, L-
LDA and PLDA, in terms of perplexity as shown in Figure
5. For the OHSUMED data, the performance of L-LDA is
worse than the HDP even though L-LDA is trained with la-
bel information. PLDA, which relaxes the assumption of L-
LDA by adding an additional latent label and allowing mul-
tiple topics per label, outperforms the HDP and the L-LDA.
But it excludes the topics of unobserved labels from mod-
eling the document, and it performs worse than the HDSP.
Note that the HDSP also relies on the observed labels to
strongly guide the topics, but it still allows all topics to be
used, even ones that are not closely located to the observed
labels.

Figure 6 shows the expected topic distributions given dif-
ferent sets of labels. As we discussed in Section 2, the scal-
ing effect yields more sharpened distribution given a set of
labels. When multiple labels are given, the model expects
high probabilities for the topics that are closely located to
all given labels. The Appendix provides more examples
from the other corpora as well as posterior topic count anal-
ysis.

To visualize the latent locations, we embed the inferred top-
ics and the given labels into the two dimensional space by
using multidimensional scaling (MDS) on the inferred dis-
tances (Kruskal, 1964). In Figure 1, we choose and display
a few representative topics and labels.

Partially-labeled Data: We also test our model with par-
tially labeled data which have not been explicitly covered
in topic modeling. Many real-world data fall into this cate-
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Figure 6. Expected topic distributions given labels from RCV. Topics are sorted by their posterior word counts, and the top 20 topics are
displayed with the top 10 words (stemmed). From top to bottom, we compute an expected topic distribution given a set of labels.

Table 2. The most closely located category-topic pairs from Wikipedia. The categories are more specific and narrow than those of RCV.
Labels Top words

rivers of romania river water area bay north creek valley south
cities in iran district population province village county rural area town

italian painters van dutch painter italian born netherlands portuguese portrait
2009 albums released song music band single track records songs

public high schools school high students schools college education state girls

gory where some of the data are labeled, others are incom-
pletely labeled, and the rest are unlabeled. For this experi-
ment, we randomly sampled Wikipedia articles and use the
categories as labels. Because most of the categories only
appear once or twice in the dataset, we remove categories
that appear in fewer than five articles, and our dataset con-
tains 25,547 articles, 1,093 labels, with 0.6 labels per arti-
cle on average. The label information is sparse even after
removing the infrequent labels.

Figure 5(c) shows the predictive perplexity with Wikipedia.
We compare the result with PLDA and HDP. We exclude L-
LDA which cannot be trained on a dataset containing doc-
uments with no labels. HDSP outperforms both HDP and
PLDA. We list the top ten most closely located label-topic
pairs in Table 2.

5. Conclusion
We have presented the hierarchical Dirichlet scaling pro-
cess (HDSP), a Bayesian nonparametric prior for a mixed

membership model where categorical side information
plays an important role. We discussed how the HDSP mod-
els the latent locations of the mixture components and the
observed labels, and boosts the membership probability of
a mixture component based on the product of the inverse
distances to the labels. We showed that the application of
HDSP to topic modeling correctly recovers the topics and
label-topic distances of synthetic data. Furthermore, we
showed the improved predictive performance of the HDSP
topic model compared to the HDP, labeled LDA and par-
tially labeled LDA. Future work on this research will ex-
plore kernel functions instead of simple products and ap-
plications of the HDSP topic model on various text mining
problems.
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