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1 Introduction

This paper contains supplementrary material to the main paper “A reversible
infinite HMM using normalised random measures”.

2 Relation to the Hierarchical Gamma and Dirich-
let processes

This section expands on the analysis of Section 3 in the original manuscript
regarding the relation of the SHGP to Hierarchical Gamma (HGP) and Hierar-
chical Dirichlet processes (HDP) as seen in Table 1. The SHGP is a prior over
the weight matrix J as opposed to the HDP which is a prior over the transition
matrix P . This difference is crucial, since it allows for direct manipulation of the
weights, enabling us to enforce symmetry and thereby make the Markov chain
reversible. The SHGP can be viewed as a HGP where symmetry is imposed on
the produced weight matrix J . However, there are subtle differences in the con-
struction of the weight matrix. Looking at the Table 1, both processes, the HGP
and SHGP, use the Gamma process in a hierarchical way. The HGP constructs
each row j in the weight matrix by sampling from the same Gamma process
ΓP (α̃, G0),∀j, as opposed to the SHGP where each row is sampled by a Gamma
process with a different shape parameter dependent on the corresponding base
weight wj . This is a modelling choice and by choosing the base measure µ of
the weight matrix to be the G0 rather than the product G0 × G0 the SHGP
(with no symmetrization imposed) becomes identical to the HGP.

Table 1: HDP, HGP and SHGP

HDP HGP SHGP

G′0 ∼ DP(α0µ0) G0 ∼ ΓP (α0, µ0) G0 ∼ ΓP (α0, µ0)

Pj ∼ DP(α′G′0) J̃j ∼ ΓP (α̃, G0) Jj ∼ ΓP (αwj , G0)
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The HGP itself is closely related to the HDP. With an appropriate choice
of mixing measure over the second level concentration parameter α′, the HDP
is equal to the normalised HGP. This follows from the Dirichlet process be-
ing representable as a normalised underlying Gamma process. To obtain this
equivalence we require (using the notation of Table 1)

α′G′0(X )
d
= α̃G0(X )⇔ α′

d
= α̃

G0(X )

G′0(X )
⇒ α′

d
= α̃G0(X )

α′ ∼ Gamma(α0µ0(X ),
α0

α̃
)

G0(X ) ∼ Gamma(α0µ0(X ), α0), (1)

where we used the fact that G′0(X ) = 1 a.s., since G′0(X ) is a sample from a

DP. By the independence of G0/G(X ) and G0(X ) we have that α′G′0
d
= α̃G0.

Finally Pj
d
= J̃j/J̃j(X ) by a second application of the equivalence between the

DP and a normalised ΓP. In other words, an HGP with normalised weights in
order to produce the transition matrix P , is equivalent to a HDP in which the
shape parameter α′ is sampled as in Equation 1.

In addition, we can now see that the SHGP modulo symmetrisation is equiv-
alent to an HDP where a different second level concentration parameter is sam-
pled for each row of P , i.e.

α′j ∼ Gamma(α0µ0(X ),
α0

αωj
) (2)

Pj ∼ DP(α′jG
′
0) (3)

3 Observed data Y

In hidden Markov models, the observations Y are supposed to be generated
from a Markov chain of hidden states X. In other words, the Y consist of
emissions as a result of the system jumping through hidden states. The way the
hidden sequence determines the emissions is defined by the emission matrix E
which connects the current state with the emission. The emission matrix E can
take different forms, based on the dataset at hand, resulting in different forms
of outputs Y . In this work, we considered three different forms: multinomial,
multivariate Poisson and univariate Gaussian. In what follows, the number of
hidden states is K, while the observations Y and hidden sequence X have length
T .

Multinomial. In this case, the observation sequence Y is a T -length vector
that consists of symbols. The process jumps from state to state based on the
transition matrix and emits a symbol among L possible ones with probability
defined by the K × L emission matrix E. E(k, l) is the probability of emitting
symbol l while being in state k and the random variable Yt conditioned on Xt
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has a L-multinomial distribution. The likelihood is given by:

p(Y |X,E) =

T∏
t=1

E(Xt, Yt) =
∏
kl

E(k, l)mkl (4)

where k, l ∈ S and mkl is the number of times that state k emitted symbol l.
This choice of likelihood allows the conjugate Dirichlet prior, Dir(q1, . . . , qK) to
be used. We set qk = 1∀k ∈ [1, . . . ,K].

Multivariate Poisson. Here we define a multivariate Poisson hidden Markov
model (PHMM). In a PHMM we consider Y to be a matrix of discrete obser-
vations (counts) and of L × T dimensions. The random variable Yt is a vector
of length L and conditioned on Xt each element Ylt has a Poisson distribution
with rate parameter E(Xt, l), where E is a K × L matrix. The likelihood is
given by

p(Y |X,E) =

T∏
t=1

f(Yt;E(Xt, :)) =

T∏
t=1

L∏
l=1

E(Xt, l)
Yt(l)e−E(Xt,l)

Yt(l)!
(5)

where f is the Poisson p.m.f. We put a gamma prior Gamma(αλ, βλ) over each
element of E, where αλ and βλ are the shape and rate hyper parameters. For
the chipSeq experiment we set αλ = βλ = 1.

Gaussian. We consider Y to be a sequence of real observations, that is Yt ∈ R.
Each random variable Yt has a Gaussian distribution with mean µ = E(Xt, 1)
and standard deviation σ = E(Xt, 2). The Gaussian distribution the random
variable Yt is sampled from depends on the current state Xt. The emission
matrix E is a K × 2 matrix that stores the hyper parameters that define the
corresponding Gaussian distributions. The likelihood is given by

p(Y |X,E) =

T∏
t=1

N (Yt;E(Xt, 1), E(Xt, 2)) =

T∏
t=1

1

E(Xt, 2)
√

2π
e
− (Yt−E(Xt,1)

2)

2E(Xt,2)
2

(6)
We set an normal-inverse-gamma prior over each of the K pairs of means and
standard deviations, that is (µ, σ2) ∼ NΓ−1(µ0, k0, a0, b0). In the Alamethecin
dataset we set µ0 = 0, k0 = a0 = b0 = 1.

4 Prediction

A principled way to evaluate a generative model is by its ability to predict
missing data values given some observations. For SHGP we collect M samples
from the posterior {{E(1), X(1)}, . . . , {E(M), X(M)}} and estimate the predictive
distribution of a missing entry in the dataset Y as the average of the predictive
distributions for each of the collected samples. For the experiments we ran, we
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Figure 1: Graphical model for SHGP

used two different likelihoods, a Poisson and a Gaussian. For the Poisson model
the approximate predictive distribution is

P (Ylt|Ytrain) ≈ 1

M

M∑
m=1

E(X
(m)
t , l)Yt(l) − eE(X

(m)
t ,l)

Yt(l)!
,

while for the Gaussian is

P (Yt|Ytrain) ≈ 1

M

M∑
m=1

1

E(X
(m)
t , 2)

√
2π
e
− (Yt−E(X

(m)
t ,1)2)

2E(X
(m)
t ,2)2

5 Inference

This section describes the sampling steps for the SHGP finite model (see Fig-
ure 1).

Sampling the conentration parameters, α0 and α. We used slice sam-
pling to infer the parameters α0 and α using Gamma priors α0 ∼ Gamma(s0, r0)
and α ∼ Gamma(s, r), where {s0, r0} and {s, r} are the pairs of shape and rate
parameters for α0 and α respectively. The posterior distributions are:

p(α0|G0, µ0) ∝ p(G0|α0, µ0)p(α0)

p(α|G,G0) ∝ p(G|α,G0)p(α) (7)
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The likelihood terms expand to

p(G0|α0, µ0) =

K∏
k=1

Gamma(wk|α0µk)

p(G|α,G0) =

K∏
i=1,j=m

Gamma(Jij |αwiwj), (8)

where m = 1 in the irreversible case and m = i in the reversible case. Moreover,
µk is the mass assigned by the base measure µ0 to each one of the K atoms.

Here we assumed that µ(X ) = 1 and µk = µ(X )
K .

Sampling the weight vector, G0 The vector G0 is the vector of the base
weightsG0 = [w1, . . . , wK ] in the corresponding random measureG0 =

∑
k wkδxk

.
Looking at the graphical model, the posterior over wk is:

p(wk|G0¬k, G, µ0, α, α0) ∝ p(G|G0, α)p(wk|α0, µ0)

where G0¬k is the vector of the base weights excluding the weight wk. The
likelihood term p(G|G0, α) is given in Equation 7 and the prior is p(wk|α0, µ0) =
Gamma(wk|α0µk). We used slice sampler to sample each weight wk.

Sampling the weight matrix, G The weight matrix G contains the edge
weights {Jij}. The posterior over the whole matrix is

p(G|X,α,G0) ∝ p(X|G)p(G|α,G0)

We used hybrid Monte Carlo (Neal, 2011) to sample the elements of the ma-
trix G at once instead of sampling each element at a time using slice sampling.
In our implementation, we consider G to be a K2 vector containing all the
weights (elements) of the weight matrix. In the reversible case the vector G is

of length K(K+1)
2 since symmetry is imposed. Hybrid Monte Carlo is a Metropo-

lis method, applicable to continuous state spaces, that makes use of gradient
information to reduce random walk behaviour. The aim is to sample from the
posterior distribution p(G|X,α,G0). Two terms are introduced in HMC; the
potential energy E(G) = −logp(G|X,α,G0) + C and the momentum, an aux-
iliary vector of the same length as vector G. The momentum will be changed
from iteration to iteration, and within iterations it will change as the G con-
figuration explores the parameter space. The momentum vector changes over
the course of an iteration, according to the gradient of the potential energy (or,
equivalently, the log posterior). So, we need to be able to evaluate the vector
of partial derivatives of the log posterior logp(G|X,α,G0). Before this, we use
the change of variables rij = log(Jij) and the prior over the weights is:

pr(rij) = pJ(Jij)Jij ⇒ p(R) =

{∏
i,j≥i pJ(erij )erij , G symmetric∏
ij pJ(erijerij , if otherwise .
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The prior over each of the weights Jij is pJ(Jij) = Gamma(αwiwj , α) and as
such the joint log prior over all the variables rij is:

logp(R) =

{∑
i,j≥i αwiwjrij −

∑
i,j≥i αe

rij , if G symmetric∑
i,j αwiwjrij −

∑
i,j αe

rij , otherwise.
(9)

where we have omitted the terms that do not depend on rij . The log likelihood
is given by:

L(R) = log
∏
ij

P
nij

ij =
∑
ij

nij logPij

=
∑
ij

nij log
Jij∑
k Jik

=
∑
ij

nij log
erij∑
k e

rik
(10)

where Pij is the transition probability from i to j. The potential energy can
now be written as:

E(R) = −logp(R|X,α,G0) = −L(R)− logp(R) (11)

where we have omitted the conditional dependence on α and G0 for simplicity.
Using Equations 9 and 10, Equation 11 can be rewritten as follows:

E(R) =


∑
i

(
− αw2

i rii + αerii − nii(rii − log
∑
k e

rik)

+
∑
j>i(−αwiwjrij + αerij − nij(rij − log

∑
k e

rik)
)
, if G symmetric∑

i,j

(
− αwiwjrij + αerij

−nij(rij − log
∑
k e

rik)− nji(rji − log
∑
k e

rjk)
)
, otherwise

(12)

where we have omitted the terms that do not depend on rij ’s. Calculating the
derivatives of the energy with respect to each rij is now straightforward and for
the symmetric case is:

dE
drst

=

{
−αwswt + αerst − nst − nts +

∑
j nsjσt(rs:) +

∑
i ntiσs(yt:) if s 6= t

−αw2
s + αerss − nss +

∑
j nsjσs(rs:) if otherwise.

(13)

where we have used that
d(log

∑
k e

rik )

drij
= σj(ri:) := erij∑

k e
rik

.

Sampling the state sequence X. We use the forward-backward algorithm
to sample the latent state sequence X given the current state of all other vari-
ables in the model. This is a dynamic programming algorithm that efficiently
computes the state posteriors over all the hidden state variables Xt.
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Sampling the emission matrix E The posterior over the emission matrix
is

p(E|Y,X) ∝ p(Y |E,X)p(E)

The explicit form of the posterior depends on the output, the observed Y , that
is multinomial, Poisson or Gaussian. In all cases, due to conjugacy, the emission
matrix is sampled exactly. In particular:

• Multinomial output:

prior: p(E) = Dir(q1, . . . , qK), qk = 1∀k ∈ [1, . . . ,K]

posterior : p(Ek|Y ) = Dir(q′1, . . . , q
′
K), q′k = qk + emkl

where Ek refers to the k-th row of the k × L matrix E and emkl is the
number of times the system was in state K and emitted symbol l

• Poisson output:

prior: p(E) = Gamma(αλ, βλ)

posterior : p(Ekl|Y ) = Gamma(αλ + emk, βλ + ckl)

where emk is the number of times the system was in state K and ckl is
the sum of the elements of Y that correspond to state k and row l.

• Gaussian output:

prior: p(Ek) = p(µ, σ2) ∼ NΓ−1(µ0, k0, a0, b0)

posterior : p(Ek|Y ) = NΓ−1(µ′0, k0′, a0′, b0′)

where Ek is a 2-element row for each state k in the K × 2 matrix E
constaing the mean and the standard deviation for each state.

6 Joint distribution tests

We give evidence for the correctness of our algorithm using the joint distri-
bution testing methodology of Geweke (2004). There are two ways to sample
from the joint distribution, P (Y, θ) over parameters, θ = {G0, G,X,E, α, α0}
and data, Y defined by a probabilistic model such as SHGP. The first we will
refer to as “marginal-conditional” sampling, shown in Algorithm 1. Both steps
here are straightforward: sampling from the prior followed by sampling from
the likelihood model. The second way, referred to as “successive-conditional”
sampling, is shown in Algorithm 2, where Q represents a single (or multiple)
iteration(s) of our MCMC sampler. To validate our sampler we can then check,
either informally or using hypothesis tests, whether the samples drawn from
the joint P (Y, θ) in these two different ways appear to have come from the
same distribution. We apply this method to our SHGP sampler with chain
length T = 200. We draw 104 samples using both the marginal-conditional and
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Algorithm 1 Marginal conditional

1: for m = 1 to M do
2: θ(m) ∼ P (θ)
3: Y (m) ∼ P (Y |θ(m))
4: end for

Algorithm 2 Successive conditional

1: θ(1) ∼ P (θ)
2: Y (1) ∼ P (Y |θ(1))
3: for m = 2 to M do
4: θ(m) ∼ Q(θ|θ(m−1), Y (m−1))
5: Y (m) ∼ P (Y |θ(m))
6: end for

successive-conditional procedures and look at various characteristics of the sam-
ples including α0, α, the base weight vector W and the weight matrix J . The
distribution of the number of features under the successive-conditional sampler
matches that under the marginal-conditional sampler almost perfectly as shown
in Figure 6.The histogram plots show the similarity of the two distributions. Un-
der the successive-conditional sampler the average value of α 3.01 while under
the marginal-conditional is 3.02 with standard deviations 0.99 and 1.00 respec-
tively. For the mean value of the edge weights Jij ’s, the successive conditional
sampler gave 0.95 with standard deviation 0.43, while the marginal conditional
0.93 with standard deviation 0.42 : a hypothesis test for both parameters did
not reject the null hypothesis that the means of the two distributions are equal.
While this cannot completely guarantee correctness of the algorithm and code,
104 samples is a large number for such a small model and thus provides strong
evidence that our algorithm is correct.
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Figure 2: Geweke plots for SHGP using simple Hybrid Monte Carlo
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