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Abstract

We present a nonparametric prior over reversible
Markov chains. We use completely random mea-
sures, specifically gamma processes, to construct
a countably infinite graph with weighted edges.
By enforcing symmetry to make the edges undi-
rected we define a prior over random walks on
graphs that results in a reversible Markov chain.
The resulting prior over infinite transition matri-
ces is closely related to the hierarchical Dirichlet
process but enforces reversibility. A reinforce-
ment scheme has recently been proposed with
similar properties, but the de Finetti measure is
not well characterised. We take the alternative
approach of explicitly constructing the mixing
measure, which allows more straightforward and
efficient inference at the cost of no longer having
a closed form predictive distribution. We use our
process to construct a reversible infinite HMM
which we apply to two real datasets, one from
epigenomics and one ion channel recording.

1. Introduction

Consider a sequence of states X, ..., X sampled from
a reversible Markov chain. A Markov chain is said to be
reversible if the probability of the chain is the same ob-
served either forwards or backwards in time. Reversibil-
ity is a realistic assumption in various settings. For in-
stance, reversible Markov chains are appropriate to model
the time-reversal dynamics in physical systems, such as the
transitions of a macromolecule conformation at fixed tem-
perature or chemical dynamics in protein folding. In these
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settings, the system transitions between hidden states over
time emitting a sequence of observations Y7, ..., Y. Our
aim is to recover the process and hidden state sequence that
gave rise to this observed data. To do this we define a prior
over reversible Markov chains.

There is a close connection between reversible Markov
chains and random walks on graphs. More specifically, a
random walk on a weighted undirected graph produces a
reversible Markov chain. In a random walk on a graph, the
traveller jumps to the next node (state) with probability pro-
portional to the corresponding edge weight. Our aim is to
put a prior over the unknown transition matrix (analogously
the weights) that guides the walk. Much research has
gone into connecting random walks on graphs to reversible
Markov chains with seminal works by Diaconis and Freed-
man (1980) and Diaconis and Coppersmith (1986). The
latter assumes an edge reinforced random walk (ERRW)
where the edge weight is increased by one each time an
edge is crossed. The process is defined for a finite state
space and, in the limit, gives weights that are distributed
according to an explicitly characterised mixing measure,
which can be a conjugate prior for the reinforcement pro-
cess. In the more recent work of Bacallado et al. (2013),
the authors define a three-parameter random walk with re-
inforcement, named the (6, «, 3) scheme, which general-
izes the linearly edge reinforced random walk to count-
ably infinite spaces. However, a closed form for the prior
(mixing measure) is lacking and inference in this model
is challenging. In this work, we assume countably infi-
nite state space and take the alternative approach of explic-
itly constructing the prior over the transition matrix. Infer-
ence can be then performed using relatively straightforward
Markov Chain Monte Carlo methods. We use the resulting
reversible Markov chain as the hidden sequence in a Hid-
den Markov model whose utility we validate on two real
world datasets.

The paper is organized as follows. In Section 2, we briefly
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provide some background on the Gamma process which is
central to our model definition. In Section 3, we describe
the process proposed in this manuscript. We discuss its the-
oretical properties in Section 4 and provide a de Finetti rep-
resentation for the process in Section 5. The finite version
of the model and its HMM extension appear in Sections
6 and 7 and inference, performed via a Gibbs sampler, is
described in Section 8. In Section 9 we study our model’s
performance on real datasets and in Section 10 we conclude
our work and provide a short discussion about future direc-
tions.

2. The Gamma Process

To facilitate understanding, we briefly review the Gamma
process I'P(«p, 1) over a space X. A realization Gy ~
T'P is a positive measure on the space X, which can be rep-
resented as a countable weighted sum of atoms. Each atom
i at ; € X has corresponding weight w; € (0,00). The
atoms and weights are distributed according to a Poisson
process over the product space X' X [0, 00) with intensity
measure

v(dw,dz) = p(dw)uo(dz) = apw™ e~ dw g (dr).
(1

where i is the base measure and « is the concentration
parameter. v is known as the Lévy measure of the gamma
process, and because of this representation the gamma pro-
cess is a Lévy process. In this paper, we assume that the
base measure is the Lebesgue measure. A sample from this
Poisson process will yield a countably infinite collection of
atoms {z;, w; }$2, since fXX[O,oo) v(dw,dz) = oco. We
assume L is diffuse (non-atomic) and so, we can write:

Go =Y _wiby, ~TP(ag, o) )
=1

Intuitively, Go(A) sums up the values of w; with z; € A.
It can be shown that the distribution of Gy(A), where
A C X, is Gamma(aopo(A), ap), hence the name of the
process. The gamma process is a completely random mea-
sure (Kingman, 1967) and as such for any disjoint and mea-
surable partition Aq,..., A, of X the random variables
{Go(A1),...,Go(Ay)} are mutually independent gamma
variables.

3. Model Description

Given a measurable space {X, F}, with a set X’ and a o-
algebra F of subsets of X', our aim is to construct a model,
a sample from which will give rise to a reversible Markov
chain of states X1,...,Xs,..., Xp. At each time point ¢
the chain is at a state « denoted as X; = x. We require
that the set S := {z; € X, i € N} is countable. We

construct the prior by deploying the gamma process in a
hierarchical fashion; we use a gamma process to sample
the states and given these states, we construct the transition
matrix by sampling from another gamma process.

More carefully, let TP(«v, o) be a gamma process on X',
with concentration parameter «g and base measure pg, as
given by Equation 1. A sample G from this process corre-
sponds to the set of atoms S = {z; € X, i € N} and their
associated weights {w; }$2; as in Equation 2. Note that by
construction the cardinality of the set {z;}72, is countably
infinite and there is a one-to-one mapping of the atoms in
S to the set of natural numbers N. We define a new gamma
process I'P(«, 1) on the product space S x S, with concen-
tration parameter o and atomic base measure

Wi, zj) = Go(wi)Go(w;) 3)

where S is the support of G. The base measure y is atomic
and as such, assigns non-zero mass on atoms on the prod-
uct space S x S. Since G| is discrete a.s., G will also be
discrete so we can write

G=>> Jijbua,, (4)
i g

where, from the definition of the Gamma process with fixed
points of discontinuity (z;, z;), we have

Jij|Go ~ Gamma(apu(z;, z;), o) = Gamma(aw,wj, cv)

(&)

where aw;w; is the shape and « the rate of the gamma dis-
tribution. To avoid notation overload, we also use J to rep-
resent the weight matrix which when normalised per row,
gives the transition matrix P such that P;; = P(x;,z;) =

Z‘Zf] is the probability of transitioning to state x; given

that the chain is in state x; currently. The transition matrix

P is stochastic, that is, its entries are all non-negative and
>, P =1, forall z; € S. By the additive property

jix; €S

of the gamma process, each row J; in the weight matrix is

still a sample from a gamma process in the restricted space

{z;} x S with base measure y, so

G({x;},-) = ZJﬁém 6)

To generate the sequence X, ..., X, we draw an initial
state X ~ @0, where éo is the normalised random mea-
sure derived from G, i.e. Gy = Go/Go(X) and sample
the transition X,,_; — X, as follows:

G(Xn-1,")

XolXpo1, G~ 0
e TS W)

- P(anla ) (7)

The process can be thought of as a weighted random walk
on a graph, with vertex set S and edge set {(x,y) €
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(a) SHGP

(b) SHGP - HMM

Figure 1. (a) Graphical model for SHGP and (b) SHGP as part of
an HMM where the time series X and Y are represented as single
nodes.

X% J;; > 0} J: 8§ xS — (0,00) is a function that
puts non-negative weight to each edge in the graph.

The above random walk has not yet yielded a reversible
Markov chain. To achieve this reversibility we modify (5)
so that J;; is symmetric, i.e.

Jij = Jji|Go ~ Gamma(aw,;w;, a) (3)

The function J is now symmetric and the new G defined us-
ing symmetric J is no longer a draw from a completely ran-
dom measure because of the dependency induced by this
symmetry. However, each row is still marginally a draw
from a completely random measure. The resulting transi-
tion matrix P is a sample from the prior, the construction
of which was just described.

We note here that the choice of the shape value for each J;;
weight might not be restricted to the product of the corre-
sponding w’s. Depending on the dataset at hand, the choice
might vary. We call the proposed model Symmetric Hi-
erarchical Gamma Process and use the acronym SHGP. A
graphical representation of the model is presented in Figure

1(a).

Relation to Hierarchical Dirichlet process. The con-
struction of the proposed SHGP prior closely relates to
the Hierarchical Dirichlet process (Teh et al., 2006). Both
processes use random measures in a hierarchical way:
the HDP uses the Dirichlet process, while the SHGP the
Gamma process as seen in Table 1, where J; refers to the
j-th row of the weight matrix. Moreover, both processes
when used for the infinite Hidden Markov models (Beal
et al., 2003), put a prior on the transition matrix P but in
a different fashion; the HDP directly defines a prior over
P, while the SHGP puts a prior on the weight matrix J,

Table 1. HDP, HGP and SHGP

HDP HGP SHGP

Go ~ DP(appo)
J, ~ DP(a/Gl)

Go ~ I'P(ag, po)
J; ~TP(&,G,)

Go ~ I'P(ayg, o)
Jj ~ FP(awj7 G())

the per-row normalisation of which gives the transition ma-
trix. As such, the SHGP allows for a direct treatment of
the weigths, the symmetry in Equation 8 is imposed and
reversibility arises. The normalised, non-symmetrised ver-
sion of the proposed process is equivalent to the HDP with
appropriate priors on the concentration parameters: details
can be found in the supplementary material.

Relation to Hierarchical Gamma process. Interesting
is the relation of the SHGP to the simple Hierarchical
Gamma process (HGP) also seen in Table 1. Both pro-
cesses use the Gamma process in a hierarchical way. The
HGP does not assume symmetry in the weights but this
can be easily imposed. However, the random variable J;;
is sampled from Gamma distributions with different shape
parameters. More specifically

Jij = Jji|Go ~ Gamma(éw;) for the HGP
Jij = JJZ|G0 ~ Gamma(awiwj) for the SHGP  (9)

As seen in Equation 9, in SHGP the base weights of both
the nodes ¢ and j contribute to the edge weight J;;, as op-
posed to the HGP where only one of the base weights in-
fluences the shape. As already stated earlier in this Section,
this is a modelling choice that depends on whether or not
contribution of both nodes is desired. More details about
the relation amongst SHGP, HGP and HDP can be found in
the supplementary material.

4. Theoretical Properties

In this section, we describe important theoretical proper-
ties of the induced Markov chain given the sample from
the SHGP process. The theory used, is the theory applied
on Markov chains on countably infinite space since the in-
duced Markov chain falls in this category.

Reversibility. In order to prove that the induced Markov
chain is reversible, it is sufficient to prove that detailed bal-
ance holds, that is

’/T(iEl)Plj = W(Ij)Pj' (10)

where 7 is the probability defined by 7(z;) = Zzii‘]f}’
1 2ik ik
and P is the stochastic transition matrix induced by the

rows of the symmetrised .J.
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Proof
We have
Dodin i Jij
EARECAND 37 SRV SRV 3% s R
i Ydie i
Zz Em Jix Zz ZK Jix Zn Jjr
= 7(z;)Pji, (11

as a result of (8). As a straighforward corollary, 7 is the
invariant measure of the chain.

Is the normalization constant per row finite? When
defining the transition matrix P, it is crucial that the sum
of each row in the weight matrix J is almost surely (a.s.)
finite, since this ensures that the normalization is a well-
defined operation. In other words, we want to ensure that
for every row j in the weight matrix | Do in| < oo holds
a.s. To start with, the sum ‘ Zi wl| converges a.s., that is

‘sz‘ <00, a.s. (12)

if the well-known condition on the Levy measure p(dw)
that

/ (1—-e"")p(dw) < oo, (13)
Rt

holds. For a Gamma process where p(dw) = apw~le~%w
it is easy to prove that the above condition holds and as such
the sum in (12) converges. Since the weights w; are defined
over the space [0, 00), we ensure that w; > 0 always. Con-
sequently, we can drop the absolute value notation and sim-
ply write > -, w; < co. Moreover, since the measure over
w is continuous, P(w; = 0) = 0forViand ), w; > 0 a.s.

The sum in each row i in the weight matrix is ) ; J;;. Each
element J;; of this sum is a gamma distributed variable
sampled from the gamma distribution Gamma(aw;w;, @).
Recall here that the variables J;; and J;; are being sam-
pled from the same Gamma distribution. This, along with
the property that the sum of gamma distributed variables
with the same rate parameter is a gamma distributed vari-
able with the shape equal to the sum of the shape param-
eters of the individual gamma variables and the same rate
gives the following marginally

Z in ~ Gamma(awj Z w;, Oé) (14)

Since we have ensured that 0 < ZZ w; < oo a.s., then
> ; Jji 1s finite a.s., ensuring that the normalization for ev-
ery row in the weight matrix is a well-defined operation.

Irreducibility and aperiodicity. A Markov chain is irre-
ducible if it is possible to get from any state to any other

state in a finite number of steps with positive probabil-
ity. In other words, when a Markov chain is irreducible,
the sample path (the state sequence) cannot get trapped in
smaller subsets of the state space. That is, for any two states
x;,x; € X there exists an integer ¢, such that the transition
probability from x; to x; at time step ¢ is positive, that is
Pfj > 0. It is easy to see that the proposed generative pro-
cess produces an irreducible Markov chain almost surely.
Looking at the weight matrix, we see that the elements are
gamma distributed variables with support J;; € (0,00),
and thus are positive almost surely. This, along with the ex-
istence (and finiteness) of the normalization constant shows
that the probability of moving from one state to any other in
one step is always positive and the chain is irreducible. Let
T;i »={t > 1: P, > 0} be the set of times when it is pos-
sible for the chain to return to starting state X;. The period
of the state X; is defined to be the greatest common divisor
of Tj;. For an irreducible chain, the period of it is defined to
be the period which is common for all the states. We note
that the transition matrix is strictly positive and as a result
the chain can be in any state in one step. This implies that
all the states have period 1 and the chain is aperiodic.

Convergence. We showed that the generated Markov
chain has an invariant probability distribution 7. A state
x; is positive recurrent if the expected amount of time
to return to state ¢ given that the chain started in state
x; has finite first moment that is, E(7;) < oo, where
Ti; = min{n > 1 : X,, = z;|Xo = z;} is the time
(after time 0) until reaching state x; given Xo = x;. Anir-
reducible Markov chain with transition matrix P is positive
recurrent if and only if there exists a probability distribution
7 on X such that m = 7P [Theorem 21.12, (Levin et al.,
2006)]. As such, the generated Markov chain {57, 52 ...}
is positive recurrent. Irreducibility, aperiodicity and pos-
itive recurrence ensure that the invariant distribution 7 is
unique and for all x € X [Theorem 21.14, (Levin et al.,
2000)],

Jim (P!, ) = 7l =0 (15)
where T'V denotes the total variation distance between the
two distributions. Equation (15) describes the convergence
of the chain as ¢ — 400 and states that every row in the
transition matrix P? converges to the stationary distribution
m eventually. In other words, the invariant distribution 7 is
also the limit distribution of the chain.

5. de Finetti Representation

Diaconis and Freedman (1980) defined a type of exchange-
ability for Markov chains, known as Markov exchangeabil-
ity and it is defined for sequences X1, Xo,... in a count-
able space A as follows:
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Definition 1 A process on a countable space X is Markov
exchangeable if the probability of observing a path
X1,..., X, is only a function of X1 and the transition
counts C(z,y) = {X1 = z,Xi11 = y;1 < i < n}|
forallz,y € X.

In other words, a sequence is Markov exchangeable if
the initial state X; and the transition counts are sufficient
statistics. Intuitively, this means that two different state
sequences are equiprobable under the joint distribution, if
they begin with the same value and preserve the transition
counts between unique values. They also proved the fol-
lowing

Theorem 1 (Diaconis and Freedman, 1980) A process is
Markov exchangeable and returns to every state visited in-
finitely often (recurrent), if and only if it is a mixture of
recurrent Markov chains.

In the previous Sections, we defined a prior over transition
matrices using a hierarchy of gamma processes. We also
proved that the induced Markov chains (given the transi-
tion matrix sampled from the prior) are recurrent. The use
of the prior let us write the state sequence as a mixture of
recurrent Markov chains and using Theorem 1 we can state
that the sequence { X, } generated by the proposed process
and defined on a countably infinite space S is Markov ex-
changeable and recurrent.

Proposition 1 For some measure p on S x P, where P is
the space of stochastic matrices on S X S, the distribution
of (X;)ien, can be represented as

n—1
p(Xh...,Xn):/ [[ P(Xi. Xis1)e(X1,dP) (16)
P =1

Equation (16) shows the de Finetti representation of the
proposed process. The de Finetti measure is the distribu-
tion ¢ over the product of the space S and the space of
stochastic matrices P.

6. Finite Model

The inference simplifies considerably if we consider the
finite state model which gives the countably infinite state
model in the limit. More carefully, we assume that we have
a finite number of states K and we prove that as K — oo,
the model converges in distribution to the countably infinite
model.

The infinite divisibility property of the gamma process G
on X states that for each K = 1,2,... there exists a se-
quence of i.i.d. random variables Go(A1) + - -+ Go(Ak)
such that

Go(X) L Go(Ar) + -+ + Go(Ax) (17)

where £ is equality in distribution. Due to the ad-
ditive property of the Gamma distribution, for any fi-
nite, disjoint and measurable partition A;,..., Ax of
X such that X = Ufil A;, the variable Go(X) with
law Gamma(aopo(X), ) can be written as the sum
of K Gamma distributed variables each one follow-
ing the law Gamma(oopuo(A4;), ), that is Go(X) =
Zﬁil Go(A;). The additive property of o ensures that

o(X) = Zfil to(A;) and as such the shape parameter

of the Gamma distribution of Go(X’) will be equal to the

ap Zjil po(A;). As K — oo we recover the infinite case

and Equation (17) holds. For simplicity, we assume that
) = Ho(X)

to(A;) K

By restricting the process to the finite case, we facilitate in-
ference without compromising the properties of the model
since K can always be chosen sufficiently large. Putting
everyting together, the generative process in the finite case
is as follows:

K
Go =Y wiby,
=1

w; ~ Gamma(aguo(x;), ap)

K K
G = Z Z Jijézi@j

i=1 j=1

Jij = Jj; ~ Gamma(ow;wj, o) (18)

7. The SHGP Hidden Markov model

In typical sequential data analysis we are more interested
in using a Markov chain as the hidden state sequence in a
Hidden Markov model (HMM) rather than viewing X as
observations themselves. This allows a broad range of data
types to be modelled: the examples we will demonstrate
here include univariate continuous and multivariate count
data. Thus we use the SHGP to construct a Hidden Markov
model. Consider a sequence of observations {Y; € Y :
t = 1,...,T} which we will assume to be independent
conditioned on the latent state sequence X. For simplicity
consider X; € {1,..., K} under the finite SHGP, and a
parametric family of observation models F'(+|6), then

Yt‘Xtae ~tid F(.‘eXt)

where {0,k = 1,--- , K} are the state emission parame-
ters. In the case of multinomial outputs 6, is a probability
vector, the concatenation of which is known as the emission
matrix. The SHGP gives the prior over the hidden state se-
quence as shown in Figure 1(b). We present multinomial,
Poisson and Gaussian observation models F(.), the details
for which are given in the supplementary material.
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8. Inference

As with many other Bayesian models, exact inference
is intractable so we employ Markov Chain Monte Carlo
(MCMQ) for posterior inference over the latent variables
of the model as seen in Figure 1(b). A detailed descrip-
tion of the sampling steps is provided in the supplementary
material. The sampler iterates as follows:

Sampling the concentration parameters, op and . We
used slice sampling by (Neal, 2003) to infer the parameters
a0 and « using Gamma priors g ~ Gamma(sg, o) and
a ~ Gamma(s, ), where {sq, 70} and {s,r} are the pairs
of shape and rate parameters for oy and o respectively.

Sampling the weight vector, Gy. The vector Gy is the
vector of the base weights Go = [w1, ..., wk] in the cor-
responding random measure Gy = ), wy0,,. We used
slice sampler to sample each weight wy,.

Sampling the weight matrix, J . The weight matrix J
contains the edge weights {.J;;}. We used hybrid Monte
Carlo (Neal, 2011) to sample the elements of the matrix at
once instead of sampling each element at a time using slice
sampling. In the reversible case, only K (K +1)/2 weights
are sampled because of the symmetry in J. We also show
results using NUTS (Hoffman and Gelman, 201 1) although
we find this gives similar performance to HMC in this set-
ting.

Sampling the state sequence, X. We use the forward-
backward algorithm (Scott, 2002) to sample the latent state
sequence X given the current state of all other variables in
the model. This is a dynamic programming algorithm that
efficiently computes the state posteriors over all the hidden
state variables X;.

Sampling the emission matrix, £. The posterior over
the emission matrix is

p(E]Y, X) o< p(Y|E, X)p(E)

The explicit form of the posterior depends on the output,
the observed Y, that is multinomial, Poisson or Gaussian.
In all cases, due to conjugacy, the emission matrix is sam-
pled exactly.

9. Experiments

In this section we evaluate the SHGP by running the SHGP
Hidden Markov model on two real world datasets. The
datasets are especially chosen such that the underlying sys-
tems are reversible. For completion, we also ran SHGP as-
suming non-reversibility by not imposing symmetry in the
inferred weight matrix J. Moreover, we compare SHGP to

the infinite HMM which learns a transition matrix for the
hidden state sequence and does not account for reversibil-
ity. For the iHMM we use the beam sampler (Van Gael
et al., 2008).

Prediction. A principled way to evaluate a generative
model is by its ability to predict missing data values given
some observations. For SHGP we collect M samples from
the posterior {{EM, XMW} .. {EM) XM} and es-
timate the predictive distribution of a missing entry in the
dataset Y as the average of the predictive distributions for
each of the collected samples. For the experiments we ran,
we used two different likelihoods, a Poisson and a Gaus-
sian. The supplementary material provides a detailed de-
scription of the likelihood models.

9.1. ChIP-seq epigenetic marks

For this experiment we used ChIP-seq (chromatin immuno-
precipitation sequencing) data, representing histone modi-
fications and transcription factor binding in human neural
crest cell lines (see Park (2009) for a nice review). ChIP-
seq is a method to identify the sites in a DNA sequence
where specific proteins are bound. The workflow of ChIP-
seq is: 1) DNA is extracted from cells, 2) the proteins
of interest (POI) and DNA are chemically bound (“cross-
linked”), 3) the DNA is fragmented using sonification, 4)
an appropriate antibody is used to filter out the DNA frag-
ment bound to the POI using immunoprecipitation, 5) the
POI is removed from the DNA, 6) the DNA is sequenced.
The reads are finally mapped to a known reference se-
quence. Note that reversibility is reasonable here because
although individual genes have direction, the genome as a
whole has no particular direction.

The resulting observed sequence Yj; is a L x T matrix of
counts, representing how many reads for POI [ mapped to
bin ¢, where a bin is a 100bp region of the genome (different
size bins could be used, but 100bp is commonplace). A
small section of our full L = 6 by T" = 20000 dataset
Y, of length 300, along with the identifiers of the POlIs is
shown in Figure 2.

ChiSeq results presented in Table 2. We ran 10 repeats,
each time holding out different 20% of the data Y and us-
ing different random initilisation. The likelihood model
used here is Poisson and the task was to predict the held
out values in Y. We see that in terms of predictive per-
formance the reversible SHGP-HMM outperforms both the
non-reversible version of the model and the iHMM trained
using beam sampling. The “emission” matrix, the L by K
matrix of Poisson rates is shown in Figure 9.1 where we
identify expected states known as enhancers and promot-
ers based on their activity levels for the different markers
(POIs).
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H3K27ac
H3K27me3
H3K4me1

H3K4me3
p300
Pol2

enhancers promoters

Figure 3. Learnt emission matrix L X K for ChIP-seq dataset. Element Ej;, is the Poisson rate parameter for protein [ in state k. Brighter
indicates higher values. Here we associate the states learnt in an supervised manner with known functional regulatory elements, see e.g.
Rada-Iglesias et al. (2010)

Table 2. ChipSeq results for 10 runs using different hold out patterns. We used a truncation level of K = 20, 1000 iterations and a
burnin of 700.

Model Alogirthm Train error Test error Train log likelihood  Test log likelihood
Reversible HMC 0.9122 £ 0.0032 1.1158 +0.0097 —1.0488 +0.0009 —3.2422 + 0.0023
Non-reversible 0.9127 £ 0.0033 1.1167 = 0.0095 —1.0494 £ 0.0009 —3.2478 £ 0.0022
iHMM Beam Sampler  0.9383 +£ 0.0061 1.1365 + 0.0107 —1.0727 £ 0.0041 —3.3047 £ 0.0027

200 T

—— H3K27ac
150 H3K27me3
——— H3Kamel
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Pol2

ohaaans wdia ,‘A{\ ot ol ..\ WY
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Figure 2. ChipSeq data for a small region of chromosome 1. The
H... markers are histones with various chemical modifications,
Polll is RNA polymerase II and p300 is a transcription factor.

9.2. Single ion channel recordings

Patch clamp recordings are a well established experimental
method to measure conformational changes in ion chan-
nels, proteins embedded in lipid membranes of cells (such
as the cell surface membrane), which control the flow of
chemicals such as neurotransmitters across the membrane.
These changes are accompanied by changes in electrical
potential which can be measured. HMMs have been used
to analyse these recordings for many years (Becker et al.,
1994), but have usually ignored the prior knowledge that
the underlying physical system has time reversible dynam-
ics. We incorporate this information using the SHGP-
HMM, analysing a IMHz recording from the state-of-the-
art method of Rosenstein et al. (2013) of a single alame-
thicin channel. We subsample this time series by a factor
of 100 to obtain a T' = 10,000, 10KHz recording, which

we log transform and normalise. A small segment of the
recording, along with the fitted SHGP-HMM is shown in
Figure 6. Grey regions represent aritificial missingness
used to test the predictive performance of the models, as
shown in Table 3. Here we see that the reversible ver-
sion of SHGP-HMM outperforms both the non-reversible
version and the iHMM using the beam sampler, showing
the advantage of using the prior knowledge that the tran-
sition matrix should be reversible. More specifically, the
reversible model performs slightly better in terms of test er-
ror than the non-reversible model, although this difference
is not quite significant based on paired t-test (p = 0.08).
In terms of test log likelihood the reversible version of the
model does perform significantly better however. The use
of HMC or NUTS does not significantly impact the results
in this case. The iHMM using the beam sampler does sig-
nificantly worse in terms of train and test error, but not sig-
nificantly better than the non-reversible HGP-HMM.

SHGP-HMM typically uses 5 to 7 states for this dataset. A
typical sample of .J is shown in Figure 4 and the observa-
tion models for each state are illustrated in Figure 5. Com-
paring the histogram of currents to the learnt observation
models we see that some of the less common high energy
states are blurred into one, which could possibly be alle-
viated by more careful selection of priors. An additional
difficulty of ion channel recordings is that the current level
for a particular state tends to drift over time, which is not a
characteristic currently supported by our model.
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Figure 6. Ion channel recording (blue) with predictive distribution mean (red) and one standard deviation (pink region) and missing
regions used for assessing predictive performance (grey). The predictive variance here includes the variance of the state observation
model and uncertainty over the state, calculated by averaging over multiple hidden state samples. As expected the predictive variance in
the missing regions is increased and mostly covers the true signal, suggesting the model is well calibrated.

Table 3. Ion channel results across 10 different random hold out patterns. For SHGP-HMM we used a truncation of X = 15, 1000
iterations and a burnin of 700. 50 inner iterations of HMC or NUTS were run per outer iteration.

Model Alogirthm Train error Test error Train log likelihood  Test log likelihood
Reversible HMC 0.023 £0.001  0.030 £ 0.002 2.204 £ 0.055 2.034 £ 0.058
Non-reversible HMC 0.027 £0.007  0.033 £ 0.007 2.108 £ 0.084 1.970 £ 0.078
Reversible NUTS 0.024 £0.004 0.031 £ 0.003 2.190 £ 0.063 2.030 £ 0.062
Non-reversible NUTS 0.025 £ 0.005 0.032 &+ 0.004 2.142 £ 0.086 1.989 + 0.067
iHMM Beam sampler 0.038 + 0.005 0.045 + 0.004 2.134 £ 0.070 2.008 £ 0.058
600 . . . : : : :
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Figure 4. Learnt weight matrix J for the ion channel recording.
The states depicted are those ¢ with J;./J.. > 0.01 where . de-
notes summation. The states are ordered by the mean of their
Gaussian observation model. Transitions between states 1 and 2
with the lowest current levels are the most common, followed by
between states 2 and 4.

10. Discussion

Reversibility is a property met in various datasets, espe-
cially in ion channel recordings. In this paper, we have
introduced a hierarchical non-parametric model, SHGP,
which gives rise to reversible Markov chains. We have used
the SHGP to construct a Hidden Markov model allowing a
broad range of data types to be modelled. Our experimental
results on two different datasets suggest that accounting for

. e
0 0.5 1 15 2 25
normalised current

Figure 5. Clusters found by the sSHGP-HMM for the ion channel
dataset, shown relative to a histogram of levels across the record-
ing. The smaller clusters at higher currents are often merged in
the model.

reversibility intrinsically in SHGP results in gains in empir-
ical performance compared to non-reversible models. An
interesting direction for future work would be to apply the
SHGP to MCMC itself: in this settings, the second eigen-
value of the learnt transition matrix could be use as a mea-
sure of the mixing perform of the MCMC chain.
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