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Abstract
We prove an extension of McDiarmid’s inequal-
ity for metric spaces with unbounded diame-
ter. To this end, we introduce the notion of the
subgaussian diameter, which is a distribution-
dependent refinement of the metric diameter. Our
technique provides an alternative approach to
that of Kutin and Niyogi’s method of weakly
difference-bounded functions, and yields non-
trivial, dimension-free results in some interest-
ing cases where the former does not. As an ap-
plication, we give apparently the first generaliza-
tion bound in the algorithmic stability setting that
holds for unbounded loss functions. This yields a
novel risk bound for some regularized metric re-
gression algorithms. We give two extensions of
the basic concentration result. The first enables
one to replace the independence assumption by
appropriate strong mixing. The second gener-
alizes the subgaussian technique to other Orlicz
norms.

1. Introduction
Concentration of measure inequalities are at the heart of
statistical learning theory. Roughly speaking, concentra-
tion allows one to conclude that the performance of a (suffi-
ciently “stable”) algorithm on a (sufficiently “close to iid”)
sample is indicative of the algorithm’s performance on fu-
ture data. Quantifying what it means for an algorithm to be
stable and for the sampling process to be close to iid is by
no means straightforward and much recent work has been
motivated by these questions. It turns out that the various
notions of stability are naturally expressed in terms of the
Lipschitz continuity of the algorithm in question (Bousquet
& Elisseeff, 2002; Kutin & Niyogi, 2002; Rakhlin et al.,
2005; Shalev-Shwartz et al., 2010), while appropriate re-
laxations of the iid assumption are achieved using various
kinds of strong mixing (Karandikar & Vidyasagar, 2002;
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Gamarnik, 2003; Rostamizadeh & Mohri, 2007; Mohri
& Rostamizadeh, 2008; Steinwart & Christmann, 2009;
Steinwart et al., 2009; Zou et al.; Mohri & Rostamizadeh,
2010; London et al., 2012; 2013; Shalizi & Kontorovich,
2013).

Many of the aforementioned results are based on McDi-
armid’s inequality (McDiarmid, 1989):

P(|ϕ− Eϕ| > t) ≤ 2 exp
(
− 2t2∑n

i=1 w
2
i

)
, (1)

where ϕ is a real-valued function of the sequence of inde-
pendent random variables X = (X1, . . . , Xn), such that

|ϕ(x)− ϕ(x′)| ≤ wi (2)

whenever x and x′ differ only in the ith coordinate.
Aside from being instrumental in proving PAC bounds
(Boucheron et al., 2005), McDiarmid’s inequality has also
found use in algorithmic stability results (Bousquet & Elis-
seeff, 2002). Non-iid extensions of (1) have also been con-
sidered (Marton, 1996; Rio, 2000; Chazottes et al., 2007;
Kontorovich & Ramanan, 2008).

The distribution-free nature of McDiarmid’s inequality
makes it an attractive tool in learning theory, but also
imposes inherent limitations on its applicability. Chief
among these limitations is the inability of (1) to provide
risk bounds for unbounded loss functions. Even in the
bounded case, if the Lipschitz condition (2) holds not ev-
erywhere but only with high probability — say, with a
much larger constant on a small set of exceptions — the
bound in (1) still charges the full cost of the worst-case
constant. To counter this difficulty, Kutin (2002); Kutin &
Niyogi (2002) introduced an extension of McDiarmid’s in-
equality to weakly difference-bounded functions and used
it to analyze the risk of “almost-everywhere” stable algo-
rithms. This influential result has been invoked in a number
of recent papers (El-Yaniv & Pechyony, 2006; Mukherjee
et al., 2006; Hush et al., 2007; Agarwal & Niyogi, 2009;
Shalev-Shwartz et al., 2010; Rubinstein & Simma, 2012).

However, the approach of Kutin & Niyogi entails some dif-
ficulties as well. These come in two flavors: analytical
(complex statement and proof) and practical (conditions are
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still too restrictive in some cases); we will elaborate upon
this in Section 3. In this paper, we propose an alternative
approach to the concentration of “almost-everywhere” or
“average-case” Lipschitz functions. To this end, we intro-
duce the notion of the subgaussian diameter of a metric
probability space. The latter may be finite even when the
metric diameter is infinite, and we show that this notion
generalizes the more restrictive property of bounded differ-
ences.

Main results. This paper’s principal contributions in-
clude defining the subgaussian diameter of a metric proba-
bility space and identifying its role in relaxing the bounded
differences condition. In Theorem 1, we show that the sub-
gaussian diameter can essentially replace the far more re-
strictive metric diameter in concentration bounds. This re-
sult has direct ramifications for algorithmic stability (The-
orem 2), with applications to regularized regression. We
furthermore extend our concentration inequality to non-
independent processes (Theorem 3) and to other Orlicz
norms (Theorem 4).

Motivation. The concentration properties of unbounded
functions become important in settings related to regres-
sion, such as sample bias correction, domain adaptation,
and boosting (Cortes & Mohri, 2014; Dasgupta & Long,
2003; Ben-David et al., 2006; Dudı́k et al., 2005; Mansour
et al., 2009). Subgaussian distributions occur in many prac-
tical applications, such as the histogram features in com-
puter vision (Torralba et al., 2008; Deng et al., 2009). This
class of distributions subsumes the Gaussian random vari-
ables, as well as all the bounded ones (such as Bernoulli,
uniform, and multinomial).

Outline of paper. In Section 2 we define the subgaussian
diameter and relate it to (weakly) bounded differences in
Section 3. We state and prove the concentration inequality
based on this notion in Section 4 and give an application
to algorithmic stability in Section 5. We then give an ex-
tension to non-independent data in Section 6 and discuss
other Orlicz norms in Section 7. Conclusions and some
open problems are presented in Section 8.

2. Preliminaries
A metric probability space (X , ρ, µ) is a measurable space
X whose Borel σ-algebra is induced by the metric ρ, en-
dowed with the probability measure µ. Our results are
most cleanly presented when X is a discrete set but they
continue to hold verbatim for general metric probability
spaces. In particular, it will be convenient to write Eϕ =∑
x∈X P(x)ϕ(x) even when the latter is an integral. Ran-

dom variables are capitalized (X), specified sequences are
written in lowercase, the notation Xj

i = (Xi, . . . , Xj) is

used for all sequences, and sequence concatenation is de-
noted multiplicatively: xjix

k
j+1 = xki . We will frequently

use the shorthand P(xji ) =
∏j
k=i P(Xk = xk). Standard

order of magnitude notation such as O(·) and Ω(·) will be
used.

A function ϕ : X → R is L-Lipschitz if

|ϕ(x)− ϕ(x′)| ≤ Lρ(x, x′), x, x′ ∈ X .

Let (Xi, ρi, µi), i = 1, . . . , n be a sequence of metric prob-
ability spaces. We define the product probability space

Xn = X1 ×X2 × . . .×Xn

with the product measure

µn = µ1 × µ2 × . . .× µn

and `1 product metric

ρn(x, x′) =
n∑
i=1

ρi(xi, x′i), x, x′ ∈ Xn. (3)

We will denote partial products by

X ji = Xi ×Xi+1 × . . .×Xj .

We write Xi ∼ µi to mean that Xi is an Xi-valued ran-
dom variable with law µi — i.e., P(Xi ∈ A) = µi(A) for
all Borel A ⊂ Xi. This notation extends naturally to se-
quences: Xn

1 ∼ µn. We will associate to each (Xi, ρi, µi)
the symmetrized distance random variable Ξ(Xi) defined
by

Ξ(Xi) = εiρi(Xi, X
′
i), (4)

where Xi, X
′
i ∼ µi are independent and εi = ±1 with

probability 1/2, independent of Xi, X
′
i . We note right

away that Ξ(Xi) is a centered random variable:

E[Ξ(Xi)] = 0. (5)

A real-valued random variable X is said to be subgaussian
if it admits a σ > 0 such that

EeλX ≤ eσ
2λ2/2, λ ∈ R. (6)

The smallest σ for which (6) holds will be denoted by
σ∗(X). We define the subgaussian diameter ∆SG(Xi) of
the metric probability space (Xi, ρi, µi) in terms of its sym-
metrized distance Ξ(Xi):

∆SG(Xi) = σ∗(Ξ(Xi)). (7)

In words, Ξ(Xi) is the signed distance between two points
independently drawn from Xi and σ∗ is the subgaussian
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moment of that random variable. If a metric probability
space (X , ρ, µ) has finite diameter,

diam(X ) := sup
x,x′∈X

ρ(x, x′) <∞,

then its subgaussian diameter is also finite:

∆SG(X ) ≤ diam(X ). (8)

The bound in (8) is nearly tight in the sense that for ev-
ery ε > 0 there is a metric probability space (X , ρ, µ) for
which

diam(X ) < ∆SG(X ) + ε (9)

(see the Appendix for proofs of (8) and (9), and related
discussion).

On the other hand, there exist unbounded metric proba-
bility spaces with finite subgaussian diameter. A simple
example is (X , ρ, µ) with X = R, ρ(x, x′) = |x− x′|
and µ the standard Gaussian probability measure dµ =
(2π)−1/2e−x

2/2dx. Obviously, diam(X ) = ∞. Now the
symmetrized distance Ξ = Ξ(X ) is distributed as the dif-
ference (=sum) of two standard Gaussians: Ξ ∼ N(0, 2).
Since EeλΞ = eλ

2
, we have

∆SG(X ) =
√

2. (10)

More generally, the subgaussian distributions on R are pre-
cisely those for which ∆SG(R) <∞.

3. Related work
McDiarmid’s inequality (1) suffers from the limitations
mentioned above: it completely ignores the distribution and
is vacuous if even one of the wi is infinite.1 In order to ad-
dress some of these issues, Kutin (2002); Kutin & Niyogi
(2002) proposed an extension of McDiarmid’s inequality to
“almost everywhere” Lipschitz functions ϕ : Xn → R. To
formalize this, fix an i ∈ [n] and letXn

1 ∼ µn andX ′i ∼ µi
be independent. Define X̃n

1 = X̃n
1 (i) by

X̃j(i) =
{
Xj , j 6= i
X ′i, j = i.

(11)

Kutin & Niyogi define ϕ to be weakly difference-bounded
by (b, c, δ) if

P
(
|ϕ(X)− ϕ(X̃(i))| > b

)
= 0 (12)

and

P
(
|ϕ(X)− ϕ(X̃(i))| > c

)
< δ (13)

1Note, though, that McDiarmid’s inequality is sharp in
the sense that the constants in (1) cannot be improved in a
distribution-free fashion.

for all 1 ≤ i ≤ n. The precise result of Kutin (2002, The-
orem 1.10) is somewhat unwieldy to state — indeed, the
present work was motivated in part by a desire for simpler
tools. Assuming that ϕ is weakly difference-bounded by
(b, c, δ) with

δ = exp(−Ω(n)) (14)

and c = O(1/n), their bound states that

P(|ϕ− Eϕ| ≥ t) ≤ exp(−Ω(nt2)) (15)

for a certain range of t and n. As noted by Rakhlin et al.
(2005), the exponential decay assumption (14) is necessary
in order for the Kutin-Niyogi method to yield exponential
concentration. In contrast, the bounds we prove here

(i) do not require |ϕ(X) − ϕ(X̃)| to be everywhere
bounded as in (12)

(ii) have a simple statement and proof, and generalize to
non-iid processes with relative ease.

We defer the quantitative comparisons between (15) and
our results until the latter are formally stated in Section 4.

The entropy method (Boucheron et al., 2003) may also be
used to obtain concentration for unbounded functions but
typically requires more detailed structural information. In
a different line of work, Antonov (1979) gave inequali-
ties for sums of independent random variables in the Or-
licz spaces; these were recently improved by Rio (2013b).
Bentkus (2008) considered an extension of Hoeffding’s in-
equality to unbounded random variables. Rio (2013a) gave
an Lp extension of McDiarmid’s inequality. Kim & Vu
(2000); Vu (2002) gave concentration inequalities for some
classes of non-Lipschitz functions. An earlier notion of “ef-
fective” metric diameter in the context of concentration is
that of metric space length (Schechtman, 1982). Another
distribution-dependent refinement of diameter is the spread
constant (Alon et al., 1998). Lecué & Mendelson (2013)
gave minimax bounds for empirical risk minimization over
subgaussian classes. More recently, Mendelson (2014)
presented a framework for learning without concentration,
which allows for unbounded loss functions and fat-tailed
distributions. Cortes et al. (2013) gave relative bounds for
unbound losses under moment assumptions. A result of
van de Geer & Lederer (2013) interpolates between sub-
gaussian and subexponential tails via a new Orlicz-type
norm. Perhaps closest in spirit to the present work is the
paper of Meir & Zhang (2003), whose Theorem 3 essen-
tially expresses a subgaussian condition.

4. Concentration via subgaussian diameter
McDiarmid’s inequality (1) may be stated in the notation
of Section 2 as follows. Let (Xi, ρi, µi), i = 1, . . . , n be a
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sequence of metric probability spaces and ϕ : Xn → R a
1-Lipschitz function. Then

P(|ϕ− Eϕ| > t) ≤ 2 exp
(
− 2t2∑n

i=1 diam(Xi)2

)
(16)

(the equivalence of (1) and (16) is proved in the Appendix).
We defined the subgaussian diameter ∆SG(Xi) in Section 2,
having shown in (9) that it never exceeds the metric diam-
eter. We also showed by example that the former can be
finite when the latter is infinite. The main result of this sec-
tion is that diam(Xi) in (16) can essentially be replaced by
∆SG(Xi):

Theorem 1. If ϕ : Xn → R is 1-Lipschitz and ∆SG(Xi) <
∞ for all i ∈ [n], then Eϕ <∞ and

P(|ϕ− Eϕ| > t) ≤ 2 exp
(
− t2

2
∑n
i=1 ∆2

SG(Xi)

)
.

Our constant in the exponent is worse than that of (16) by
a factor of 4. This appears to be an inherent artifact of our
method, and we do not know whether (16) holds verbatim
with diam(Xi) be replaced by ∆SG(Xi).

Proof. The strong integrability of ϕ — and in particular,
finiteness of Eϕ — follow from exponential concentration
(Ledoux, 2001). The rest of the proof will proceed via the
Azuma-Hoeffding-McDiarmid method of martingale dif-
ferences. Define Vi = E[ϕ |Xi

1]−E[ϕ |Xi−1
1 ] and expand

E[ϕ |Xi
1] =

∑
xni+1∈Xni+1

P(xni+1)ϕ(Xi
1x
n
i+1)

E[ϕ |Xi−1
1 ] =

∑
xni ∈Xni

P(xni )ϕ(Xi−1
1 xni ).

Let us write Ṽi to denote Vi as a function of Xi−1
1 with Xi

integrated out:

Ṽi =
∑
xni+1

P(xni+1)·

∑
xi,x′i

P(xi)P(x′i)
(
ϕ(Xi−1

1 xix
n
i+1)− ϕ(Xi−1

1 x′ix
n
i+1)

)
.

Hence, by Jensen’s inequality, we have

E[eλVi |Xi−1
1 ] ≤

∑
xni+1

P(xni+1)·

∑
y,y′

P(y)P(y′)eλ(ϕ(Xi−1
1 yxni+1)−ϕ(Xi−1

1 y′xni+1)).

For fixed Xi−1
1 ∈ X i−1

1 and xni+1 ∈ Xni+1, define F :
Xi → R by F (y) = ϕ(Xi−1

1 yxni+1), and observe that F is

1-Lipschitz with respect to ρi. Since et + e−t = 2 cosh(t)
and cosh(t) ≤ cosh(s) for all |t| ≤ s, we have2

eλ(F (y)−F (y′)) + eλ(F (y′)−F (y)) ≤ eλρi(y,y
′) + e−λρi(y,y

′).

Now for every term in the sum of the form exp(λ(F (y) −
F (y′))) there is a matching term with the opposite sign in
the exponent, and hence∑
y,y′∈Xi

P(y)P(y′)eλ(F (y)−F (y′)) (17)

≤ 1
2

∑
y,y′

P(y)P(y′)eλρi(y,y
′) +

∑
y,y′

P(y)P(y′)e−λρi(y,y
′)


= EeλΞ(Xi) ≤ exp(λ2∆2

SG(Xi)/2),

where Ξ(Xi) is the symmetrized distance (4) and the
last inequality holds by definition of subgaussian diameter
(6,7). It follows that

E[eλVi |Xi−1
1 ] ≤ exp(λ2∆2

SG(Xi)/2). (18)

Applying the standard Markov’s inequality and exponential
bounding argument, we have

P(ϕ− Eϕ > t) = P

(
n∑
i=1

Vi > t

)

≤ e−λtE

[
n∏
i=1

eλVi

]

= e−λtE

[
n∏
i=1

E[eλVi |Xi−1
1 ]

]

≤ e−λtE

[
n∏
i=1

exp(λ2∆2
SG(Xi)/2)

]

= exp

(
1
2
λ2

n∑
i=1

∆2
SG(Xi)− λt

)
. (19)

Optimizing over λ and applying the same argument to Eϕ−
ϕ yields our claim.

Let us see how Theorem 1 compares to previous results on
some examples. Consider Rn equipped with the `1 metric
ρn(x, x′) =

∑
i∈[n] |xi − x′i| and the standard Gaussian

product measure µn = N(0, In). Let ϕ : Rn → R be 1/n-
Lipschitz. Then Theorem 1 yields (recalling the calculation
in (10))

P(|ϕ− Eϕ| > ε) ≤ 2 exp(−nε2/4), ε > 0, (20)

whereas the inequalities of McDiarmid (1) and Kutin-
Niyogi (15) are both uninformative since the metric diam-
eter is infinite.

2 An analogous symmetrization technique is employed in Tao
(2009) as a variant of the “square and rearrange” trick.
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For our next example, fix an n ∈ N and put Xi =
{±1,±n} with the metric ρi(x, x′) = |x− x′| and the dis-
tribution µi(x) ∝ e−x

2
. One may verify via a calculation

analogous to (10) that ∆SG(Xi) ≤
√

2. For independent
Xi ∼ µi, i = 1, . . . , n, put ϕ(Xn

1 ) = n−1
∑n
i=1Xi. Then

Theorem 1 implies that in this case the bound in (20) holds
verbatim. On the other hand, ϕ is easily seen to be weakly
difference-bounded by (1, 1/n, e−Ω(n)) and thus (15) also
yields subgaussian concentration, albeit with worse con-
stants. Applying (1) yields the much cruder estimate

P(|ϕ− Eϕ| > ε) ≤ 2 exp(−2ε2).

5. Application to algorithmic stability
We refer the reader to (Bousquet & Elisseeff, 2002; Kutin
& Niyogi, 2002; Rakhlin et al., 2005) for background on
algorithmic stability and supervised learning. Our metric
probability space (Zi, ρi, µi) will now have the structure
Zi = Xi × Yi where Xi and Yi are, respectively, the in-
stance and label space of the ith example. Under the iid
assumption, the (Zi, ρi, µi) are identical for all i ∈ N (and
so we will henceforth drop the subscript i from these). A
training sample S = Zn1 ∼ µn is drawn and a learning al-
gorithm A inputs S and outputs a hypothesis f : X → Y .
The hypothesis f = A(S) will be denoted by AS . In line
with the previous literature, we assume that A is symmet-
ric (i.e., invariant under permutations of S). The loss of a
hypothesis f on an example z = (x, y) is defined by

L(f, z) = `(f(x), y),

where ` : Y × Y → [0,∞) is the cost function. To
our knowledge, all previous work required the loss to be
bounded by some constant M < ∞, which figures explic-
itly in the bounds; we make no such restriction. In the al-
gorithmic stability setting, the empirical risk R̂n(A, S) is
typically defined as

R̂n(A, S) =
1
n

n∑
i=1

L(AS , zi) (21)

and the true risk R(A, S) as

R(A, S) = Ez∼µ[L(AS , z)]. (22)

The goal is to bound the true risk in terms of the empirical
one. To this end, a myriad of notions of hypothesis stabil-
ity have been proposed. A variant of uniform stability in
the sense of Rakhlin et al. (2005) — which is slightly more
general than the homonymous notion in Bousquet & Elisse-
eff (2002) — may be defined as follows. The algorithm A
is said to be β-uniform stable if for all z̃ ∈ Z , the function
ϕz̃ : Zn → R given by ϕz̃(z) = L(Az, z̃) is β-Lipschitz
with respect to the Hamming metric on Zn:

∀z̃ ∈ Z,∀z, z′ ∈ Zn : |ϕz̃(z)− ϕz̃(z′)| ≤ β
n∑
i=1

1{zi 6=z′i}.

We define the algorithm A to be β-totally Lipschitz sta-
ble if the function ϕ : Zn+1 → R given by ϕ(zn+1

1 ) =
L(Azn1 , zn+1) is β-Lipschitz with respect to the `1 product
metric on Zn+1:

∀z, z′ ∈ Zn+1 : |ϕ(z)− ϕ(z′)| ≤ β
n+1∑
i=1

ρ(zi, z′i). (23)

Note that total Lipschitz stability is stronger than uniform
stability since it requires the algorithm to respect the metric
of Z .

Let us bound the bias of stable algorithms.

Lemma 1. Suppose A is a symmetric, β-totally Lipschitz
stable learning algorithm over the metric probability space
(Z, ρ, µ) with ∆SG(Z) <∞. Then

E[R(A, S)− R̂n(A, S)] ≤ 1
2β

2∆2
SG(Z).

We now turn to Lipschitz continuity.

Lemma 2. Suppose A is a symmetric, β-totally Lips-
chitz stable learning algorithm and define the function
ϕ : Zn → R by ϕ(z) = R(A, z) − R̂n(A, z). Then ϕ
is 3β-Lipschitz.

Combining Lemmas 1 and 2 with our concentration in-
equality in Theorem 1 yields the main result of this section:

Theorem 2. SupposeA is a symmetric, β-totally Lipschitz
stable learning algorithm over the metric probability space
(Z, ρ, µ) with ∆SG(Z) < ∞. Then, for training samples
S ∼ µn and ε > 0, we have

P
(
R(A, S)− R̂n(A, S) > 1

2β
2∆2

SG(Z) + ε
)

≤ exp
(
− ε2

18β2∆2
SG(Z)n

)
.

As in Bousquet & Elisseeff (2002) and related results on al-
gorithmic stability, we require β = o(n−1/2) for nontrivial
decay. Bousquet & Elisseeff showed that this is indeed the
case for some popular learning algorithms, albeit in their
less restrictive definition of stability. Below we show that a
natural metric regression algorithm is stable in our stronger
sense.

5.1. Stability of regularized nearest-neighbor
regression

In the regression setting, we take the label space Y to be
all of R (and note that many existing approaches require
Y to be a compact subst of R). Gottlieb et al. (2013) pro-
posed an efficient algorithm for regression in general met-
ric spaces via Lipschitz extension, which is algorithmically
realized by 1-nearest neighbors. Aside from efficiency,
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the nearest-neighbor approach also facilitates risk analy-
sis. To any metric space (X , ρ) we associate the metric
space (Z, ρ̄), where Z = X × R and ρ̄((x, y), (x′, y′)) =
ρ(x, x′) + |y − y′|. Suppose that (Z, ρ̄) is endowed with
a measure µ such that ∆SG = ∆SG(Z, ρ̄, µ) < ∞. Write
Fλ to denote the collection of all λ-Lipschitz hypotheses
f : X → R. The learning algorithm A maps the sample
S = Zi∈[n], with Zi = (Xi, Yi) ∈ X×R, to the hypothesis
f̂ ∈ Fλ by minimizing the empirical risk

f̂ = argmin
f∈Fλ

1
n

n∑
i=1

|f(Xi)− Yi|

over all f ∈ Fλ, where we have chosen the absolute loss
`(y, y′) = |y − y′|. We will give a heuristic argument
for the stability of 1-NN regression regularized by Lips-
chitz continuity λ. This argument will be fleshed out for-
mally in the full version of the paper. Since the value of a
Lipschitz extension at a point is determined by its nearest
neighbors (Bousquet & Elisseeff, 2002), it suffices to en-
sure that none of the n + 1 points (n sample and 1 test)
is too isolated from the rest. The subgaussian assump-
tion implies (see Rivasplata (2012, Theorem 3.1)) that with
probability 1 − n exp(−Ω(n)), each of the n + 1 points
is within distance O(∆SG) of another point. Since a λ-
Lipschitz function can vary by at most O(λD) over a ball
of diameter D, this implies that the regression algorithm is
β = O(λ∆SG/n)-stable. Thus, Theorem 2 yields the risk
bound

P
(
R(A, S)− R̂n(A, S) > (λ∆SG/n)2 + ε

)
≤ exp

(
−Ω

(
ε2n

λ2∆2
SG

))
+ n exp(−Ω(n)).

Note that the subgaussian assumption implies risk bounds
not depending on any dimensions (doubling or otherwise)
of the metric space (cf. Gottlieb et al. (2013)).

6. Relaxing the independence assumption
In this section we generalize Theorem 1 to strongly mix-
ing processes. To this end, we require some standard facts
concerning the probability-theoretic notions of coupling
and transportation (Lindvall, 2002; Villani, 2003; 2009).
Given the probability measures µ, µ′ on a measurable space
X , a coupling π of µ, µ′ is any probability measure on
X × X with marginals µ and µ′, respectively. Denoting
by Π = Π(µ, µ′) the set of all couplings, we have

inf
π∈Π

π(
{

(x, y) ∈ X 2 : x 6= y
}

) = 1
2

∑
x∈X
|µ(x)− µ′(x)|

= ‖µ− µ′‖TV (24)

where ‖·‖TV is the total variation norm. An optimal cou-
pling is one that achieves the infimum in (24); one always

exists, though it may not be unique. Another elementary
property of couplings is that for any two f, g : X → R and
any coupling π ∈ Π(µ, µ′), we have

Eµf − Eµ′g = E(X,X′)∼π[f(X)− g(X ′)]. (25)

It is possible to refine the total variation distance (24) be-
tween µ and µ′ so as to respect the metric of X . Given a
space equipped with probability measures µ, µ′ and metric
ρ, define the transportation cost3 distance Tρ(µ, µ′) by

Tρ(µ, µ′) = inf
π∈Π(µ,µ′)

E(X,X′)∼πρ(X,X ′).

It is easy to verify that Tρ is a valid metric on probabil-
ity measures and that for ρ(x, x′) = 1{x 6=x′}, we have
Tρ(µ, µ′) = ‖µ− µ′‖TV.

As in Section 4, we consider a sequence of metric spaces
(Xi, ρi), i = 1, . . . , n and their `1 product (Xn, ρn). Un-
like the independent case, we will allow nonproduct prob-
ability measures ν on (Xn, ρn). We will write Xn

1 ∼ ν to
mean that P(Xn

1 ∈ A) = ν(A) for all Borel A ⊂ Xn. For
1 ≤ i ≤ j < k ≤ l ≤ n, we will use the shorthand

P(xlk |x
j
i ) = P

(
X l
k = xlk |X

j
i = xji

)
.

The notation P(Xj
i ) means the marginal distribution ofXj

i .
Similarly, P(X l

k |X
j
i = xji ) will denote the conditional dis-

tribution. For 1 ≤ i < n, and xi1 ∈ X i1 , x′i ∈ Xi define

τi(xi1,x
′
i)=Tρni+1

(P(Xn
i+1|Xi

1 =xi1),P(Xn
i+1|Xi

1 =xi−1
1 x′i)),

where ρni+1 is the `1 product of ρi+1, . . . ρn as in (3), and

τ̄i = sup
xi1∈X i1 ,x′i∈Xi

τi(xi1, x
′
i),

with τ̄n ≡ 0. In words, τi(xi1, x
′
i) measures the transporta-

tion cost distance between the conditional distributions in-
duced on the “tail” Xni+1 given two prefixes that differ in
the ith coordinate, and τ̄i is the maximal value of this quan-
tity. Kontorovich (2007); Kontorovich & Ramanan (2008)
discuss how to handle conditioning on measure-zero sets
and other technicalities. Note that for product measures the
conditional distributions are identical and hence τ̄i = 0.

We need one more definition before stating our main result.
For the prefix xi−1

1 , define the conditional distribution

νi(xi−1
1 ) = P

(
Xi |Xi−1

1 = xi−1
1

)
3 This fundamental notion is also known as the Wasserstein,

Monge-Kantorovich, or earthmover distance; see Villani (2003;
2009) for an encyclopedic treatment. The use of coupling and
transportation techniques to obtain concentration for dependent
random variables goes back to Marton (1996); Samson (2000);
Chazottes et al. (2007).
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and consider the corresponding metric probability space
(Xi, ρi, νi(xi−1

1 )). Define its conditional subgaussian di-
ameter by

∆SG(Xi |xi−1
1 ) = ∆SG(Xi, ρi, νi(xi−1

1 ))

and the maximal subgaussian diameter by

∆̄SG(Xi) = sup
xi−1
1 ∈X i−1

1

∆SG(Xi |xi−1
1 ). (26)

Note that for product measures, (26) reduces to the for-
mer definition (7). With these definitions, we may state
the main result of this section.

Theorem 3. If ϕ : Xn → R is 1-Lipschitz with respect to
ρn, then

P(|ϕ− Eϕ| > t) ≤ 2 exp

(
−

(t−
∑
i≤n τ̄i)

2

2
∑
i≤n ∆̄2

SG(Xi)

)
, t > 0.

Observe that we recover Theorem 1 as a special case. Since
typically we will take t = εn, it suffices that

∑
i≤n τ̄i =

o(n) and
∑
i≤n ∆̄2

SG(Xi) = O(n) to ensure an exponen-
tial bound with decay rate exp(−Ω(nε2)). (Note that our
functions are scaled to be O(1)-Lipschitz as opposed to
the usual O(1/n)-Lipschiz condition.) The appearance of
the mixing coefficients τ̄i in the numerator is non-standard,
and is mainly an artifact of our inability to obtain nontriv-
ial bounds on this quantity. Elucidating its structure is an
active research direction.

7. Other Orlicz diameters
Let us recall the notion of an Orlicz norm ‖X‖Ψ of a real
random variable X (see, e.g., Rao & Ren (1991)):

‖X‖Ψ = inf {t > 0 : E[Ψ(X/t)] ≤ 1} ,

where Ψ : R→ R is a Young function — i.e., nonnegative,
even, convex and vanishing at 0. In this section, we will
consider the Young functions

ψp(x) = e|x|
p

− 1, p > 1,

and their induced Orlicz norms. A random variable X is
subgaussian if and only if ‖X‖ψ2

<∞ (Rivasplata, 2012).
For p 6= 2, ‖X‖ψp <∞ implies that

EeλX ≤ e(a|λ|)p/p, λ ∈ R, (27)

for some a > 0, but the converse implication need not hold.
An immediate consequence of Markov’s inequality is that
any X for which (27) holds also satisfies

P(|X| ≥ t) ≤ 2 exp

(
−p− 1

p

(
t

a

)p/(p−1)
)
. (28)

We define the p-Orlicz diameter of a metric probability
space (X , ρ, µ), denoted ∆OR(p)(X ), as the smallest a > 0
that verifies (27) for the symmetrized distance Ξ(X ). In
light of (28), Theorem 1 extends straightforwardly to finite
p-Orlicz metric diameters:

Theorem 4. Let (Xi, ρi, µi), i = 1, . . . , n be a sequence
of metric probability spaces and equip Xn with the usual
product measure µn and `1 product metric ρn. Suppose
that for some p > 1 and all i ∈ [n] we have ∆OR(p)(Xi) <
∞, and define the vector ∆ ∈ Rn by ∆i = ∆OR(p)(Xi). If
ϕ : Xn → R is 1-Lipschitz then for all t > 0,

P(|ϕ− Eϕ| > t) ≤ 2 exp

−p− 1
p

(
t

‖∆‖p

)p/(p−1)
 .

8. Discussion
We have given a concentration inequality for metric spaces
with unbounded diameter, showed its applicability to algo-
rithmic stability with unbounded losses, and gave an exten-
sion to non-independent sampling processes. Some fasci-
nating questions remain:

(i) How tight is Theorem 1? First there is the vex-
ing matter of having a worse constant in the expo-
nent (i.e., 1/2) than McDiarmid’s (optimal) constant
2. Although this gap is not of critical importance,
one would like a bound that recovers McDiarmid’s
in the finite-diameter case. More importantly, is it
the case that finite subgaussian diameter is necessary
for subgaussian concentration of all Lipschitz func-
tions? That is, given the metric probability spaces
(Xi, ρi, µi), i ∈ [n], can one always exhibit a 1-
Lipschitz ϕ : Xn → R that achieves a nearly match-
ing lower bound?

(ii) We would like to better understand how Theorem 1
compares to the Kutin-Niyogi bound (15). We con-
jecture that for any (Xn, µn) and ϕ : Xn → R that
satisfies (12) and (13), one can construct a product
metric ρn for which

∑
i∈[n] ∆2

SG(Xi) <∞ and ϕ is 1-
Lipschitz. This would imply that whenever the Kutin-
Niyogi bound is nontrivial, so is Theorem 1. We have
already shown by example (20) that the reverse does
not hold.

(iii) The quantity τ̄i defined in Section 6 is a rather compli-
cated object; one desires a better handle on it in terms
of the given distribution and metric.

(iv) We have argued in Section 5.1 that a natural regular-
ized metric regression is totally Lipschitz stable un-
der our definition (23). The next order of business
would be to show that some other common learning
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algorithms, such as kernel SVM, are also stable in our
strong sense.
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centration inequalities for random fields via coupling.
Prob. Theory Rel. Fields, 137(1-2):201–225, 2007.

Cortes, C. and Mohri, M. Domain adaptation and sam-
ple bias correction theory and algorithm for regression.
Theor. Comput. Sci., 519:103–126, 2014.

Cortes, C., Greenberg, S., and Mohri, M.. Relative devia-
tion learning bounds and generalization with unbounded
loss functions (arxiv:1310.5796). 2013.

Dasgupta, S. and Long, P. M. Boosting with diverse base
classifiers. In COLT, 2003.

Deng, J., Dong, Wei, S., Richard, L., Li-Jia, L., Kai, and Li,
F. Imagenet: A large-scale hierarchical image database.
In CVPR, pp. 248–255, 2009.

Dudı́k, M., Schapire, R., and Phillips, S. Correcting sample
selection bias in maximum entropy density estimation.
In NIPS, 2005.

El-Yaniv, R. and Pechyony, D. Stable transductive learning.
In COLT, 2006.

Gamarnik, D. Extension of the PAC framework to finite and
countable Markov chains. IEEE Trans. Inform. Theory,
49(1):338–345, 2003.

Gottlieb, Lee-Ad, Kontorovich, Aryeh, and Krauthgamer,
Robert. Efficient regression in metric spaces via approx-
imate Lipschitz extension. In SIMBAD, 2013.

Hush, D., Scovel, C., and Steinwart, I. Stability of unstable
learning algorithms. Machine Learning, 67(3):197–206,
2007.

Karandikar, R. and Vidyasagar, M. Rates of uniform
convergence of empirical means with mixing processes.
Statist. Probab. Lett., 58(3):297–307, 2002.

Kim, J. H. and Vu, Van H. Concentration of multivariate
polynomials and its applications. Combinatorica, 20(3):
1439–6912, 2000.

Kontorovich, A. Measure Concentration of Strongly Mix-
ing Processes with Applications. PhD thesis, CMU,
2007.

Kontorovich, A. and Ramanan, K. Concentration Inequali-
ties for Dependent Random Variables via the Martingale
Method. Ann. Probab., 36(6):2126–2158, 2008.

Kutin, S. Extensions to McDiarmid’s inequality when dif-
ferences are bounded with high probability. Technical
Report TR-2002-04, University of Chicago, 2002.

Kutin, S. and Niyogi, P. Almost-everywhere algorithmic
stability and generalization error. In UAI, 2002.
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