
Maximum Margin Multiclass Nearest Neighbors

A. Bayes near-optimality proof
Proof of Theorem 1. Since η is L-Lipschitz, given x, x′ ∈
X we have

P (Y 6= Y ′ |x,x′) =
∑
j∈Y

ηj(x)(1− ηj(x
′)) (18)

≤
∑
j

ηj(x)
(
1− ηj(x) + Ld(x, x′)

)
=
∑
j

ηj(x)
(
1− ηj(x)

)
+ Ld(x, x′).

By the definition of the nearest neighbor classifier gNN in
(6) we have ES [P (gNN(X) 6= Y )] = ES [P (Yπ1(X) 6= Y )],
where the expectation is over the sample S determining
gNN. By (18) this error is bounded above by

ES,X [
∑
j

ηj(X)(1− ηj(X))] + LES,X [d(X,Xπ1(X))],

where now the expectation is over S and X . Denoting
k′ = argmaxj ηj(X) and splitting the sum , the first term
(which does not depend on S) satisfies

EX [ηk′(X)(1−ηk′(X))] + EX [
∑
j 6=k′

ηj(X)(1− ηj(X))]

≤ EX [1− ηk′(X)] + EX [
∑
j 6=k′

ηj(X)]

= 2EX [1− ηk′(X)] = 2P (g∗(X) 6= Y ).

It remains to bound ES,X [d(X,Xπ1(X))] and we proceed
exactly as in Ben-David & Shalev-Shwartz (2014). Let
{C1, . . . , CN} be an ε-cover of X of cardinality N =
N (ε,X , d). Given a sample S, for x ∈ Ci such that
S ∩ Ci 6= ∅ we have d(x,Xπ1(x)) < ε, while for x ∈ Ci
such that S ∩Ci = ∅ we have d(x,Xπ1(x)) ≤ diam(X ) =
1, thus ES,X [d(X,Xπ1(X))] is bounded above by

≤ ES

[
N∑
i=1

P (Ci)
(
ε1{S∩Ci 6=∅} + 1{S∩Ci=∅}

)]

=

N∑
i=1

P (Ci)
(
εES

[
1{S∩Ci 6=∅}

]
+ ES

[
1{S∩Ci=∅}

])
.

Since P (Ci)ES [1S∩Ci=∅] = P (Ci)(1− P (Ci))
n ≤ 1/en

and N = N (ε,X , d) we get

ES,X [d(X,Xπ1(X))] ≤ ε+
N (ε,X , d)

en

≤ ε+
1

en

(
2

ε

)D
.

Setting ε = 2n−
1

D+1 concludes the proof.

B. Rademacher analysis proofs
Proof of inequality (10). Dudley’s chaining integral (Dud-
ley, 1967) bounds from above the Rademacher complexity
Rn(HL) by

inf
α>0

(
4α+ 12

∫ ∞
α

√
logN (t,HL, ‖ · ‖∞)

n
dt

)
.

By Lemma 2 the integral can be bounded as follows:∫ ∞
α

√
logN (t,HL, ‖ · ‖∞)

n
dt

≤
∫ ∞
α

√
1

n

(
16L

t

)D
log

(
5k

t

)
dt

≤
∫ ∞
α

√
log 5k

n

(
16L

t

)D (
1

t

)
dt

=

√
log 5k

n
(16L)

D/2
∫ ∞
α

(
1

t

)(D+1)/2

dt

=

√
log 5k

n
(16L)

D/2

(
2

D − 1

)(
1

α(D−1)/2

)
,

where in the second inequality we used the fact that for
x ∈ (0, 1] and c ≥ e we have log( cx ) ≤ log c

x . Choosing

α∗ =

(
9(16L)D

log 5k

n

)1/(D+1)

yields the bound with

cD = 16
D
D+1 36

1
D+1 +

24

(D − 1)3
D−1
D+1

.

Proof of Theorem 4. An adaptation4 of Mohri et al. (2012,
Theorem 4.5) to HL states that with probability 1 − δ, for
all L > 0, h ∈ HL,

E[Lmargin(h)] ≤ Ê[Lmargin(h)] + 4Rn(HL)

+

√(
log log2 2L

n

)
+

+

√
log 2

δ

2n
.

Since 1{u<0} ≤ Lmargin(u) we have P (gh(X) 6= Y ) ≤
E[Lmargin(h)]. Since Lmargin(u) ≤ Lcutoff(u) we can replace
Lmargin in the empirical loss by the loss function Lcutoff.
BoundingRn(HL) using (10) concludes the proof.

4essentially setting α = 1 in Mohri et al. (2012) and doing the
stratification on L instead
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C. Scale sensitive analysis proof
Proof of Theorem 5. An application5 of Guermeur (2010,
Theorem 1) states that with probability 1−δ, for all L > 0,
h ∈ HL,

P (gh(X) 6= Y ) ≤ 1

n

n∑
i=1

1{h(Xi,Yi)<1}

+

√
2

n

(
2 logN (1/4,HL, ‖ · ‖∞) + ln

(
2L

δ

))
+

1

n
.

Applying the metric entropy bound in Lemma 2 proves the
Theorem.

D. Approximate NN proofs
First, we will show that h̃ is indeed a 2η additive perturba-
tion of h, i.e.

‖h− h̃‖∞ ≤ 2η. (19)

Instead of working directly with (16) we consider the fol-
lowing L-Lipschitz extension

h(x, y) =
1

2
T[-1,1]

(
min
S1

{ξ(Yi, y) + Ld(Xi, x)}
)

+
1

2
T[-1,1]

(
max
S1

{ξ(Yi, y)− Ld(Xi, x)}
)
,

easily seen to induce the same classifier gh as (16). Con-
sider the first term (the second term is treated similarly) and
its approximate version:

h̃(x, y) = T[-1,1]

(
min
S1

{
ξ(Yi, y) + Ld̃(Xi, x)

})
,

where d ≤ d̃ ≤ (1 + η)d, given in (15), is the approximate
“distance” as provided by the approximate nearest neigh-
bor. For notational convenience, denote

h(x, y) = T[-1,1](min
i
qi(x, y))

h̃(x, y) = T[-1,1](min
i
q̃i(x, y))

qi(x, y) = hi(y) + ri(x)

q̃i(x, y) = h̃i(y) + r̃i(x),

where hi(y) = ξ(Yi, y), ri(x) = Ld(Xi, x), and h̃i, r̃i
defined analogously.

Observe that if r̃i(x) > 2 then ri(x) > 2/(1 + η) ≥
2(1 − η). In this case, since h has range in [−1, 1], the
eventual application of truncation operator T[-1,1] will force
h̃(x, y) − h(x, y) ≤ 2η. Hence, we may assume that

5setting γ = 1 in Guermeur (2010, Theorem 1) and doing the
stratification on L instead

r̃i(x) ≤ 2 and so ri(x) ≤ 2. It is straightforward to verify
that for a, b ∈ Rn with maxi∈[n] |ai − bi| ≤ η, we have∣∣∣T[-1,1](min

i
ai)− T[-1,1](min

i
bi)
∣∣∣ ≤ η.

Thus, establishing |qi(x, y)− q̃i(x, y)| ≤ 2η for all i ∈
[|S1|] and y ∈ Y with r̃i(x), ri(x) ≤ 2 suffices to prove the
claim. Indeed, by (15) we have

|ri(x)− r̃i(x)| ≤ |ri(x)− (1 + η)ri(x)| ≤ 2η.

Proof of Lemma 6. Suppose h̃ ∈ HL,η . By the definition
of HL,η , there exists an h ∈ HL such that ‖h̃− h‖∞ ≤ η.
Let h′ be some element in a minimal ε-cover ofHL so that
‖h− h′‖∞ ≤ ε. Then

‖h̃− h′‖∞ ≤ ‖h̃− h‖∞ + ‖h− h′‖∞ ≤ ε+ η.

Hence,

N (ε+ η,HL,η, ‖ · ‖∞) ≤ N (ε,HL, ‖ · ‖∞),

whence the claim follows.

E. Dimensionality reduction proof
Proof of Theorem 7. Put S̃ = (X̃, Y ). For Xi ∈ X and
X̃i ∈ X̃ , define δi(h) = h(Xi, Yi)− h(X̃i, Yi). Then

R̂n(HL;S) = E

[
sup
h∈HL

1

n

n∑
i=1

σih(Xi, Yi)

∣∣∣∣∣S
]

= E

[
sup
h∈HL

1

n

n∑
i=1

σi

(
h(X̃i, Yi)− δi(h)

) ∣∣∣∣∣S
]

≤ R̂n(HL; S̃) + E

[
sup
h∈HL

1

n

n∑
i=1

σiδi(h)

∣∣∣∣∣S
]
.

By (10), we have

Rn(HL; S̃) ≤ cDL
(

log 5k

n

)1/(β+1)

. (20)

Since by construction h is L-Lipschitz in its first argument,
we have∣∣∣∣∣
n∑
i=1

σiδi(h)

∣∣∣∣∣ ≤
n∑
i=1

|δi(h)| ≤ L
n∑
i=1

d(Xi, X̃i) ≤ Lα. (21)

Our claimed bound follows from (20) and (21).


