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Abstract
Sequence prediction and classification are ubiqui-
tous and challenging problems in machine learn-
ing that can require identifying complex depen-
dencies between temporally distant inputs. Recur-
rent Neural Networks (RNNs) have the ability, in
theory, to cope with these temporal dependencies
by virtue of the short-term memory implemented
by their recurrent (feedback) connections. How-
ever, in practice they are difficult to train success-
fully when long-term memory is required. This
paper introduces a simple, yet powerful modifica-
tion to the simple RNN (SRN) architecture, the
Clockwork RNN (CW-RNN), in which the hidden
layer is partitioned into separate modules, each
processing inputs at its own temporal granularity,
making computations only at its prescribed clock
rate. Rather than making the standard RNN mod-
els more complex, CW-RNN reduces the number
of SRN parameters, improves the performance
significantly in the tasks tested, and speeds up the
network evaluation. The network is demonstrated
in preliminary experiments involving three tasks:
audio signal generation, TIMIT spoken word clas-
sification, where it outperforms both SRN and
LSTM networks, and online handwriting recogni-
tion, where it outperforms SRNs.

1. Introduction
Recurrent Neural Networks (RNNs; Robinson & Fallside,
1987; Werbos, 1988; Williams, 1989) are a class of con-
nectionist models that possess internal state or short-term
memory due to recurrent feed-back connections, that make
them suitable for dealing with sequential problems, such as
speech classification, prediction and generation.
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Simple RNNs trained with stochastic gradient-descent have
difficulty learning long-term dependencies (i.e. spanning
more that 10 time-steps) encoded in the input sequences due
to vanishing gradient (Hochreiter, 1991; Hochreiter et al.,
2001). This problem has been addressed for example by
using a specialized neuron structure, or cell, in Long Short-
Term Memory (LSTM) networks (Hochreiter & Schmid-
huber, 1997) that maintains constant backward flow in the
error signal; second-order optimization methods (Martens &
Sutskever, 2011) preserve the gradient by estimating its cur-
vature; or using informed random initialization (Sutskever
et al., 2013) which allows for training the networks with
momentum and stochastic gradient-descent only.

This paper presents a novel modification to the simple RNN
(SRN; Elman, 1988) architecture and, mutatis mutandis, an
associated error back-propagation through time (Rumelhart
et al., 1986; Werbos, 1988; Williams, 1989) training algo-
rithm, that show superior performance in the generation
and classification of sequences that contain long-term de-
pendencies. Here, the long-term dependency problem is
addressed by having different parts (modules) of the RNN
hidden layer run at different clock speeds, timing their com-
putation with different, discrete clock periods, hence the
name Clockwork Recurrent Neural Network (CW-RNN).
CW-RNNs train and evaluate faster since not all modules
are executed at every time step, and have a smaller number
of weights compared to SRNs, because slower modules do
not receive inputs from faster ones.

The next section provides an overview of the related work,
section 3 describes the CW-RNN architecture in detail. Ex-
periments with audio signal generation, spoken word clas-
sification using the TIMIT dataset and online handwriting
recognition are presented in section 4. Sections 5 and 6
discuss the results of experiments and future potential of
CW-RNNs, respectively.
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Figure 1. CW-RNN architecture is similar to a simple RNN with an input, output and hidden layer. The hidden layer is partitioned into g
modules each with its own clock rate. Within each module the neurons are fully interconnected. Neurons in faster module i are connected
to neurons in a slower module j only if a clock period Ti < Tj .

2. Related Work
Contributions to sequence modeling and recognition that are
relevant to CW-RNNs are presented in this section. The pri-
mary focus is on RNN extensions that deal with the problem
of bridging long time lags.

Hierarchical Recurrent Neural Networks (Hihi & Bengio,
1996) are the most similar to CW-RNNs work, having both
delayed connections and units operating at different time-
scales. Five hand-designed architectures were tested on
simple long time-lag toy-problems finding that multi-time-
scale units significantly help in learning those tasks.

Another similar model is the NARX RNN1 (Lin et al., 1996).
But, instead of simplifying the network, it introduces addi-
tional sets of recurrent connections with time lags of 2,3..k
time steps. These additional connections help to bridge long
time lags, but introduce many additional parameters that
make NARX RNN training more difficult and run k times
slower.

Long Short-Term Memory (LSTM; Hochreiter & Schmid-
huber, 1997) uses a specialized architecture that allows in-
formation to be stored in linear units called constant error
carousels (CECs) indefinitely. CECs are contained in cells
that have a set of multiplicative units (gates) connected to
other cells that regulate when new information enters the
CEC (input gate), when the activation of the CEC is output
to the rest of the network (output gate), and when the activa-
tion decays or is ”forgotten” (forget gate). These networks

1NARX stands for Non-linear Auto-Regressive model with
eXogeneous inputs

have been very successful recently in speech and handwrit-
ing recognition (Graves et al., 2005; 2009; Sak et al., 2014).

Stacking LSTMs (Fernandez et al., 2007; Graves &
Schmidhuber, 2009) into a hierarchical sequence proces-
sor, equipped with Connectionist Temporal Classification
(CTC; Graves et al., 2006), performs simultaneous segmen-
tation and recognition of sequences. Its deep variant cur-
rently holds the state-of-the-art result in phoneme recogni-
tion on the TIMIT database (Graves et al., 2013).

Temporal Transition Hierarchies (TTHs; Ring, 1993) incre-
mentally add high-order neurons in order to build a memory
that is used to disambiguate an input at the current time step.
This approach can, in principle, bridge time intervals of any
length, but at a cost of a proportional growth in network size.
The model was recently improved by adding recurrent con-
nections (Ring, 2011) that reduces the number of high-order
neurons needed to encode the temporal dependencies.

One of the earliest attempts to enable RNNs to handle
long-term dependencies is the Reduced Description Net-
work (Mozer, 1992; 1994). It uses leaky neurons whose
activation changes only by a small amount in response to
its inputs. This technique was recently picked up by Echo
State Networks (ESN; Jaeger, 2002).

A similar technique has been used by Sutskever & Hinton
(2010) to solve some serial recall tasks. These Temporal-
Kernel RNNs add a weighted connection from each neuron
to itself that decays exponentially in time. Its performance
is still slightly inferior to LSTM.

Evolino (Schmidhuber et al., 2005; 2007) feeds the input
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to an RNN (which can be e.g. LSTM to cope with long
time lags) and then transforms the RNN outputs to the target
sequences via an optimal linear mapping, that is computed
analytically by pseudo-inverse. The RNN is trained by
an evolutionary algorithm, and therefore does not suffer
from the vanishing gradient problem. Evolino outperformed
LSTM on a set of synthetic problems and was used to per-
form complex robotic manipulation (Mayer et al., 2006).

A modern theory of why RNNs fail to learn long-term
dependencies is that simple gradient-descent fails to op-
timize them correctly. One attempt to mitigate this problem
is Hessian Free (HF) optimization (Martens & Sutskever,
2011), an adapted second-order training method that has
been demonstrated to work well with RNNs. HF allows
RNNs to solve some long-term lag problems that are con-
sidered challenging for stochastic gradient-descent. Their
performance on rather synthetic, long-term memory bench-
marks is approaching that of LSTM, though the number of
optimization steps required in HF-RNN is usually greater.
Training networks by HF optimization is an orthogonal
approach to the network architecture, so both LSTM and
CW-RNN can still benefit from it.

HF optimization allowed for training of Multiplicative RNN
(MRNN; Sutskever et al., 2011) that port the concept of
multiplicative gating units to SRNs. The gating units are
represented by a factored 3-way tensor in order to reduce
the number of parameters. Extensive training of an MRNN
on a GPU provided impressive results in text generation.

Training RNNs with Kalman filters (Pérez-Ortiz et al., 2003;
Williams, 1992) has shown advantages in bridging long
time lags as well, although this approach is computationally
unfeasible for larger networks.

The methods mentioned above are strictly synchronous–
elements of the network clock at the same speed. The Se-
quence Chunker, Neural History Compressor or Hierarchi-
cal Temporal Memory (Schmidhuber, 1991; 1992) consists
of a hierarchy or stack of RNN that may run at different
time scales, but, unlike the simpler CW-RNN, it requires
unsupervised event predictors: a higher-level RNN receives
an input only when the lower-level RNN below is unable to
predict it. Hence the clock of the higher level may speed up
or slow down, depending on the current predictability of the
input stream. This contrasts with the CW-RNN, in which
the clocks always run at the same speed, some slower, some
faster.

3. A Clockwork Recurrent Neural Network
Clockwork Recurrent Neural Networks (CW-RNN) like
SRNs, consist of input, hidden and output layers. There
are forward connections from the input to hidden layer,
and from the hidden to output layer, but, unlike the SRN,

Figure 2. Calculation of the hidden unit activations at time step
t = 6 in CW-RNN according to equation (1). Input and recurrent
weight matrices are partitioned into blocks. Each block-row in
WH and WI corresponds to the weights of a particular module.
At time step t = 6, the first two modules with periods T1 = 1 and
T2 = 2 get evaluated (highlighted parts of WH and WI are used)
and the highlighted outputs are updated. Note that, while using
exponential series of periods, the active parts of WH and WI are
always contiguous.

the neurons in the hidden layer are partitioned into g mod-
ules of size k. Each of the modules is assigned a clock
period Tn ∈ {T1, . . . , Tg}. Each module is internally fully-
interconnected, but the recurrent connections from module
j to module i exists only if the period Ti is smaller than
period Tj . Sorting the modules by increasing period, the
connections between modules propagate the hidden state
right-to-left, from slower modules to faster modules, see
Figure 1.

The SRN output, y(t)O , at a time step t is calculated using the
following equations:

y
(t)
H = fH(WH · y(t−1) +WI · x(t)), (1)

y
(t)
O = fO(WO · y(t)

H ), (2)

where WH , WI and WO are the hidden, input and output
weight matrices, xt is the input vector, and y

(t)
H is a vector

representing the activation of the hidden units at time step
t. Functions fH(.) and fO(.) are non-linear activation func-
tions. For simplicity, neuron biases are omitted from the
equations.

The main difference between CW-RNN and a SRN is that
at each CW-RNN time step t, only the output of modules i
that satisfy (t MOD Ti) = 0 are active. The choice of the set
of periods {T1, . . . , Tg} is arbitrary. In this paper, we use
the exponential series of periods: module i has clock period
of Ti = 2i−1.

Matrices WH and WI are partitioned into g blocks-rows:

WH =

WH1

...
WHg

 WI =

WI1
...

WIg

 , (3)

and WH is a block-upper triangular matrix, where
each block-row, WHi , is partitioned into block-columns
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Figure 3. Normalized mean squared error for the sequence gen-
eration task, with one box-whisker (showing mean value, 25%
and 75% quantiles, minimum, maximum and outliers) for each
tested network size and type. Note that the plot for the SRN has a
different scale than the other two.

{01, . . . ,0i−1,WHi,i
, . . . ,WHi,g

}. At each time step of
a forward pass, only the block-rows of WH and WI that
correspond to the active modules are used for evaluation in
Equation (1):

WHi =

{
WHi

if (t MOD Ti) = 0
0 otherwise, (4)

and the corresponding parts of the output vector, yH , are
updated. The other modules retain their output values from
the previous time-step. Calculation of the hidden activation
at time step t = 6 is illustrated in Figure 2.

As a result, the low-clock-rate modules process, retain and
output the long-term information obtained from the input
sequences (not being distracted by the high speed modules),
whereas the high-speed modules focus on the local, high-
frequency information (having the context provided by the
low speed modules available).

The backward pass of the error propagation is similar to
SRN as well. The only difference is that the error propagates
only from modules that were executed at time step t. The
error of non-activated modules gets copied back in time
(similarly to copying the activations of nodes not activated
at the time step t during the corresponding forward pass),
where it is added to the back-propagated error.
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Figure 4. Classification error for the word classification task,
with one box-whisker for each tested network size and type.

A CW-RNN with the same number of nodes runs much
faster than a SRN since not all modules are evaluated at
every time step. The lower bound for the CW-RNN speedup
compared to a SRN with the same number of neurons is g/4
in the case of this exponential clock setup, see Appendix for
a detailed derivation.

4. Experiments
CW-RNNs were compared to the SRN and LSTM networks.
All networks have one hidden layer with the tanh activation
function, and the number of nodes in the hidden layer was
chosen to obtain (approximately) the same number of pa-
rameters for all three methods (in the case of CW-RNN, the
clock periods were included in the parameter count).

Initial values for all the weights were drawn from a Gaussian
distribution with zero mean and standard deviation of 0.1.
Initial values of all internal state variables for all hidden
activations were set to 0. Each setup was run 100 times with
different random initialization of parameters. All networks
were trained using Stochastic Gradient Descent (SGD) with
Nesterov-style momentum (Sutskever et al., 2013).

4.1. Sequence Generation

The goal of this task is to train a recurrent neural network,
that receives no input, to generate a target sequence as accu-
rately as possible. The weights of the network can be seen
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Figure 5. Sequence generation task. Output of the best performing network (solid, green) compared to the target signal (dotted, blue) for
each method (column) and each training sequence (row). SRN tends to learn the first few steps of the sequence and then generates the
mean of the remaining portion, while the output of LSTM resembles a sliding average, and CW-RNN approximates the sequence much
more accurately.

Table 1. Number of hidden neurons (cells in the case of LSTM)
for SRN, LSTM and CW-RNN for each network size specified in
terms of the number of parameters (weights).

Task # of Params. SRN LSTM CW-RNN

100 9 4 11
Sequence 250 15 7 19
generation 500 22 10 27

1000 31 15 40

500 10 5 10
Spoken 1000 18 8 19
word 2500 34 17 40
classif. 5000 54 26 65

10000 84 41 102

Online 10 k 40 25 45
handwriting 50 k 121 67 148
recognition 100 k 185 100 231

as a (lossy) encoding of the whole sequence, which could
be used for compression.

Five different target sequences were created by sampling a
piece of music2 at 44.1Hz for 7ms. The resulting sequences
of 320 data points were scaled to the interval [−1, 1].

All networks used the same architecture: no inputs, one
hidden layer and a single linear output neuron. Each network
type was run with 4 different sizes: 100, 250, 500, and
1000 parameters, see Table 1 for the summary of number of
hidden nodes. The networks were trained for 2000 epochs
to minimize the mean squared error. Momentum was set to
0.95, with a learning that was optimized separately for each
method, but kept the same for all network sizes: 3.0× 10−4

for SRN and CW-RNN, and 3.0 × 10−5 for LSTM. For
LSTM it was also crucial to initialize the bias of the forget
gates to a high value (5.0 in this case) to encourage the
long-term memory. The hidden units of CW-RNN were
divided into nine aproximately equally sized groups with
exponential clock-timings {1, 2, 4, . . . , 256}. Whenever the
number of neurons was not divisible by 9, the remaining
neurons were distributed among the faster modules.

2taken from the beginning of the first track Manýrista of album
Musica Deposita by Cuprum
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The results of the experiments are shown in Figure 3. It is
obvious that SRNs fail to generate the target sequence, and
they do not seem to improve with network size. LSTM does
much better, especially as the networks get bigger. CW-
RNNs give by far the best results, with the smallest one
being roughly on par with the second-biggest LSTM net-
work. Also, all but the smallest CW-RNN have significantly
less variance than all the other methods. To get an intuitive
understanding of what is happening, Figure 5 shows the
output of the best network of each type on each of the five
audio samples. The average error of the best networks is
shown in Table 2 (row 1).

4.2. Spoken Word Classification

The second task is sequence classification instead of gen-
eration. Each sequence contains an audio signal of one
spoken word from the TIMIT Speech Recognition Bench-
mark (Garofolo et al., 1993). The dataset contains 25 dif-
ferent words (classes) arranged in 5 groups based on their
phonetic suffix. Because of the suffix-similarity, the net-
work needs to learn long-term dependencies in order to
disambiguate the words. The words are:

Group 1: making, walking, cooking, looking,

working

Group 2: biblical, cyclical, technical,

classical, critical

Group 3: tradition, addition, audition,

recognition, competition

Group 4: musicians, discussions,

regulations, accusations, conditions

Group 5: subway, leeway, freeway, highway,

hallway

For every word there are 7 examples from different speakers,
which were partitioned into 5 for training and 2 for test-
ing, for a total of 175 sequences (125 train, 50 test). Each
sequence element consists of 12-dimensional MFCC vec-
tor (Mermelstein, 1976) plus energy, sampled every 10ms
over a 25ms window with a pre-emphasis coefficient of
0.97. Each of the 13 channels was normalized to have zero
mean and unit variance over the whole training set.

All network types used the same architecture: 13 inputs, a
single hidden and a softmax output layer with 25 units. Five
hidden layer sizes were chosen such that the total number
of parameters for the whole network was roughly 0.5 k, 1 k,
2.5 k, 5 k, and 10 k, see Table 1.

All networks used a learning rate of 3× 10−4, a momentum
of 0.9, and were trained to minimize the Multinomial Cross
Entropy Error. Every experiment was repeated 100 times
with different random initializations.

Table 2. Normalized mean square error and standard deviation
(averaged over 100 runs) for the largest (best) LSTM, SRN and
CW-RNN on the sequence generation task, where the CW-RNN
was 5.7× better than LSTM, and the percentage of the wrongly
classified words in the spoken word classification, where the
CW-RNN was more than 2× better than LSTM.

Task SRN LSTM CW-RNN

Seq. gen. 0.46±0.08 0.04±0.01 0.007±0.004
Word classif. 66.8±4.7 34.2±5.6 16.8±3.5

Because the dataset is so small, Gaussian noise with a stan-
dard deviation of 0.6 was added to the inputs during training
to guard against overfitting. Training was stopped once the
error on the noise-free training set did not decrease for 5
epochs. To obtain good results with LSTM, it was again
important to initialize the forget gate bias to 5. For the CW-
RNNs the neurons were divided evenly into 7 groups with
exponentially increasing periods: {1, 2, 4, 8, 16, 32, 64}.

Figure 4 shows the classification error of the different net-
works on the word classification task. Here again, SRNs
perform the worst, followed by LSTMs, which give sub-
stantially better results, especially with more parameters.
CW-RNNs beat both SRN and LSTM networks by a con-
siderable margin of 8-20% on average irrespective of the
number of parameters. The error of the largest networks is
summarized in Table 2 (row 2).

4.3. Online Handwriting Recognition

In the third task, online handwriting classification, timed
sequences of pen coordinates must be translated into char-
acter strings by the network. The dataset (Liwicki & Bunke,
2005) consists of 5364 hand-written lines of text in the train-
ing set and 3859 lines in the test set, and two validation
sets that were combined to form one validation set of size
2956. Each line consists of various numbers of stroke se-
quences, where each element is a 3-dimensional vector of
(x, y)-coordinates and a time stamp t. All vectors were
transformed into 4-dimensions where the first two elements
are the x and y coordinates, relative to the top left corner
of the line, t is the time relative to the beginning of the line
and the fourth dimension contains 1 when the pen was lifted
from the writing surface (end of the stroke), zero otherwise.
This input format is referred to as raw in Graves (2008).
All stroke sequences were sub-sampled by a factor of 3 in
order to reduce the amount of data. The target strings con-
tain 81 different characters (lower and upper case letters,
numbers and special characters). All strokes within a line
were merged into a single input sequence and the first 3
dimensions were standardized.

Three different network sizes were tested for each architec-
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Table 3. Character error of the three network architectures in the
online handwriting recognition task. The largest CW-RNN is
roughly 20% better than the corresponding SRN. LSTM is still 2×
better than CW-RNN.

# of Params. SRN LSTM CW-RNN

10 k 52.8 34.2 67.2
50 k 43.4 21.4 46.5
100 k 47.5 19.2 39.5

ture, such that the number of parameters were roughly 10 k,
50 k and 100 k (see Table 1). The CW-RNN used 9 modules
with exponentially increasing periods (up to 256). All the
networks have 4 inputs and 82 outputs (all characters + an
empty label). Each network was bidirectional (Liwicki et al.,
2007; Schuster & Paliwal, 1997), i.e. with an additional
hidden layer that processes the temporal context backwards.

The networks were trained with the connectionist tempo-
ral classification (CTC; Graves et al., 2006) error function
which calculates a probabilistic mapping error of the net-
work outputs to the desired label sequence. The SRN and
CW-RNN learning rate was set to 3.0 × 10−4, the LSTM
learning rate was 3.0× 10−3, and momentum was 0.9 in all
cases. All the weights were initialized from a Gaussian dis-
tribution with zero mean and standard deviation of 0.1 (no
forget gate bias for LSTM). The training was stopped after
there was no improvement of the error on the validation set
for 50 epochs.

At test time we report the Character Error Rate as obtained
by the best path decoding heuristic (Graves, 2008). Neither
a word dictionary nor a language model was used.

Every experiment was repeated 3 times. For each of the
methods we observed that, often one of the experimental
runs converged prematurely to a bad local optimum. These
runs were not considered. The average character error rates
of the remaining runs are summarized in Table 3.

5. Discussion
The experimental results show that the simple mechanism
of running subsets of neurons at different speeds allows an
RNN to efficiently learn the different dynamic time-scales
inherent in complex signals.

CW-RNN showed superior performance on the speech data
classification among all three models tested. Note that,
unlike in the standard approach, in which the speech signal
frequency coefficients are first translated to phonemes which
are modeled with a standard approach like Hidden Markov
Modes for complete words, the CW-RNN attempts to model
and recognize the complete words directly, where it benefits
from the modules running at multiple speeds.

For the task of handwriting recognition we observe that for
small networks (10 k parameters), the performance of SRN
is better that the one of CW-RNN, but this trend reverses
for large networks (100 k parameters). This indicates, that
there is a lot of complexity in the short-term structure of the
task. Because a CW-RNN has fewer fast changing units it
seems to suffer more from the size constraint. As we add
more parameters, SRNs have trouble using the long-term
structure and thus fall behind CW-RNN. In the end, the
large CW-RNN are roughly 20% better than SRN. LSTM
networks are better than both CW-RNN and SRN regardless
to the network size.

A possible reason for LSTM being the best architecture so
far for handwriting recognition could be that both short-term
(spanning one or two characters) and long-term (a dot placed
above the letter i to finish writing a word) information and
its precise timing is important. An SRN is not capable of
learning the long-term context and CW-RNNs exponential
distribution of module timing is not flexible enough for
identifying and utilizing the information that occurs far in
the history.

6. Future Work
Future work will start by conducting a detailed analysis of
the internal dynamics taking place in the CW-RNN to un-
derstand how the network is allocating resources for a given
type of input sequence. Further testing on other classes of
problems, such as reinforcement learning, and comparison
to the larger set of connectionist models for sequential data
processing are also planned.

Other functions could be used to set the module periods:
linear, Fibonacci, logarithmic series, or even fixed random
periods. These were not considered in this paper because
the intuitive setup of using an exponential series, for the
most part, worked well in these preliminary experiments.
Another option would be to learn the periods as well, which,
to use error back-propagation, would require a differentiable
modulo function for triggering the clocks. Alternatively,
one could train the clocks (together with the weights) using
evolutionary algorithms which do not require a closed form
for the gradient. Note that the lowest period in the network
can be greater than 1. Such a network would not be able to
change its output at every time step, which may be useful as
a low-pass filter when the data contains noise.

Also, the modules do not have to be all of the same size. One
could adjust them according to the expected information in
the input sequences, by e.g. using frequency analysis of the
data and setting up module sizes and clock rates proportional
to the spectrum.

The low-speed modules read only a single input at a time
and the part of the sequence that passes by while they are not
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active may not affect their output. One could use multiple
low-speed modules that run at the same clock periods but
interleave with a different offset, employ a buffer for the
sequence and pass the low-speed modules a function of this
buffer (e.g. mean) or transform the data first into some other
domain (e.g. wavelet) and let the CW-RNN process the
transformed information.

Appendix
CW-RNN has fewer total parameters and even fewer oper-
ations per time step than a SRN with the same number of
neurons. Assume CW-RNN consists of g modules of size
k for a total of n = kg neurons. Because a neuron is only
connected to other neurons with the same or larger period,
the number of parameters NH for the recurrent matrix is:

NH =

g∑
i=1

k∑
j=1

k(g − i+ 1) = k2
g−1∑
i=0

(g − i) =
n2

2
+

nk

2
.

Compared to the n2 parameters in the recurrent matrix WH

of SRN this results in roughly half as many parameters:

NH

n2
=

n2

2 + nk
2

n2
=

n2 + nk

2n2
=

n+ k

2n
=

g + 1

2g
≈ 1

2
.

Each module i is evaluated only every Ti-th time step, there-
fore the number of operations at a time step is:

OH = k2
g−1∑
i=0

g − i

Ti
.

For exponentially scaled periods, Ti = 2i, the upper bound
for number of operations, OH , needed for WH per time
step is:

Oh = k2
g−1∑
i=0

g − i

2i
= k2

(
g

g−1∑
i=0

1

2i︸ ︷︷ ︸
≤2

+

g−1∑
i=0

i

2i︸ ︷︷ ︸
≤2

)
≤

≤ k2(2g − 2) ≤ 2nk,

because g ≥ 2 this is less than or equal to n2. Recurrent
operations in CW-RNN are faster than in a SRN with the
same number of neurons by a factor of at least g/2, which,
for typical CW-RNN sizes ends up being between 2 and
5. Similarly, upper bound for the number of input weight
evaluations, EI , is:

OI =

g−1∑
i=0

km

Ti
= km

g−1∑
i=0

1

Ti
≤ 2km

Therefore, the overall CW-RNN speed-up w.r.t SRN is:

n2 + nm+ n

OR +OI + 2n
=

k2g2 + kgm+ kg

k2(2g − 2) + 2km+ 2kg
=

=
g(kg +m+ 1)

2(k(g − 1) +m+ g)
=

g

2

(kg +m+ 1)

k(g − 1) +m+ g︸ ︷︷ ︸
≥ 1

2

≥ g

4

Note that this is a conservative lower bound.
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