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1 Proof of Lemma 1

Lemma 1. Let (γτ )τ∈N be a non-summable sequence of positive weights. If a real
sequence (u(τ))τ∈N converges absolutely to u in the sense of Cesàro means w.r.t. (γτ )τ ,

that is limT→∞

∑
τ≤T γτ |u

(τ)−u|∑
τ≤T γτ

= 0, then there exists a subset of indexes T of density

one such that the subsequence (u(τ))τ∈T converges to u.

Proof. Let ε > 0, and define the set Iε = {τ ∈ N : ‖u(τ) − u‖ ≥ ε}. First, we show that
for all ε > 0, Iε has zero density. Indeed, we have for all τ ∈ Iε, 0 ≤ ε ≤ ‖u(τ)−u‖, thus

0 ≤
∑
τ∈Iε : τ≤T γτ ε∑
τ∈N : τ≤T γτ

≤
∑
τ∈N:τ≤T γτ‖u(τ) − u‖∑

τ∈N:τ≤T γτ

But the right-hand side converges to 0 by assumption, therefore limT→∞

∑
τ∈Iε:τ≤T γτ∑
τ∈N:τ≤T γτ

=

0, and Iε has zero density w.r.t. (γτ ).
Next, we will construct a set I ⊂ N of zero density, such that the subsequence

(uτ )τ∈N\I converges. For all k > 0, let

pk(T ) =
∑

τ∈I 1
k
: τ≤T

γτ

Since limT→∞
pk(T )∑

τ∈N : τ≤T γτ
= 0, ∃Tk > 0 such that for all T ≥ Tk, pk(T )∑

τ∈N : τ≤T γτ
≤ 1

k .

Without loss of generality, we can assume that (Tk)k∈N∗ is increasing. Now, let

I =
⋃
k∈N∗

(I 1
k
∩ {Tk, . . . , Tk+1 − 1}).

Then we have for all k ∈ N∗, I ∩{0, . . . , Tk+1−1} =
(
∪kj=1I 1

j

)
∩{0, . . . , Tk+1−1}. But

since I1 ⊂ I 1
2
⊂ · · · ⊂ I 1

k
, we have I ∩ {0, . . . , Tk+1 − 1} ⊂ I 1

k
∩ {0, . . . , Tk+1 − 1}, thus

for all T such that Tk ≤ T < Tk+1, we have∑
τ∈I : τ≤T γτ∑
τ∈N : τ≤T γτ

≤

∑
τ∈I 1

k
: τ≤T γτ∑

τ∈N : τ≤T γτ
=

pk(T )∑
τ∈N : τ≤T γτ

≤ 1

k

which proves that I has zero density.
Let T = N \ I. We have that T has density one, and it remains to prove that the

subsequence (u(τ))τ∈T converges to u. For all k, there exists Sk ∈ T such that Sk ≥ Tk.
For all τ ∈ T with τ ≥ Sk, there exists k′ ≥ k such that Tk′ ≤ τ < Tk′+1. Since τ /∈ I,
we must have τ /∈ I 1

k′
, therefore

‖u(τ) − u‖ < 1

k′
≤ 1

k
.

This proves that (u(τ))τ∈T converges to u.
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2 Proof of Lemma 3

Lemma 3 (Convergence of potentials under AREP algorithms). Let Γ be a compact
invariant set for the replicator ODE µ̇ = F (µ), V a Lyapunov function for Γ, and
assume V (Γ) has empty interior. Assume that the sequence of distributions (µ(τ))τ∈N
obey an AREP update rule. Then the sequence of potentials (V (µ(τ)))τ converges.

Proof. Let M be the affine interpolated process of the sequence (µ(τ))τ with time steps
(γτ )τ . That is, M is the continuous function defined on R+ and with values in ∆, such
that for all τ and all s ∈ [0, γτ )

M(Tτ + s) = µ(τ) + s
µ(τ+1) − µ(τ)

γτ

where Tτ =
∑
t≤τ γt.

First, by definition of the AREP class, we have (µ(τ)) satisfies an update equation
of the form

µ(τ+1) − µ(τ) = γτ

(
F (µ(τ)) + U (τ+1)

)
where (U (τ)) is a bounded sequence of perturbations that satisfies the condition

lim
τ1→∞

max
τ2:

τ2∑
τ=τ1

γτ<T

∥∥∥∥∥
τ2∑

τ=τ1

γτU
(τ+1)

∥∥∥∥∥ = 0

Furthermore, the sequence (µ(τ)) is bounded since ∆ is compact. by Proposition 4.1
in [1], the affine interpolated process M is an asymptotic pseudo trajectory of the vector
field F . It follows by Theorem 5.7 in [1] that the set L(M) of limit points of M is
internally chain transitive.

Since V is a Lyapunov function for the compact invariant set Γ, and V (Γ) has empty
interior, by Proposition 6.4 in [1], Γ contains every internally chain transitive set and
V is constant on Γ. In particular, we have L(M) ⊂ Γ and there exists v ∈ R such that
V (µ) = v for all µ ∈ L(M).

Now consider the sequence of potential values (V (µ(τ)))τ∈N. Since V is continuous
and ∆ is compact, V (∆) is compact, and (V (µ(τ)))τ∈N has at least one limit point. Let
v̂ be such a limit point, that is, v̂ is the limit of a subsequence (V (µ(τ)))τ∈T where
T ⊆ N. The subsequence (µ(τ))τ∈T lives in the compact set ∆, thus we can extract a
further subsequence which converges, that is, there exists T ′ ⊂ T and µ̂ ∈ ∆ such that
(µ(τ))τ∈T ′ converges to µ̂. By continuity of V , V (µ̂) = v̂. But since µ̂ ∈ L(M), we also
have V (µ̂) = v, therefore v̂ = v. This proves that V (µ(τ))τ has a unique limit point
equal to v, thus it converges to v.
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