
Nonparametric Divergence Estimation

A. The von Mises Expansion
Before diving into the auxiliary results of Section 5, let us first derive some properties of the von Mises expansion. It
is a simple calculation to verify that the Gateaux derivative is simply the functional derivative of � in the event that
T (F ) =

R
�(f).

Lemma 8. Let T (F ) =

R
�(f)dµ where f = dF/dµ is the Radon-Nikodym derivative, � is differentiable and let G be

some other distribution with density g = dG/dµ. Then:

dT (G;F �G) =

Z
@�(g(x))

@g(x)
(f(x)� g(x))dµ(x). (11)

Proof.

dT (G;F �G) = lim

⌧!0

T (G+ ⌧(F �G))� T (G)

⌧
= lim

⌧!0

Z
1

⌧
[�(g(x) + ⌧(f(x)� g(x)))� �(g(x))] dµ(x)

=

Z
lim

⌧!0

1

⌧
[�(g(x) + ⌧(f(x)� g(x)))� �(g(x))] dµ(x)

=

Z
@�(g(x))

@g(x)
(f(x)� g(x))dµ(x)

We now demonstrate that the remainder for the tth order von Mises expansion is O(kp � p̂kt+1
t+1 + kq � q̂kt+1

t+1) under the
assumption that p, p̂, q, q̂ are all bounded above and below.
Lemma 9. Let T (p, q) =

R
p↵q�dµ and uppose that p, p̂, q, q̂ are all bounded from above and below. Then R

t

, the
remainder of the tth order von Mises expansion of T (p, q) around T (p̂, q̂) satisfies:

R
t

= O
�
kp̂� pkt

t

+ kq̂ � qkt
t

�
(12)

Proof. The tth order term in the von Mises expansion is:

1

t!

tX

a=0

✓
t

a

◆Z
@tp̂↵(x)q̂�

@p̂(x)a@q̂(x)t�a

(p(x)� p̂(x))a(q(x)� q̂(x))t�adx =

1

t!

tX

a=0

✓
t

a

◆Z
aY

i=0

(↵� i)
t�aY

i=0

(� � i)p̂↵�a

(x)q̂��(t�a)
(x)(p(x)� p̂(x))a(q(x)� q̂(x))t�adx,

where
Q0

i=0 ai = 1. If we are to take a t� 1st order expansion, the remainder is of the same form as the tth term, except
that the terms p̂↵�a

(x), q̂��(t�a)
(x) are replaced by functions ⇠↵�a

1 (x), ⇠
��(t�a)
2 (x) for some functions ⇠1, ⇠2 that are

bounded between p, p̂ and q, q̂ respectively. In our setting, p, q 2 [
l

,
u

] and p̂, q̂ 2 [
l

� ✏,
u

+ ✏] so ⇠1, ⇠2 are bounded
functions. With this bound, we can simplify the remainder term R

t�1 to:

R
t�1  C(↵,�,

l

,
u

, ✏, t)
1

t!

tX

a=0

✓
t

a

◆Z
|p(x)� p̂(x)|a|q(x)� q̂(x)|t�adx.

Looking at the integral pointwise, either |p(x)� p̂(x)|  |q(x)� q̂(x)| in which case the expression is upper bounded by
|q(x) � q̂(x)|t or the opposite is true in which case it is bounded by |p(x) � p̂(x)|t. Either way, we can upper bound the
integral by the sum. This gives:

R
t�1  C(↵,�,

l

,
u

, ✏, t)
2

t

t!

�
kp� p̂kt

t

+ kq � q̂kt
t

�
.
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In many cases, the constant can be worked out:

1. If ↵ = � = 1, then R1 = ↵� while R2, . . . ,= 0.

2. If ↵,� > 0,↵+� = 1 as in the Rényi Divergence, R2 = 1 while R3 =

5
6

�2
✏

↵� where 
✏

= min{
l

�✏, (
u

+✏)�1}.

The first order von Mises expansion is:

T (p, q) = T (p̂, q̂) +

Z
@p̂↵(x)q̂�(x)

@p̂(x)
(p(x)� p̂(x)) +

Z
@p̂↵(x)q̂�(x)

@q̂(x)
(q(x)� q̂(x)) +O(kp� p̂k22 + kq � q̂k22)

= T (p̂, q̂) +

Z
↵p̂↵�1

(x)q̂�(x)(p(x)� p̂(x)) +

Z
�p̂↵(x)q̂��1

(x)(q(x)� q̂(x)) +O(kp� p̂k22 + kq � q̂k22)

= (1� ↵� �)T (p̂, q̂) +

Z
↵p̂↵�1

(x)q̂�(x)p(x) +

Z
�p̂↵(x)q̂��1

(x)q(x) +O(kp� p̂k22 + kq � q̂k22)

= C1T (p̂, q̂) + ✓p1,1 + ✓q1,1 +R2.

The second order expansion is computed similarly. The three second order terms are:

1

2

Z
↵(↵� 1)p̂↵�2

(x)q̂�(x)(p(x)� p̂(x))2

Z
↵�p̂↵�1

(x)q̂��1
(x)(p(x)� p̂(x))(q(x)� q̂(x))

1

2

Z
�(� � 1)p̂↵(x)q̂��1

(x)(q(x)� q̂(x))2.

Adding these together along with the linear terms, expanding and regrouping terms we get:

T2(p, q) = C2T (p̂, q̂) +
X

i=1,2
f=p,q

✓f2,i + ✓p,q2,2 +R3.

B. Full Specification of the Estimators

Here we write out the complete expressions for the estimators bT
pl

, bT
lin

, bT
quad

. Recall that we have samples Xn

1 ⇠ p, Y n

1 ⇠
q and our goal is to estimate T (p, q) =

R
p↵q� . Define:

p̂(x) =
1

n

nX

i=1

K
h

(X
i

� x) q̂(x) =
1

n

nX

j=1

K
h

(Y
j

� x)

p̂
DS

(x) =
2

n

n/2X

i=1

K
h

(X
i

� x) q̂
DS

(x) =
2

n

n/2X

j=1

K
h

(Y
j

� x),

where DS is used to denote that we are data splitting, and K
h

is a kernel with bandwidth h meeting Assumption 3. The
estimator bT

pl

is formed by simply plugging in p̂, q̂ into the function T . Formally:

bT
pl

=

Z
p̂↵(x)q̂�(x)dµ(x) (13)

The estimator bT
lin

is formed by a first order correction but we must used the data split KDEs to ensure independence
between the multiple terms in the estimator.

bT
lin

= (1� ↵� �)

Z
p̂↵
DS

(x)q̂�
DS

(x)dµ(x) +
2

n

nX

i=n/2+1

↵p̂↵�1
DS

(X
i

)q̂�
DS

(X
i

) +

2

n

nX

j=n/2+1

↵p̂↵
DS

(Y
j

)q̂�
DS

(Y
j

). (14)
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For the quadratic term we perform an additional correction:

bT
quad

= (1� 3↵/2� 3�/2 + 1/2(↵+ �)2)

Z
p̂↵
DS

(x)q̂�
DS

(x)dµ(x)+

+

2

n

nX

i=n/2+1

↵(2� ↵� �)p̂↵�1
DS

(X
i

)q̂�
DS

(X
i

) +

2

n

nX

j=n/2+1

�(2� ↵� �)p̂↵
DS

(Y
j

)q̂��2
DS

(Y
j

)

+

4

n(n/2� 1)

X

k2M

nX

i1 6=i2=n/2+1

�
k

(X
i1)�k(Xi2)


1

2

↵(↵� 1)p̂↵�2
DS

(X
i2)q̂

�

DS

(X
i2)

�

� 2

n(n/2� 1)

X

k,k

02M

nX

i1 6=i2=n/2+1

�
k

(X
i1)�k0

(X
i2)


1

2

↵(↵� 1)

Z
�
k

(x)�
k

0
(x)p̂↵�2

DS

(x)q̂�
DS

(x)dµ(x)

�

+

4

n(n/2� 1)

X

k2M

nX

j1 6=j2=n/2+1

�
k

(Y
j1)�k(Yj2)


1

2

�(� � 1)p̂↵
DS

(Y
j2)q̂

��2
DS

(Y
i2)

�

� 2

n(n/2� 1)

X

k,k

02M

nX

j1 6=j2=n/2+1

�
k

(Y
j1)�k0

(Y
j2)


1

2

�(� � 1)

Z
�
k

(y)�
k

0
(y)p̂↵

DS

(y)q̂��2
DS

(y)dµ(y)

�

+

2

n

nX

j=n/2+1

X

k2M

0

@ 2

n

nX

i=n/2+1

�
k

(X
i

)

1

A�
k

(Y
j

)

⇣
↵�p̂↵�1

DS

(Y
j

)q̂��1
DS

(Y
j

)

⌘
.

Recall that {�
k

}
k2D

is an orthonormal basis for L2([0, 1]
d

), and M is an appropriately chosen subset of D. The first line
of the estimator is simply the plugin term, while the second lines makes up the two linear terms. The third through sixth
lines are the two quadratic terms, one involving the data from p and the other involving the data from q. Finally the last
line is the bilinear term.

C. Detailed Proofs of Upper Bound
Let us now prove the the auxiliary results stated in Section 5

C.1. Proof of Theorem 5

The truncated kernel density estimator takes the following form: We select a parameter ✏ > 0. If ˜f is the usual kernel
density estimator for f , we set ˆf(x) = ˜f(x) if ˜f(x) 2 [

l

� ✏,
u

+ ✏] and otherwise we set ˆf(x) = f0(x) for some fixed
function bounded between 

l

,
u

.

Recall Assumption 3 ensures that the kernel K : Rd ! R satisfies:

1. suppK 2 (�1, 1)d

2.
R
K(x)dx = 1 and

R Q
i

xpi
i

K(x)dx = 0 for all tuples p = (p1, . . . , pd) with
P

p
i

 bsc.

Note that we can use the Legendre polynomials to construct kernels meeting these properties (Tsybakov, 2009).

Let us first establish the rate of convergence of ˜f the regular kernel density estimator in `p
p

, which is ˜f(x) =

1
nh

d

P
n

i=1 K
�
x�Xi

h

�
. Denote by ¯f(x) = E[ ˜f(x)] = E

X⇠f

[

1
h

dK
�
x�X

h

�
]. Then:

E[k ˜f � fkp
p

]  2

p

⇣
E[k ˜f � ¯fkp

p

] + k ¯f � fkp
p

⌘
.

To bound the first term, let us write ⌘
i

(x) = 1
h

dK
�
x�Xi

h

�
� E

X⇠f

[

1
h

dK
�
x�X

h

�
]. Exchanging integrals, we can look at

fixed x and we have:

E| ˜f(x)� ¯f(x)|p = E| 1
n

nX

i=1

⌘
i

(x)|p 
 

1

n2p
E[(

nX

i=1

⌘
i

(x))2p]

!1/2

. (15)
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If we expand the expectation and drop the terms that vanish we get all terms of the form:

nX

i1 6=i2... 6=it=1

tY

j=1

✓
p�

P
j�1
k=1 pk

p
j

◆
⌘
ij (x)

pj
=

n!

(n� t)!

tY

j=1

✓
p�

P
j�1
k=1 pk

p
j

◆
⌘
ij (x)

pj ,

where 1  t < p,
P

p
j

= p and p
j

6= 18j. That is, we pick a term in the polynomial with t unique variables, then assign
powers p

j

to each of the terms, then count the number of ways to assign those powers to those terms (which results in the
binomial coefficients). Since E[⌘

j

(x)] = 0, the terms where there is some p
j

= 1 are all zero.

By linearity of expectation and independence, we therefore need to control E[|⌘
i

(x)|q] for 2  q  p. Applying Jensen’s
inequality, we get:

E[|⌘
i

(x)|q]  2

qE[| 1
hd

K

✓
X � x

h

◆
|q]  2

q
u

h�(q�1)d

Z
|K(u)q|du,

where the last expression comes from expanding the integral, performing a substitution and bounding f(x)  
u

. So we
can bound by C(q,

u

,K)h�(q�1)d. Plugging this into the expression above, we get:

n!

(n� t)!
C(pj1,u,K)h�pd+td  ntC 0

(pj1,u,K)h�pd+td  C 0
(pj1,u,K)

np

hpd

.

The second inequality holds for n sufficiently large. The third inequality holds whenever nhd � 1 which will be true for n
sufficiently large, given our setting of h. To summarize, all of the terms can be upper bounded by c(np/hpd

) and there are
a constant-in-p number of terms. Plugging this into Equation 15 we get

E[k ˜f � ¯fkp
p

]  C(nhd

)

�p/2. (16)

Remark 1. The constant here has exponential dependence on p but we are only concerned with cases where p is a small
constant (at most 4).

As for the bias (note that x, u, t are all d-dimensional vectors here):

| ¯f(x)� f(x)| =
Z

1

hd

K

✓
x� t

h

◆
f(t)dt� f(x) =

Z
(f(x� uh) + f(x))K(u)du.

Let us define m = bsc. Taking the (m � 1)st order von Mises expansion of f(x + uh) about f(x) we get terms of the
form: X

r1,...,rd|
P

rim�1

1

|r|!D
rf(x)h|r|

Z Y

i

uri
i

K(u)du

which are all zero by our assumption on K. The remainder term, gives us:

X

r1,...,rd|
P

ri=m

hm

m!

Z
⇠(r, x, uh)

Y

i

uri
i

K(u)du 
X

r1,...,rd|
P

ri=m

Lhs

m!

Z
kuks�m

Y

i

uri
i

K(u)du,

which we will denote C(m,K, d)Lhs. Here the function ⇠ is between Drf(x) and Drf(x � uh) and to reach the last
expression, we use the fact that |Drf(x)�Drf(x� uh)|  Lkuhks�r, i.e. the Hölderian assumption on f . In applying
the Hölderian assumption, there is another term of the form Drf(x)

R Q
i

uri
i

K(u)du which is zero by the assumption on
K. Equipped with this bound, we can bound the bias:

k ¯f � fkp
p

 C(m,K, d)Lphps. (17)

In trading off the bias and the variance, we set h ⇣ n
�1

2s+d and see that the rate of convergence is E[k ˜f � fkp
p

= O(n
�ps
2s+d

).

To prove Theorem 5, we just have to show that truncation does not significantly affect the rate. Fix ✏ > 0 and define
S
✏

= {x : 
l

� ✏  ˜f(x)  
u

+ ✏}. We have:

E[k ˆf � fkp
p

] = E
"Z

S✏

| ˜f(x)� f(x)|pdx+

Z

S

C
✏

|f0(x)� f(x)|dx
#
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 E
h
k ˜f � fkp

p

i
+ kf0 � fkp1E

Z
1[x /2 S

✏

]dx

�

= E
h
k ˜f � fkp

p

i
+ kf0 � fkp1

Z
P
X

n
1
[x /2 S

✏

]dx,

so we must control the probability that x /2 S
✏

. This can be done via Bernstein’s inequality. First observe that the bias
| ¯f � f | ! 0 with our choice of h so that for sufficiently large n, sup

x

¯f(x) � f(x)  ✏/2. Once this happens, it is clear
that x /2 S

✏

implies that ˜f(x)� ¯f(x) � ✏/2. Therefore:

P[x /2 S
✏

]  P[| ˜f(x)� ¯f(x)| � ✏/2] = P[| 1
n

X

i

⌘
i

(x)| � ✏/2]  2 exp

✓
�nhd✏2/4


u

kKk22 + 1
3kKk1✏

◆
.

This last inequality is an application of Bernstein’s inequality noting that |⌘
i

(x)|  2
h

d kKk1 and Var(⌘
i

(x)) 
h�d

u

kKk22 since:

Var(⌘
i

(x))  E
Xi⇠f


1

h2d
K2

(

X
i

� x

h
)

�
=

1

hd

Z
K2

(u)f(x+ hu)du  h�d
u

kKk22.

Using our definition h ⇣ n
�1

2s+d and using the fact that ✏ is some constant P[x /2 S
✏

]  2 exp(�Cn
2s

2s+d
). Plugging this

bound in above, we have:

E
h
k ˆf � fkp

p

i
 E

h
k ˜f � fkp

p

i
+ 2kf0 � fkp1 exp

⇣
�Cn

2s
2s+d

⌘
vol([0, 1]d) = O(n

�ps
2s+d

),

since the second term goes to zero exponentially quickly in n. This proves the theorem.

C.2. Convergence Rate for Estimating Linear Functionals

It is trivial to derive the convergence rate for estimating linear functionals:

E[(ˆ✓ � ✓)2] =
1

n
(E[ 2

(X)]� E[ (X)]

2
)  2k k21/n,

And by Jensen’s inequality, we have E[|ˆ✓ � ✓|] 
q
E[(ˆ✓ � ✓)2], so the rate of convergence is

p
2k k1/

p
n.

C.3. Proof of Theorem 6

For the quadratic terms, we use a result of Laurent (1996):
Theorem 10 ((Laurent, 1996)). Let Xn

1 be i.i.d random variables with common density f that belongs to some Hilbert
Space L2

(dµ). Let {�
i

}
i2D

be an orthonormal basis of L2
(dµ). Assume that f is uniformly bounded and belongs to the

ellipsoid E = {
P

i2D

a
i

�
i

:

P
i2D

|a2
i

/c2
i

|  1}. Let  be bounded function and define ✓ =

R
 (x)f(x)µ(dx) and ˆ✓ as

in Equation 2 where the set M = M
n

⇢ D has size m. Then whenever n � n0 (some absolute constant), we have:

E[(ˆ✓ � ✓)2] = Bias2(ˆ✓) + Var(

ˆ✓)  k k21 sup

i/2Mn

|c
i

|4 + 72k k21kfk21
✓
2

n
+

m

n2

◆
. (18)

For the bi-linear term ✓p,q2,2 we have the following theorem:
Theorem 11. Let Xn

1 be i.i.d random variables with common density f and Y n

1 be i.i.d. with common density g. Let f, g
belong to some Hilbert space L2

(dµ) and let {�
i

}
i2D

be an orthonormal basis for L2
(dµ). Assume that f, g are uniformly

bounded and both belong to the ellipsoid E = {
P

i2D

a
i

�
i

:

P
i2D

|a2
i

/c2
i

|  1}. Let ✓ =

R
 (x)f(x)g(x)µ(dx) and ˆ✓

be defined by Equation 1 where the set M = M
n

⇢ D has size m. Then whenever n � n0 (some absolute constant), we
have:

E[(ˆ✓ � ✓)2] = Bias2(ˆ✓) + Var(

ˆ✓)  k k21 sup

i/2Mn

|c
i

|4 + k k21kfk1kgk1
✓
2

n
+

m+ 1

n2

◆
. (19)
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Proof. The bias is:

E[ˆ✓]� ✓ =

Z X

i2M

↵
i

�
i

(x) (x)g(x)dx�
Z
 (x)f(x)g(x) =

Z
 (x) (P

M

f(x)� f(x)) g(x)dx,

where ↵
i

=

R
�
i

(x)f(x) and P
M

f is the projection of f onto the subspace defined by M . Define �
i

=

R
�
i

(x)g(x). If
f, g live in the ellipsoid E = {

P
a
i

�
i

|
P

|a
i

|2/|c
i

|2  L} then:

Bias2(ˆ✓) =

 
X

i/2M

↵
i

Z
 (x)g(x)�

i

(x)dx

!2

 k k21

 
X

i/2M

↵
i

�
i

!2

.

The term inside the parenthesis can be bounded as:

X

i/2M

↵
i

�
i

 1

2

sup

i/2M

|c
i

|2
X

i/2M

|↵
i

|2 + |�
i

|2

|c
i

|2  L sup

i/2M

|c
i

|2,

so the bias is Bias2(ˆ✓)  k k21L2
sup

i/2M

|c
i

|4.

As for the variance, let us define Q(x) to be the m-dimensional vector of functions �
i

(x) � ↵
i

and R(x) to be the m-
dimensional vector of functions �

i

(x) (x) �
R
 �

i

g. Further define A,B to be the m-dimensional vectors with ith
components ↵

i

=

R
�
i

f and �
i

=

R
 �

i

g respectively. Then our estimator can alternatively be written as:

ˆ✓ =
1

n2

X

j,k

Q(X
j

)

TR(Y
k

)

| {z }
T1

+

1

n

X

j

Q(X
j

)

TB

| {z }
T2

+

1

n

X

k

ATR(Y
k

)

| {z }
T3

�ATB.

Notice that Q,R are centered functions. Since Xs are independent of the Y s, Cov(T2, T3) = 0. Since T2 is independent
of Y and E[R(Y

k

)] = 0, we see that Cov(T1, T2) = 0. Similarly, Cov(T1, T3) = 0.

Therefore,
Var(

ˆ✓) = Var(T1) + Var(T2) + Var(T3).

Let us analyze T1. By independence,

Var(T1) =

1

n2
Var(Q(X1)

TR(Y1)) =
1

n2

X

i,i

02M

Z
�
i

(x)�
i

0
(x)�

i

(y)�
i

0
(y) (y)2f(x)g(y)dxdy

�
Z
↵
i

↵
i

0�
i

(y)�
i

0
(y) (y)2g(y)dy �

Z
�
i

�
i

0�
i

(x)�
i

0
(x)f(x) + ↵

i

↵
i

0�
i

�
i

0

 1

n2

X

i,i

02M

Z
�
i

(x)�
i

0
(x)�

i

(y)�
i

0
(y) (y)2f(x)g(y)dxdy +

1

n2
(

X

i

↵
i

�
i

)

2

=

1

n2

Z  X

i2M

�
i

(x)�
i

(y)

!2

 (y)2f(x)g(y)dxdy +
1

n2
(

X

i

↵
i

�
i

)

2

 k k21kfk1kgk1
n2

Z  X

i2M

�
i

(x)�
i

(y)

!2

dxdy +
1

n2

 
X

i

↵2
i

! 
X

i

�2
i

!

 k k21kfk1kgk1m

n2
+

1

n2
(

Z
f2

)(

Z
g2 2

)  k k21kfk1kgk1(m+ 1)

n2
.

To arrive at the third line, notice that the cross terms are non-negative, since
P

i,i

0 ↵
i

↵
i

0�
i

(y)�
i

0
(y) = (

P
i

↵
i

�
i

(y))
2 (and

analogously for the other cross term). Therefore we can simply omit them and provide an upper bound. To go from the
fourth to fifth lines, we use Hölder’s inequality on the first term and Cauchy-Schwarz on the second term. Notice that the
expression involving �

i

(x)�
i

(y) is positive, so we can drop the absolute values in the `1 norm term of Hölder’s inequality.
To arrive at the fifth line, we expand out the square and use the fact that �

i

s are orthornormal.
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For T2 again by independence we have:

Var(T2) =

1

n
Var(Q(X1)

TB) = E[
 
X

i2M

(�
i

(X1)� ↵
i

)

Z
 �

i

g

!2

]

=

X

i,i

02M

Z
�
i

(x)�
i

0
(x)f(x)

Z
 �

i

g

Z
 �

i

0g �
Z
↵
i

 �
i

g

Z
↵
i

0 �
i

0g

=

Z
(

X

i2M

�
i

�
i

(x))2f(x)�
✓Z

(P
M

) g

◆2


Z

(P
M

( g))2f.

Here the last inequality follows from the fact that �
i

=

R
 �

i

g is the ith fourier coefficient of  g so
P

i

�
i

�
i

is the
projection onto M . Of course this quantity is bounded by:

Var(T2) 
1

n
kfk1

Z
 2

(x)g2(x)dx  k k21kfk1kgk1
n

.

Essentially the same argument reveals that T3 is bounded in the same way.

Var(T3) =

1

n
Var(ATR(Y1)) 

k k21
n

X

i,i

0

↵
i

↵
i

0

Z
�
i

(y)�
i

0
(y)g(y)dy �

Z
�
i

g

Z
�
i

0g

�

=

1

n
k k21

Z
(P

M

f)2g � (

Z
(P

M

f)g)2
�
 k k21kfk1kgk1

n
,

so the variance of the estimator is:

Var(

ˆ✓)  k k21kfk1kgk1
✓
m+ 1

n2
+

2

n

◆
.

Both the quadratic and bilinear terms exhibit the same dependence on sup

i/2Mn
|c

i

|,m, n so choosing M
n

appropriately
will give the rate of convergence for both terms. To establish Theorem 6 we work with the fourier basis {�

k

}
k2Zd where

�
k

(x) = e2⇡ik
T
x and the Sobolev class W(s, L) defined by:

W(s, L) =

8
<

:f =

X

k2Zd

a
k

�
k

������

X

k2Zd

(

dX

j=1

|k
j

|2s)|a
k

|2  L

9
=

; (20)

In Lemma 14 we show that the class W(s0, L0
) contains ⌃(s, L) as long as s0 < s and with appropriate choice of L0. For

now let us work in W(s0, L0
).

Let us choose:

M
n

= {k 2 Zd||k
j

|  1

2

m1/d}, m0 =

✓
18

d

s0
2

4s0/dn�2

◆ �d
4s0+d

⇣ n
2d

4s0+d .

Thinking of M
n

as an integer lattice with side lengths m0 = m1/d we see that |M
n

| = m. Moreover sup
i/2Mn

|c
i

|4 =

L2
(2/m)

4s0/d. For the quadratic terms, this results in the bound:

E[(ˆ✓ � ✓)2]  k k21
⇣
L2

(2/m)

4s0/d
+ 72kfk21m/n2

+ 144kfk21/n
⌘

 k k21 max{1, kfk21}max{L2, 1}
⇣
(2/m)

4s0/d
+ 72m/n2

+ 144/n
⌘
,

and plugging in our definition of m followed by some algebraic simplifications, we get

E[(ˆ✓ � ✓)2]  18kfk21 max{1, kpk21}max{L2, 1}
✓
8

n
+ n

�8s0
4s0+d

h
2

8s0
d d/s0 + 3

i◆
.
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For the bilinear terms, plugging into Theorem 11, we get

E[(ˆ✓ � ✓)2]  k k21 max{1, kfk1kgk1}max{L2, 1}
⇣
(2/m)

4s0/d
+m/n2

+ 3/n
⌘
,

which when we plug in for m we get:

E[(ˆ✓ � ✓)2]  k k21 max{1, kfk1kgk1}max{L2, 1}
✓
3/n+ n

�8s0
4s0+d

h
18⇥ 2

8s0/dd/s0 + 1

i◆
.

D. Proofs of Corollaries 4 and 3
The proof of Corollary 4 is immediate given the decomposition kp� qk22 =

R
p2 +

R
q2 � 2

R
pq and the Theorem 6.

For Corollary 3, if we use our estimator ˆT for T (p, q) =
R
p↵q1�↵ we can plug ˆT into the definition of Rényi divergence

to obtain an estimator ˆD
↵

. The rate of convergence is:

E[| ˆD
↵

�D
↵

|] = 1

↵� 1

E
h
log

⇣
ˆT/T

⌘i
 1

↵� 1

E
h
log(1 + |T � ˆT |/T )

i
 1

↵� 1

cn��/T (p, q)

where � is the rate of convergence of our estimator. This is O(n��
) as long as T (p, q) � c > 0.

E. Detailed Proofs for Lower Bound
To prove the main part of the theorem, the ⌦(n

�4s
4s+d

) rate, we use Le Cam’s method. We decompose the proof into
three parts. In the first part, we adapt Le Cam’s method to our setting. In the second part, we show how the properties
established on the functions u

j

, j 2 [p] allow us to apply the technique and establish the theorem. In the third part, we
prove the existence of such functions u

j

. We conclude this section with a proof of the ⌦(n�1/2
) when s > d/4.

E.1. Proof of Lemma 7

Proof. Define ⇥0 = {g 2 ⇥|T (g, q) � T (p, q)} and ⇥1 = {g 2 ⇥|T (g, q)  T (p, q) � 2�} so that all g
�

2 ⇥1 while
p 2 ⇥0. Let ˜⇥

i

= conv({Gn ⇥Qn|g 2 ⇥

i

}) and consider the simple versus simple testing problem between P 2 ⇥0 and
G
�

2 ⇥1. The minimax probability of error p
e

of such a test is lower bounded by 1
2 (1�

p
h2

(P,G
�

)(1� h2
(P,G

�

))/4)
by Theorem 2.2. of Tsybakov (2009). So for any test statistic  , taking supremum over P 2 ⇥0, G 2 ⇥1 we have:

sup

✓0,12⇥̃0,1

p
e

( ; ✓0, ✓1) �
1

2

h
1�

p
�(1� �/4)

i
,

where � � h2
(Pn ⇥Qn, ¯Gn ⇥Qn 2 ˜

⇥1), which holds since Pn ⇥Qn 2 ˜

⇥0 and ¯Gn ⇥Qn 2 ˜

⇥1 by convexity. The same
bound holds for after taking infimum over  . Finally, if we make an error in the testing problem, we suffer loss at least �
which results in the statement in the Lemma.

E.2. The properties of u
j

Recall that in our proof we partition [0, 1]d into m cubes R1, . . . , Rm

of side length m�1/d. On each bin we require a
function u

j

such that:

supp(u
j

) ⇢ {x|B(x, ✏) 2 R
j

}, ku
j

k22 = ⇥(m�1
),

Z

Rj

u
j

= 0,

Z

Rj

p↵�1q�u
j

= 0, kDru
j

k1  mr/d,

where the last inequality needs to hold for all tuples r with
P

j

r
j

 s + 1. Using these functions u
j

, we construct the
alternatives g

�

= p + K
P
�2⇤ �juj

1
Rj for all � 2 ⇤ = {�1, 1}m. The third property above ensures that g

�

is a valid
density.

Properties 2, 4, and 5 ensure that T (p, q)� T (g
�

, q) is sufficiently large. Indeed, by the von Mises expansion:

T (p, q)� T (g
�

, q) = K↵

mX

j=1

�
j

Z

Rj

p↵�1q�u
j

+K2↵(↵� 1)

mX

j=1

Z

Rj

⇠↵�2
p

(x)q�(x)u2
j

(x)dx
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� c0K
2

mX

j=1

ku
j

k22 � c1K
2.

Here ⇠ is the function in the Taylor’s remainder theorem, bounded between p and g
�

, both of which are bounded above and
below. g

�

is bounded above and below by property 5 since kD0uj

k1 = ku
j

k1  1 which means that g
�

2 [1�K, 1+K].
K will be decreasing with n, so this quantity will certainly be bounded for n large enough. Property 2 allows us to arrive
at the last line since each u

j

is orthogonal to the derivative of T , so the first term in the expansion is zero. Finally property
4 allows us to lower bound ku

j

k22.

Property 2 is also critical in ensuring that h2
(Pn ⇥ Qn, ¯Gn ⇥ Qn

) is small through the following Theorem of Birge and
Massart (1995).
Theorem 12 ((Birgé & Massart, 1995)). Consider a set of densities p and p

�

= p[1+
P

j

�
j

v
j

(x)] for � 2 ⇤ = {�1, 1}m.
Suppose that (i) kv

j

k1  1 (ii) k1
R

C
j
v
j

k1 = 0, (iii)
R
v
j

p = 0 and (iv)
R
v2
j

p = ↵
j

> 0 all hold with:

↵ = sup

j

kv
j

k1, s = n↵2
sup

j

P (R
j

), c = n sup

j

↵
j

.

Define ¯Pn

⇤ =

1
|⇤|
P
�2⇤ Pn

�

. Then:

h2
(Pn, ¯Pn

⇤ )  C(↵, s, c)n2
mX

j=1

↵2
j

,

where C < 1/3 is continuous and non-decreasing with respect to each argument and C(0, 0, 0) = 1/16.

In bounding the Hellinger distance h2
(Pn ⇥ Qn, ¯Gn ⇥ Qn

) we first use the property that hellinger distance decomposes
across product measures:

h2
(Pn ⇥Qn, ¯Gn ⇥Qn

) = 2

�
1� (1� h2

(Pn, ¯Gn

)/2)(1� h2
(Qn, Qn

)/2)
�
= h2

(Pn, ¯Gn

).

If we define v
j

(x) = Ku
j

(x)/p(x) then we have g
�

= p[1+
P

j

�
j

v
j

] as needed by Theorem 12. We immediately satisfy
requirements 1, 2, and 3 and we have

R
v2
j

p = K2
R
u2
j

/p  K2
l

/m = ↵
j

. Thus in applying the theorem we have:

h2
(Pn ⇥Qm, ¯Gn ⇥Qm

)  (1/3)n2
mX

j=1

↵2
j

 Cn2K4

m
.

Property 1 and 5 ensure that g
�

2 ⌃(s, L) via the following argument. Defining u
�

= K
P

j

�
j

u
j

, we will first show that
u
�

is holder smooth and g
�

will be holder by a final application of the triangle inequality. For u
�

, fix r with
P

j

r
j

= s
and fix x, y. Let x1 be the boundary point of R

j

, the bin containing x along the line between x and y and let y1 be the
analogous boundary point for y.

|Dru
�

(x)�Dru
�

(y)|  |Dru
�

(x)�Dru
�

(x1)|+ |Dru
�

(x1)�Dru
�

(y1)|+ |Dru
�

(y1)�Dru
�

(y)|
= |Dru

�

(x)�Dru
�

(x1)|+ |Dru
�

(y1)�Dru
�

(y)|

=

Z

�(x,x1)
rDru

�

(z)dz +

Z

�(y,y1)
rDru

�

(z)dz

 KkDr+1u
j

k1(kx� x1k2 + ky � y1k2)

 Km(r+1)/d
⇣
kx� x1ks�r

2 kx� x1k1�(s�r)
2 + ky � y1ks�r

2 ky � y1k1�(s�r)
2

⌘

 Km(r+1)/d
p
dm� 1�(s�r)

d
�
kx� x1ks�r

2 + ky � y1ks�r

2

�

 Kms/d

p
dkx� yks�r

2  Lkx� yks�r

2

The first line is an application of the triangle inequality. In the second line we use that u
�

is zero and has all derivatives
equal to zero on the boundaries of the cubes R

j

. This follows from the fact that u
j

is not supported in the band around
the border of R

j

. The third line is an application of the fundamental theorem of calculus, �(x, x1) is the path between x
and x1. The fourth line follows from Hölder’s inequality, we replace each derivative with its supremum and are left with
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just the path integral, which simplifies to the length of the path, i.e. kx � x1k2. In the fifth line we use the assumption
kDru

j

k1  mr/d for any derivative operator with
P

j

r
j

 s+1. To arrive at the sixth line, notice that since x, x1 are in
the same box R

j

, we have kx� x1k2 
p
dm�1/d (there are m boxes and each one has length m�1/d on each side). The

last line is true since x1, y1 are on the line segment between x, y.

In other words, g
�

is holder smooth as long as Kms/d

p
d ⇣ L, imposing the requirement that K = O(m�s/d

). So if we
pick m = n

2d
4s+d and K = m�s/d

= n
�2s
4s+d we get that g

�

2 ⌃(s, L) as long as there is some wiggle room around p. We
also get that the Hellinger distance is bounded by O(n2n

�8s
4s+dn

�2d
4s+d

) = O(1) and the distance in our metric is n
�4s
4s+d as we

desired. We can apply Theorem 7 and arrive at the result.

E.3. Existence of u
j

To wrap up, we need to show that we can in fact find the functions u
j

. We can do this by mapping R
j

to [0, 1]d and using an
orthonormal system {�

j

}q
j=1 for L2

([0, 1]d) with q � 3. Suppose that �
j

satisfy (i) �1 = 1, �
j

(x) = 0 for x /2 [✏, 1� ✏]d

and (iii) kDr�
j

k1  K < 1 for all j. Certainly we can find such an orthonormal system.

Now for any function f 2 L2
([0, 1]d), we can easily find a unit-normed function ṽ 2 span({�

j

}) such that ṽ ? �1,
and ṽ ? f . If we write ṽ =

P
i

c
i

�
i

we have that Drv = c
i

Dr�
i

so that kDrvk1  K
P

i

|c
i

|  K
p
q since ṽ is

unit-normed. Notice that the vector v = ṽ(K
p
q)�1 has upper and lower-bounded `22-norm while having all kDrvk1  1.

To construct the functions u
j

, map the R
j

= ⇧

d

i=1[jim
�1/d, (j

i

+ 1)m�1/d
] to [0, 1]d and let the function f =

p↵�1
(x)q�(x) mapped appropriately to [0, 1]d. Use the function v

j

constructed in the previous paragraph. In map-
ping back to R

j

, let u
j

(x) = v
j

(m1/d
(x � (j1, . . . , jd))

T

) so that
R
Rj

u2
j

(x)dx = m�1
R
v2
j

(x)dx = ⌦(1/m) and
kDru

j

k1  mr/d. These functions u
j

meet the requirements 1-5 outlined above, allowing us to apply Le Cam’s method.

E.4. An n�1/2 Lower Bound when s > d/4

To obtain the n�1/2 lower bound for the highly-smooth setting, we will reduce the problem of estimating T (p, q) to that of
estimating a quadratic functional of the two densities:

✓(p, q) =

Z
a1(x)p(x) + a2(x)q(x) + a3(x)p(x)q(x) + a4(x)p

2
(x) + a5(x)q(x)dµ(x) (21)

for some known functions a
i

: [0, 1]d ! R, i 2 {1, . . . , 5}. We will then use the following lower bound on the rate of
estimating these functionals to establish a lower bound in our problem:

Theorem 13. Let a
i

: [0, 1]d ! R, i 2 {1, . . . , 5} be continuous, bounded, non-constant functions and let ✓(p, q) be as in
Equation 21. Then:

lim inf

n!1
inf

✓̂n

sup

p,q2⌃(s,L)
P
X

n
1 ⇠p,Y

n
1 ⇠q

[|ˆ✓
n

� ✓(p, q)| � ✏n�1/2
] � c > 0 (22)

For some constants ✏, c > 0.

Proof. We will use Le Cam’s Method to establish the lower bound. Let us fix q once and for all. We will only vary p.
Let p0(x) = 1 and p1(x) = 1 + u(x) for some function u(x) that we will select later. By Theorem 2.2 of (Tsybakov,
2009) (essentially the Neyman-Pearson Lemma) if we can upper bound KL(pn1 ⇥ qn, pn0 ⇥ qn) we have a lower bound on
the probability of making an error in the simple versus simple hypothesis test between the two possible distributions when
Xn

1 ,⇠ p1 and Y n

1 ⇠ q. Mathematically, define p
e,1( ) = P

X

n
1 ⇠p1,Y

n
1 ⇠q

[ (Xn

1 , Y
n

1 ) 6= 1] for a test statistic  taking
values in {0, 1}. Also define p

e,1 = inf

 

p
e,1( ). Then Theorem 2.2 of (Tsybakov, 2009) says that if KL(pn1 ⇥ qn, pn0 ⇥

qn)  ↵ < 1 then

p
e,1 � max

 
1

4

exp(�↵),
1�

p
↵/2

2

!

So let us bound the KL-divergence:

KL(pn1 ⇥ qn, pn0 ⇥ qn) = nKL(p1, p0) = n

Z
(1 + u(x)) log(1 + u(x))dx  n

Z
u(x) + u2

(x)dx = nkuk22



Nonparametric Divergence Estimation

Here we used that
R
u(x) = 0 if p1 is to remain a density. This is one of the requirements on the function u that we will

pick. If the KL-divergence is to remain bounded, we will also require that kuk22  c/n for some constant.

If we make a mistake in the testing problem, we suffer at least 1/2|✓(p0, q)� ✓(p1, q)| loss in the estimation problem. So
we must lower bound the absolute difference between the two functional values.

|✓(p0, q)� ✓(p1, q)| = |
Z

a1(x)u(x) + a3(x)q(x)u(x) + 2a4(x)u(x) + a4(x)u
2
(x)dµ(x)|

= |
Z

f(x)u(x) + a4(x)u
2
(x)dµ(x)|

where f(x) = a1(x) + a3(x)q(x) + 2a4(x). Suppose we had a function v such that:
Z

v(x) = 0, kv(x)k22 = O(1), p1 = 1 + 1/
p
nv(x) 2 ⌃(s, L),

Z
f(x)v(x) = ⌦(1)

Then if we use u(x) = n�1/2v(x) the loss we suffer is at least c1/
p
n� c2/n � ✏n�1/2 for some ✏ > 0 for n sufficiently

large. At the same time, the KL-divergence between the two hypothesis is also O(1). So we would be able to apply Le
Cam’s inequality.

So, we just need to find a sufficiently smooth function v with constant `22 norm and constant inner product with f . To do
this, consider an orthonormal system �1, . . . ,�q with q � 3 of L2

([0, 1]d) such that (i) �
j

(x) = 1, (ii) f 2 span({�
j

}q
j=1)

and (iii) kDr�
j

k1  K < 1 for all j and all tuples r with
P

j

r
j

 s + 1. It is always possible to construct such a
system as long as f itself has bounded r-th derivatives, which is true since f itself is a continuous, bounded function over
a compact domain. Let L denote the linear space spanned by {�

j

}. Earlier we showed that if v 2 L, then v 2 ⌃(s,A) for
sufficiently large constant A. So we can let v be any unit-normed function in L0

= {v 2 L|hv, fi = c, hv,�1i = 0}, which
is an affine space of dimension at least 1 (since f 6= c�1).

Then u(x) = v(x)/
p
n meets all of the requirements. Notice that since v 2 ⌃(s,A), we have that u 2 ⌃(s,A/

p
n) ⇢

⌃(s, L) for n sufficiently large.

In what follows, the functional ✓ that we are trying to estimate will actually be a random quantity. However, since Theo-
rem 13 applies to any set of five bounded continuous function a1, . . . , a5, it actually applies to any distribution over this
space of five bounded continuous functions. Mathematically, for any distribution D over this space of bounded continuous
functions:

lim inf

n!1
inf

✓̂n

sup

p,q2⌃(s,L)
P
X

n
1 ⇠p,Y

n
1 ⇠q,(a1,...,a5)⇠D

h
|ˆ✓

n

(a51)� ✓(a51, p, q)| � ✏n�1/2
i
� c > 0

where ✓(a51, p, q) is given in Equation 21.

Let us use Theorem 13 to prove a lower bound for estimating T (p, q) =

R
p↵q� . Suppose we had an estimator bT

n

for
T (p, q) that converges at rate o(n�1/2

), say 8p, q, n,E[| bT
n

� T (p, q)|]  c1n
�1/2�✏ for some constants c1, ✏ > 0. We

will use it to construct an estimator for a quadratic functional of p, q with better-than-
p
n rate, which will contradict

Theorem 13.

The quadratic functional of p, q will be the terms in the second order expansion of T (p, q) about T (p̂
n

, q̂
n

).

Given 2n samples, as in our upper bound, we use the first n to construct estimators p̂
n

, q̂
n

for p, q respectively. We use the
second n samples to compute ˆT

n

. The estimator for ✓ will be ˆ✓2n =

bT
n

�C2T (p̂n, q̂n). Where we are collecting all of the
terms of the form T (p̂

n

, q̂
n

) together. Recall that C2 is the coefficient for all of these terms.

The risk of the estimator is:

E
X

2n
1
[|ˆ✓

n

� ✓|]  E
X

2n
n+1

[| bT
n

� T |] + E
X

2n
1
[|T � C2T (p̂, q̂)� ✓|]

 c1n
�1/2�✏

+O(E
X

n
1
[kp� p̂k33 + kq � q̂k33])

 c1n
�1/2�✏

+ c2n
�3s
2s+d

for constants c1, c2 > 0. Now if s > d/4, both terms are o(n�1/2
), so we have E[|ˆ✓

n

� ✓|] = o(n�1/2
). The functions

p̂
n

, q̂
n

are deterministic functions of Xn

1 , Y
n

1 , so we can think of Xn

1 as encoding a distribution over functions p̂
n

, q̂
n

.
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More formally, let D encode the following distribution: We drawn Xn

1 , Y
n

1 from p, q respectively and compute p̂
n

, q̂
n

.
With these, the five functions a1, . . . , a5 are:

a1 = ↵(2� ↵� �)p̂↵�1
n

q̂�
n

a2 = �(2� ↵� �)p̂↵
n

q̂��1
n

a3 = ↵�p̂↵�1
n

q̂��1
n

a4 = 1/2↵(↵� 1)p̂↵�2
n

q̂�
n

a5 = 1/2�(� � 1)p̂↵
n

q̂��2
n

Notice that all of these functions are continuous and they can be bounded from above and below if we use the truncated
kernel density estimators. Now whenever s > d/4:

E(a1,...,a5)⇠DEX

n
1 ⇠p,Y

n
1 ⇠q

h
|ˆ✓ � ✓|

i
= E

X

2n
1 ⇠p,Y

2n
1 ⇠q

h
|ˆ✓ � ✓|

i
 cn�1/2�✏

which contradicts the lower bound. Via Markov’s inequality, P
X

2n
1
[|ˆ✓

n

� ✓| � c4n
�1/2

]  o(n�1/2
)/n�1/2 ! 0 which

contradicts our discussion following Theorem 13. This shows that when s > d/4, one cannot estimate T (p, q) are faster
than

p
n rate.

E.5. Translating to T
↵

and D
↵

Suppose we have an estimator ˆS
↵

for the Tsallis-↵ divergence, such that for all p, q 2 ⌃(s, l)E[| ˆS
↵

� S
↵

|]  ✏
n

. We can
define an estimator ˆT for T (p, q) =

R
p↵q1�↵ as ˆT = (↵� 1)

ˆS
↵

+ 1. The error between ˆT and T is:

E[| ˆT � T |] = |↵� 1|E[| ˆS
↵

� S
↵

|]  |↵� 1|✏
n

We therefore know that ✏
n

= ⌦(n��
) where � = min{ 4s

4s+d

, 1/2} since otherwise we would have an estimator ˆT for
T (p, q) with rate o(n��

), which contradicts Theorem 2.

For D
↵

, we use the same proof structure, but computing the error for ˆT is more involved. The estimator ˆT = exp{(↵ �
1)

ˆD} has error:
E[| ˆT � T |] = E

h
| exp{(↵� 1)

ˆD}� exp{(↵� 1)D
↵

}|
i

We would like to eliminate the absolute value, so we will have to consider all of the cases. If ↵ < 1 and D > ˆD then the
first term dominates the second so we can simply drop the absolute value sign. In this case we can use convexity of ex to
upper bound by:

 (↵� 1)E[e(↵�1)D̂
(

ˆD �D
↵

)] = (1� ↵)E[e(↵�1)D̂
(D

↵

� ˆD)]  C✏
n

as long as D
↵

is bounded from below, which implies that for n large enough, e(↵�1)D̂
= O(1). Actually the other cases

are analogous, for example if ˆD > D, then to remove the absolute value, we must swap the two terms, after which we
can use convexity to arrive at the same upper bound. Thus we have shown that E[| ˆT � T |] = O(✏

n

) which implies that
E[| ˆD �D|] = ⌦(n��

) as claimed.

F. More Auxiliary Results
Lemma 14 (Hölder is contained in Sobolev). Let f 2 ⌃(s, L) belong to the periodic holder class with smoothness s. Then
f belongs to the sobolev ellipsoid W(s0, L0

) where �
k

(x) = e2i⇡k
T
x is the fourier basis, k 2 Zd, s0 < s and:

L0
=

dCL2

(2⇡)2bsc

with C =

P1
l=0 4

l(s0�s).

Proof. Let us decompose s = r + ↵ where r = bsc and ↵ 2 (0, 1]. We need to bound:

X

(k1,...,kd)2Zd

(

dX

j=1

|k
j

|2s
0
)|↵

k

|2
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where ↵
k

=

R
f(x)�

k

(x)dx. This is equivalent to bounding, for each j = [d],
P

k2Zd |k
j

|2s0 |↵
k

|2 so let us fix a dimension
j for now. Using repeated integration by parts and the fact that D~rf is period for all ~r with

P
j

r
j

 r. we get
�����

Z
@r

@xr

j

f(x)�
k

(x)dx

����� = |2⇡ik
j

|r|
Z

f(x)�
k

(x)dx| = |2⇡ik
j

|r|↵
k

|

Let us write g(x) = @

r

@x

r
j
f(x). Then since f 2 ⌃(s, L), we know that g satisfies:

|g(x)� g(y)|  Lkx� hk↵

for all x, y. We will use this fact to bound
P

k2Zd |k
j

|2↵0 |b
k

|2 where b
k

=

R
g(x)�

k

(x) and ↵0 < ↵ which will give us a
bound on

P
k2Zd |k

j

|2s0 |↵
k

| via the above calculation. In particular, suppose that
P

k2ZZ

d |k
j

|2↵0 |b
k

|2  �
j

, then:
X

k2Zd

|k
j

|2s
0
|↵

k

|2 =

X

k2Zd

|k
j

|2r+2↵0
|↵2

k

| = |2⇡i|�2r
X

k2Zd

|k
j

|2↵
0
|b

k

|2  (2⇡)�2r�
j

Notice that:

g(x1, . . . , xj

� h, . . . , x
d

)� g(x1, . . . , xj

+ h, . . . , x
d

) =

X

k2Zd

b
k

e2i⇡k
T
x

2i sin(2⇡k
j

h)

This means that:

4

X

k2Zd

|b
k

|2 sin2(2⇡k
j

h) =

Z
(g(x1, . . . , xj

� h, . . . , x
d

)� g(x1, . . . , xj

+ h, . . . , x
d

))

2dx  L2|h|2↵

Notice that sin2(⇡/2) > sin

2
(⇡/4) � 1/2 so if we pick h = 1/(8q) and k

j

2 {q, . . . , 2q � 1} [ {�q, . . . ,�2q + 1} we
can lower bound the left hand side. To be concrete, letting S

q

= {k 2 Zd|k
j

2 {q, . . . , 2q � 1} [ {�q, . . . ,�2q + 1}}:

X

k2Zd

|b
k

|2|k
j

|2↵
0
=

1X

l=0

X

k2S2l

|b
k

|2|k
j

|2↵
0


1X

l=0

(2

l+1
)

2↵0 X

k2S2l

|b
k

|2

But:

X

k2S2l

|b
k

|2  2

X

k2S2l

|b
k

|2 sin2(2⇡k
j

(1/2l+3
))  2

X

k2Zd

|b
k

|2 sin2(2⇡k
j

(1/2l+3
))  L2

2

2

�2↵(l+3)

Using this bound above, we get:

X

k2Zd

|b
k

|2|k
j

|2↵
0
 L2

2

4

2↵0

8

2↵

1X

l=0

4

l(↵0�↵)  CL2

whenever the series converges (as long as ↵0 < ↵).

Using this as our value for �
j

and summing over the d dimensions, we get:

dX

j=1

X

k2Zd

|k
j

|2s
0
|↵

k

|  d(2⇡)�2r�
j

 dCL2

(2⇡)2r


