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Abstract
We consider nonparametric estimation of L2,
Rényi-↵ and Tsallis-↵ divergences between con-
tinuous distributions. Our approach is to con-
struct estimators for particular integral function-
als of two densities and translate them into di-
vergence estimators. For the integral function-
als, our estimators are based on corrections of
a preliminary plug-in estimator. We show that
these estimators achieve the parametric conver-
gence rate of n�1/2 when the densities’ smooth-
ness, s, are both at least d/4 where d is the di-
mension. We also derive minimax lower bounds
for this problem which confirm that s > d/4 is
necessary to achieve the n�1/2 rate of conver-
gence. We validate our theoretical guarantees
with a number of simulations.

1. Introduction
Given samples from two distributions, one fundamental
and classical question to ask is: how close are the two dis-
tributions? First, one must specify what it means for two
distributions to be close, for which a number of divergences
have been proposed. Then there is the statistical question:
how does one estimate divergence given samples from two
distributions. In this paper, we propose and analyze esti-
mators for three common divergences.

Divergence estimation has a number of applications across
machine learning and statistics. In statistics, one can use
these estimators to construct two-sample and independence
tests (Pardo, 2005). In machine learning, it is often con-
venient to view training data as a set of distributions and
use divergences to estimate dissimilarity between exam-
ples. This idea has been used in neuroscience, where the
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neural response pattern of an individual is modeled as a
distribution, and divergence is used to compare responses
across subjects (Johnson et al., 2001). It has also enjoyed
success in computer vision, where features are computed
for each patch of an image and these feature vectors are
modeled as independent draws from an underlying distri-
bution (Póczos et al., 2012).

For these applications and others, it is crucial to accurately
estimate divergences given samples drawn independently
from each distribution. In the nonparametric setting, a
number of authors have proposed various estimators which
are provably consistent. However, apart from a few exam-
ples, the actual rates of convergence of these estimators and
the minimax optimal rates are still unknown.

In this work, we propose three estimators for the L2
2, Rényi-

↵, and Tsallis-↵ divergence between two continuous dis-
tributions. Our strategy is to correct an initial plug-in es-
timator by estimates of the higher order terms in the von
Mises expansion of the divergence functional. We estab-
lish the rates of convergence for these estimators under the
assumption that both densities belong to a Hölder class of
smoothness s. Concretely, we show that the plug-in esti-
mator achieves rate n

�s
2s+d while correcting by the first or-

der terms in the expansion results in an n�min{ 2s
2s+d ,1/2}-

estimator and correcting further by the second order terms
gives an n�min{ 3s

2s+d ,1/2}-estimator. These last two esti-
mators achieve the parametric n�1/2 rate as long as the
smoothness s is larger than d/2, d/4, respectively, where
d is the dimension. Moreover the first-order estimator,
while worse statistically than the second-order estimator,
is computationally very elegant. These results contribute
to our fairly limited knowledge on this important prob-
lems (Nguyen et al., 2010; Singh & Póczos, 2014).

We also address the issue of statistical optimality by de-
riving a minimax lower bound on the convergence rate.
Specifically, we show that one cannot estimate these quan-
tities at better than n

�4s
4s+d -rate when s  d/4 and n�1/2-

rate otherwise. This establishes the optimality of our best
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estimator in the smooth regime and also that d/4 is the crit-
ical smoothness for this problem.

The remainder of this manuscript is organized as follows.
After discussing some related work on divergence estima-
tion and the closely-related entropy estimation in Section 2,
we present our estimators and main results in Sections 3
and 4. We provide proof sketches in Section 5. We present
some numerical simulations in Section 6 and conclude with
some open questions in Section 7. We defer many proof de-
tails and several calculations to the appendices.

1.1. Preliminaries

Let us begin by standardizing notation and presenting some
basic definitions. We will be concerned with two densities,
p, q : [0, 1]d ! R�0 where d denotes the dimension. For-
mally, letting µ denote the Lebesgue measure on [0, 1]d,
we are interested in two probability distributions P,Q with
Radon-Nikodym derivatives p = dP/dµ, q = dQ/dµ. Ex-
cept for in this section, we will operate exclusively with the
densities. Throughout, the samples {X

i

}n
i=1 will be drawn

independently from p while the samples {Y
i

}n
i=1 will be

drawn independently from q. For simplicity, assume that
we are given n samples from each distribution, although it
is not hard to adjust the estimators and results to unequal
sample sizes. The divergences of interest are:

1. L2
2-divergence

L2
2(p, q) =

Z
(p(x)� q(x))2dµ(x)

2. Rényi-↵ Divergence (Rényi, 1961)

D
↵

(p, q) =
1

↵� 1

log

✓Z
p↵(x)q1�↵

(x)dµ(x)

◆

3. Tsallis-↵ Divergence (Tsallis, 1988)

T
↵

(p, q) =
1

↵� 1

✓Z
p↵(x)q1�↵

(x)dµ(x)� 1

◆

Technically, these divergences are functionals on distribu-
tions, rather than densities, but we will abuse notation and
write them as above. As a unification, we consider estimat-
ing functionals of the form, T (p, q) =

R
p↵(x)q�(x)dµ(x)

for given ↵,�. Various settings of ↵,� yield the main terms
in the divergences, and we will verify that estimators for
T (p, q) result in good divergence estimators.

The sine qua non of our work is the von Mises expansion1.
Given a functional T mapping distributions to the reals, the
first-order von Mises expansion is:

T (F ) = T (G) + dT (G;F �G) +R2,

1See Chapter 20 of van der Vaart’s book for an introduction to
von Mises calculus (2000).

where F and G are distributions, R2 is a remainder term,
and dT (G;F � G) is the Gateaux derivative of T at G in
the direction of F �G:

dT (G;F �G) = lim

⌧!0

T (G+ ⌧(F �G))� T (G)

⌧
.

In our work, T is always of the form T (F ) =

R
�(f)dµ

where f = dF/dµ is the Radon-Nikodym derivative and
� is differentiable. In this case, the von Mises expansion
reduces to a functional Taylor expansion on the densities2:

T (F ) = T (G) +

Z
@�(g(x))

@g(x)
(f(x)� g(x))dµ(x) +

O(kf � gk22).

We generalize these ideas to functionals of two distribu-
tions and with higher order expansions analogous to the
Taylor expansion. We often write T (f) instead of T (F ).

2. Related Work
Divergence estimation and its applications have received
considerable attention over the past several decades. Pardo
provides a fairly comprehensive discussion of methods and
applications in the context of discrete distributions (2005).

Only recently has attention shifted to the continuous, non-
parametric setting, where a number of efforts have estab-
lished consistent estimators. Many of the approaches are
based on nearest-neighbor graphs (Hero & Michel, 1999;
Wang et al., 2009; Póczos & Schneider, 2011; Källberg &
Seleznjev, 2012). For example, Póczos and Schneider use
a k-nearest-neighbor estimator and show that one does not
need a consistent density estimator to consistently estimate
Rényi-↵ and Tsallis-↵ divergences. A number of other au-
thors have also proposed consistent estimators via the em-
pirical CDF or histograms (Wang et al., 2005; Pérez-Cruz,
2008). Unfortunately, the rates of convergence for all of
these methods are still unknown.

Singh and Poczos (2014) recently established a rate of con-
vergence for an estimator based on simply plugging kernel
density estimates into the divergence functional. Their es-
timator converges at n

�s
s+d -rate when s < d and n�1/2 oth-

erwise which matches some existing results on estimating
entropy functionals (Liu et al., 2012). In comparison, we
show that corrections of the plug-in estimator lead to faster
convergence rates and that the n�1/2 rate can be achieved
at the much lower smoothness of s > d/4. Moreover we
establish a minimax lower bound for this problem, which
shows that d/4 is the critical smoothness index.

Nguyen et al. (2010) construct an estimator for Csiszár f -
divergences via regularized M -estimation and prove a rate

2See Lemma 8 in the Appendix.
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of convergence when the likelihood-ratio dP/dQ belongs
to a Reproducing Kernel Hilbert Space. Their rate depends
on the complexity of this RKHS, but it is not clear how to
translate these assumptions into our Hölderian one, so the
results are somewhat incomparable.

Källberg and Seleznjev (2012) study an ✏-nearest neighbor
estimator for the L2

2-divergence that enjoys the same rate of
convergence as our projection-based estimator. They prove
that the estimator is asymptotically normal in the s > d/4
regime, which one can also show for our estimator. In the
more general setting of estimating polynomial functionals
of the densities, they only show consistency of their esti-
mator, while we also characterize the convegence rate.

A related and flourishing line of work is on estimating en-
tropy functionals. The majority of the methods are graph-
based, involving either nearest neighbor graphs or spanning
trees over the data (Hero et al., 2002; Leonenko et al., 2008;
Leonenko & Seleznjev, 2010; Pál et al., 2010; Sricharan
et al., 2010). One exception is the KDE-based estimator for
mutual information and joint entropy of Liu, Lafferty, and
Wasserman (2012). A number of these estimators come
with provable convergence rates.

While it is not clear how to port these ideas to divergence
estimation, it is still worth comparing rates. The estima-
tor of Liu et al. (2012) converges at rate n

�s
s+d , achieving

the parametric rate when s > d. Similarly, Sricharan et
al. (2010) show that when s > d a k-NN style estimator
achieves rate n�2/d (in absolute error) ignoring logarithmic
factors. In a follow up work, the authors improve this re-
sult to O(n�1/2

) using an ensemble of weak estimators, but
they require s > d orders of smoothness (Sricharan et al.,
2012). In contrast, our estimators achieve the parametric
n�1/2 rate at lower smoothness (s > d/2, d/4 for the first-
order and second-order estimators, respectively) and enjoy
a faster rate of convergence uniformly over smoothness.

Interestingly, while many of these methods are plug-in-
based, the choice of tuning parameter typically is sub-
optimal for density estimation. This contrasts with our
technique of correcting optimal density estimators.

We are not aware of any lower bounds for divergence es-
timation, although analogous results have been established
for the entropy estimation problem. Specifically, Birgé and
Massart (1995) prove a n

�4s
4s+d -lower bound for estimating

integral functionals of a density. Hero et al. (2002) give a
matching lower bound for estimating Rényi-↵ entropies.

Finally, our estimators and proof techniques are based on
several classical works on estimating integral functionals
of a density. The goal here is to estimate

R
�(f(x))dµ(x),

for some known function �, given samples from f . A se-
ries of papers show that n�1/2 rate of convergence is at-
tainable if and only if s > d/4, which is analogous to

our results (Birgé & Massart, 1995; Laurent, 1996; Kerky-
acharian & Picard, 1996; Bickel & Ritov, 1988). Of course,
our results pertain to the two-density setting, which encom-
passes the divergences of interest. We also generalize some
of these results to the multi-dimensional setting.

3. The Estimators
Recall that we are interested in estimating integral func-
tionals of the form T (p, q) =

R
p↵(x)q�(x). As an initial

attempt, with estimators p̂ and q̂ for p and q, we can use
the plug-in estimator bT

pl

= T (p̂, q̂). Via the von Mises
expansion of T (p, q), the error is of the form:

| bT
pl

� T (p, q)|  c1kp̂� pk1 + c2kq̂ � qk1.

Classical results on density estimation then suggest that bT
pl

will enjoy a n
�s

2s+d -rate (Devroye & Györfi, 1985).

A better convergence rate can be achieved by correcting the
plug-in estimator with estimates of the linear term in the
von Mises expansion. Informally speaking, the remainder
of the first order expansion is O(kp̂�pk22+kq̂�qk22) which
decays with n

�2s
2s+d , while the linear terms can be estimated

at n�1/2-rate. This estimator, which we call bT
lin

enjoys a
faster convergence rate than bT

pl

.

It is even better to augment the plug-in estimator with both
the first and second-order terms of the expansion. Here
the remainder decays at rate n� 3s

2s+d while the linear and
quadratic terms can be estimated at n�1/2 and n

�4s
4s+d rate

respectively. This corrected estimator bT
quad

achieves the
parametric rate whenever the smoothness s > d/4 which
we will show to be minimax optimal.

We now formalize these heuristic developments3. Below
we enumerate the terms in the first and second order von
Mises expansions that we will estimate or compute:

✓p1,1 = E
X⇠p

↵p̂↵�1
(X)q̂�(X)

✓q1,1 = E
Y⇠q

�p̂↵(Y )q̂��1
(Y )

✓p2,1 = E
X⇠p

↵(2� ↵� �)p̂↵�1
(X)q̂�(X)

✓q2,1 = E
Y⇠q

�(2� ↵� �)p̂↵(Y )q̂��1
(Y )

✓p2,2 =

1

2

Z
↵(↵� 1)p̂↵�2q̂�p2

✓q2,2 =

1

2

Z
�(� � 1)p̂↵q̂��2q2

✓p,q2,2 =

Z
↵�p̂↵�1q̂��1pq

C1 = 1� ↵� �

C2 = 1� 3

2

(↵+ �) +
1

2

(↵+ �)2

3See Appendices A and B for details omitted in this section.
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These definitions allow us to succinctly write the expan-
sions of T (p, q) about T (p̂, q̂):

T0(p, q) = T (p̂, q̂) +R1

T1(p, q) = C1T (p̂, q̂) + ✓p1,1 + ✓q1,1 +R2

T2(p, q) = C2T (p̂, q̂) +
X

i=1,2
f=p,q

✓f2,i + ✓p,q2,2 +R3,

with remainders, R
a

= O(kp� p̂ka
a

+ kq � q̂ka
a

).

We now turn to estimation of the ✓(·)(·),(·) terms. All of the

✓
(·)
(·),1 terms are linear; that is, they are of the form ✓ =

E
Z⇠f

[ (Z)] where  is known. A natural estimator, given
data Zn

1 ⇠ f , is the sample mean:

ˆ✓ =
1

n

nX

j=1

 (Z
j

).

The terms ✓(·)(·),2 are of the form:
Z
 (x)f2

(x), or
Z
 (x)f(x)g(x),

again with known . To estimate these terms, we have sam-
ples Xn

1 ⇠ f, Y n

1 ⇠ g. If {�
k

}
k2D

is an orthonormal basis
for L2([0, 1]

d

) then the estimator for the bilinear term is:

ˆ✓ =
1

n

nX

j=1

X

k2M

 
1

n

nX

i=1

�
k

(X
i

)

!
�
k

(Y
j

) (Y
j

), (1)

where M ⇢ D is chosen to tradeoff the bias and the
variance. To develop some intuition, if we knew f , we
would simply use the sample mean 1

n

P
n

j=1 f(Yj

) (Y
j

).
Since f is actually unknown, we replace it with an esti-
mator formed by truncating its Fourier expansion. Specif-
ically, we replace f with ˆf(·) =

P
k2M

â
k

�
k

(·) with
â
k

=

1
n

P
n

i=1 �k(Xi

).

For the quadratic functional, a projection estimator was
proposed and analyzed by Laurent (1996):

ˆ✓ =
2

n(n� 1)

X

k2M

X

i 6=j

�
k

(X
i

)�
k

(X
j

) (X
j

)

� 1

n(n� 1)

X

k,k

02M

X

i 6=j

�
k

(X
i

)�
k

0
(X

j

)b
k,k

0
( ),

(2)

where b
k,k

0
( ) =

R
�
k

(x)�
k

0
(x) (x)dx. The first term in

the estimator is motivated by the same line of reasoning as
in the bilinear estimator while the second term significantly
reduces the bias without impacting the variance.

Our final estimators for T (p, q) are:

bT
pl

= T (p̂, q̂)

bT
lin

= C1T (p̂, q̂) + ˆ✓p1,1 +
ˆ✓q1,1

bT
quad

= C2T (p̂, q̂) +
X

i=1,2
f=p,q

ˆ✓f2,i +
ˆ✓p,q2,2 .

Before proceeding to our theoretical analysis, we mention
some algorithmic considerations. We estimate p̂, q̂ with
kernel density estimators, which, except for in bT

pl

, we only
train on half of the sample. This gives us independent sam-
ples to estimate the ˆ✓

(·)
(·),(·) terms. Second, in our analysis,

we will require that the KDEs are bounded above and be-
low. Under the assumption that p and q are bounded above
and below, we will show that clipping the original KDE
will not affect the convergence rate.

Another important issue with density estimation over
bounded domains, that applies to our setting, is that the
standard KDE suffers high bias near the boundary. To cor-
rect this bias, we adopt the strategy used by Liu et al. (2012)
of “mirroring” the data set over the boundaries. We do not
dwell too much on this issue, noting that this technique can
be shown to suitably correct for boundary bias without sub-
stantially increasing the variance. This augmented estima-
tor can be shown to match the rates of convergence in the
literature (Devroye & Györfi, 1985; Tsybakov, 2009).

Lastly, the estimators all require integration of the term
T (p̂, q̂), which can be computationally burdensome, partic-
ularly in high dimension. However, whenever ↵ + � = 1,
as in the Rényi-↵ and Tsallis-↵ divergences, the constants
C1, C2 are zero, so the first term may be omitted. In this
case bT

lin

is remarkably simple; it involves training KDEs
and estimating a specific linear functional of them via the
sample mean. Although this estimator is not minimax op-
timal, it enjoys a fairly fast rate of convergence while be-
ing computationally practical. Unfortunately, even when
C2 = 0, the quadratic estimator still involves integration of
the b

i,i

0 terms. We therefore advocate for bT
lin

over bT
quad

in practice, as bT
lin

exhibits a better tradeoff between com-
putational and statistical efficiency.

4. Theoretical Results
For our theoretical analysis, we will assume that the den-
sities p, q belong to ⌃(s, L), the periodic Hölder class of
smoothness s, defined as follows:
Definition 1. For any tuple r = (r1, . . . , rd) define Dr

=

@

r1+...+rd

@x

r1
1 ...@x

rd
d

. The periodic Hölder class ⌃(s, L) is the subset

of L2([0, 1]
d

) where for each f 2 ⌃(s, L), the rth deriva-
tive is periodic for any tuple r with

P
j

r
j

< s and:

|Drf(x)�Drf(y)|  Lkx� yks�|r|, (3)

for all x, y and for all tuples r with
P

j

r
j

= bsc the largest
integer strictly smaller than s.
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Figure 1. Rates of convergence of the estimators bTquad, bTlin, bTpl along with the rate of convergence in the lower bound (Theorem 2).
Plot is � vs. smoothness s with d = 10, where the rate of convergence is O(n��

). The rate of convergence for each estimator is the
smallest of the rates of all terms in the von Mises expansion, which translates to the value of the lowest curves in the figure.

We are now ready to state our main assumptions:
Assumption 1 (Smoothness). p, q 2 ⌃(s, L) for some
known smoothness s.
Assumption 2 (Boundedness). The densities are bounded
above and below by known parameters 

l

,
u

. Formally
0 < 

l

 p(x), q(x)  
u

< 1 for all x 2 [0, 1]d.
Assumption 3 (Kernel Properties). The kernel K 2 Rd !
R satisfies:

(i) supp(K) 2 (�1, 1)d

(ii)

Z
K(x)dµ(x) = 1

(iii)

Z
dY

i=1

xri
i

K(x)dµ(x) = 0, 8r 2 Nd

:

X

i

r
i

 bsc

Assumption 4 (Parameter Selection). Set the KDE band-
width h ⇣ n

�1
2s+d . For any projection-style estimator, set

the number of basis elements m ⇣ n
2d

4s+d .

The Hölderian assumption is standard in the nonpara-
metric literature while the periodic assumption subsumes
more standard boundary smoothness conditions (Liu et al.,
2012). It is fairly straightforward to construct kernels meet-
ing Assumption 3 (Tsybakov, 2009), while the bounded-
ness assumption is common in the literature on estimating
integral functionals of a density (Birgé & Massart, 1995).

The following theorem characterizes the rate of conver-
gence of our estimators bT

pl

, bT
lin

, bT
quad

:
Theorem 1. Under Assumptions 1- 4 we have:

E
h
| bT

pl

� T (p, q)|
i

= O
⇣
n

�s
2s+d

⌘
(4)

E
h
| bT

lin

� T (p, q)|
i

= O
⇣
n�1/2

+ n
�2s
2s+d

⌘
(5)

E
h
| bT

quad

� T (p, q)|
i

= O
⇣
n�1/2

+ n
�3s
2s+d

⌘
. (6)

All expectations are taken with respect to Xn

1 , Y
n

1 . When
s = d/4, bT

quad

enjoys O(n�1/2+✏

) rate of convergence

for any ✏ > 0

4. bT
lin

and bT
quad

achieve the parametric rate
when s > d/2, d/4 respectively.

Before commenting on the upper bound and presenting
some consequences, we address the question of statistical
efficiency. Clearly bT

pl

and bT
lin

are not rate-optimal, since
bT
quad

achieves a faster rate of convergence, but is bT
quad

minimax optimal? We make some progress in this direction
with a minimax lower bound on the rate of convergence.
Theorem 2. Under Assumptions 1 and 2, as long as both
↵,� 6= 0, 1, then with �

?

= min{4s/(4s + d), 1/2} and
for any ✏ > 0:

lim inf

n!1
inf

b
Tn

sup

p,q2⌃(s,L)
Pn

p,q

h
| bT

n

� T | � ✏n��?

i
� c > 0.

For a pictorial understanding of the rates of convergence
and the lower bound, we plot the exponent � for each of
the terms in the von Mises expansion as a function of the
smoothness s in Figure 1. The estimator bT

quad

has three
terms, with rates n�1/2, n

�4s
4s+d , and n

�3s
2s+d respectively

which achieves the parametric rate n�1/2 when s > d/4

and is n
�3s
2s+d in the low-smoothness regime. The linear es-

timator only achieves the parametric rate while s > d/2

while bT
pl

only approaches the parametric rate as s ! 1.
Consequently these estimators are statistically inferior to
bT
quad

. In the last plot we show a lower bound on the
rate of convergence from Theorem 2, which is n

�4s
4s+d when

s  d/4 and n�1/2 when s > d/4.

The lower bound rate deviates slightly from the upper
bound for bT

quad

in the low-smoothness regime, showing
that bT

quad

is also not minimax-optimal uniformly over s.
This sub-optimality appears even when estimating integral
functionals of a single density (Birgé & Massart, 1995). In
that context, achieving the optimal rate of convergence in
the non-smooth regime involves further correction by the
third order term in the expansion (Kerkyacharian & Picard,
1996). It seems as if the same ideas can be adapted to

4The constant is exponential in ✏ and is infinite for ✏ = 0.
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the two-density setting, although we believe computational
considerations would render these estimators impractical.

In the smooth regime (s > d/4) we see that the paramet-
ric n�1/2 rate is both necessary and sufficient. This critical
smoothness index of s = d/4 was also observed in the con-
text of estimating integral functionals of densities (Birgé &
Massart, 1995; Laurent, 1996).

When s = d/4, the quadratic estimator achieves n�1/2+✏

rate for any ✏ > 0, where the constant is exponential in
✏, and thus deviates slightly from the lower bound. This
phenomenon arises from using the projection-based esti-
mators for the quadratic term. Establishing the rate of con-
vergence for these estimators requires working in a Sobolev
space rather than the Hölder class. In translating back
to the Hölderian assumption, we lose a small factor in
the smoothness, since the Sobolev space only contains the
Hölder space if the former is less smooth than the latter.

The lower bound on estimating integral functionals in The-
orem 2 almost immediately implies a lower bound for
Tsallis-↵ divergences. For Rényi-↵, some care must be
taken in the translation, but we are able to prove the same
lower bound as long as D

↵

(p, q) is bounded. The idea be-
hind these extensions is to translate an estimator ˆD for the
divergence into an estimator ˆT for T (p, q). We then ar-
gue that if ˆD enjoyed a fast rate of convergence, so would
ˆT , which leads to a contradiction of the theorem. Unfor-
tunately, Theorem 2 does not imply a lower bound for L2

2

divergence, since we are unable to handle the ↵ = � = 1

case, which is exactly the cross term in the L2
2-divergence.

Our proof requires that both ↵,� are both not 0 or 1, which
is not entirely surprising. If ↵ = � = 0, T (p, q) is iden-
tically zero, so one should not be able to prove a lower
bound. Similarly ↵ = 0,� = 1 or vice versa, T (p, q) = 1

for any p, q, so we have efficient, trivial estimators.

The only non-trivial case is ↵ = � = 1 and we conjecture
that the n��? rate is minimax optimal there, although our
proof does not apply. Our proof strategy involves fixing q
and perturbing p, or vice versa. In this approach, one can
view the optimal estimator as having knowledge of q, so if
↵ = 1, the sample average is a n�1/2-consistent estimator,
which prevents us from achieving the n��? rate. We be-
lieve this is an artifact of our proof, and by perturbing both
p and q simultaneously, we conjecture that one can prove a
minimax lower bound of n��? when ↵ = � = 1.

4.1. Some examples

We now show how an estimate of T (p, q) can be used to
estimate the divergences mentioned above. Plugging bT

quad

into the definition of Rényi-↵ and Tsallis-↵ divergences,
we immediately have the following corollary:

Corollary 3 (Estimating Rényi-↵, Tsallis-↵ divergences).
Under Assumptions 1- 4, as long as D

↵

(p, q) � c > 0 for
some constant c, the estimators:

ˆD
↵

=

1

↵� 1

log(

bT
quad

), ˆT
↵

=

1

↵� 1

(

bT
quad

� 1),

both with � = 1� ↵, satisfy:

E
X

n
1 ,Y

n
1
| ˆD

↵

�D
↵

(p, q)|  c
⇣
n�1/2

+ n
�3s
2s+d

⌘
(7)

E
X

n
1 ,Y

n
1
| ˆT

↵

� T
↵

(p, q)|  c
⇣
n�1/2

+ n
�3s
2s+d

⌘
(8)

As we mentioned before, when � = 1�↵, for both the lin-
ear and quadratic estimators, one can omit the term T (p̂, q̂)

as the constants C1, C2 = 0. However, bT
quad

is still
somewhat impractical due to the numeric integration in the
quadratic terms. On the other hand, the linear estimator
bT
lin

is computationally very simple, although its conver-
gence rate is O(n�1/2

+ n
�2s
2s+d

).

For the L2
2 divergence, instead of applying Theorem 1 di-

rectly, it is better to directly use the quadratic and bilinear
estimators for the terms in the factorization. Specifically,
let ✓

p

=

R
p2 and define ˆ✓

p

by Equation 2 with  (x) = 1.
Define ✓

q

, ˆ✓
q

analogously and finally define ✓
p,q

= 2

R
pq

with ˆ✓
p,q

given by Equation 1 where  (x) = 2. As a corol-
lary of Theorem 6 below, we have:

Corollary 4 (Estimating L2
2-divergence). Under Assump-

tions 1- 4, the estimator ˆL =

ˆ✓
p

+

ˆ✓
q

� ˆ✓
p,q

for L2
2(p, q)

satisfies:

E
X

n
1 ,Y

n
1

h
|ˆL� L2

2(p, q)|
i
= O(n�1/2

+ n
�4s
4s+d

). (9)

Notice that for both quadratic terms, the b
i,i

0 terms in Equa-
tion 2 are 1[i = i0] since  (x) = 1 and since {�

k

} is an
orthonormal collection. Thus the estimator ˆL is compu-
tationally attractive, as numeric integration is unnecessary.
In addition, we do not need KDEs, removing the need for
bandwidth selection, although we still must select the basis
functions used in the projection.

5. Proof Sketches
5.1. Upper Bound

The rates of convergence for bT
pl

, bT
lin

, and bT
quad

come
from analyzing the kernel density estimators and the es-
timators for ˆ✓

(·)
(·),(·). Recall that we must use truncated

KDEs p̂, q̂ with boundary correction, so standard analysis
does not immediately apply. However, we do have the fol-
lowing theorem establishing that truncation does not affect
the rate, which generalizes previous results to high dimen-
sion (Birgé & Massart, 1995).
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Theorem 5. Let f be a density satisfying Assumptions 1-
4 and suppose we have Xn

1 ⇠ f . The truncated KDE ˆf
n

satisfies:

E
X

n
1
k ˆf

n

� fkp
p

 Cn
�ps
2s+d .

It is simple exercise to show that the linear terms can be es-
timated at n�1/2 rate. As for the quadratic terms ✓p2,2, ✓

q

2,2,
and ✓p,q2,2 , we let D index the multi-dimensional Fourier ba-
sis where each function �

k

(x) = e2⇡ik
T
x is indexed by a

d-dimensional integral vector (i.e. k 2 Zd). We have:
Theorem 6. Let f, g be densities in ⌃(s, L) and let  be
a known bounded function. Let �

k

be the Fourier basis
and M the set of basis elements with frequency not ex-
ceeding m

1/d
0 , where m0 ⇣ n

2d
4s0+d for some s0 < s. If

✓ =

R
 (x)f(x)g(x) and ˆ✓ is given by Equation 1 or if

✓ =
R
 (x)f2

(x) and ˆ✓ is given by Equation 2, then:

E[(ˆ✓ � ✓)2]  O

✓
n�1

+ n
�8s0
4s0+d

◆
. (10)

Theorem 1 follows from these results, the von Mises ex-
pansion, and the triangle inequality.

5.2. Lower Bound

The first part of the lower bound is an application of Le
Cam’s method and generalizes a proof of Birge and Mas-
sart (1995). We begin by reducing the estimation problem
to a simple-vs.-simple hypothesis testing problem. We will
use the squared Hellinger distance, defined as:

h2
(p, q) =

Z ⇣p
p(x)�

p
q(x)

⌘2
dµ(x)

Lemma 7. Let T be a functional defined on some subset
of a parameter space ⇥ ⇥ ⇥ which contains (p, q) and
(g

�

, q)8� in some index set ⇤. Define ¯Gn

=

1
|⇤|
P

�2⇤ Gn

�

where G
�

has density g
�

. If:

(i) h2
(Pn ⇥Qn, ¯Gn ⇥Qn

)  � < 2

(ii) T (p, q) � 2� + T (g
�

, q) 8� 2 ⇤

Then:

inf

T̂n

sup

p2⇥
Pn

p,q

h
| ˆT

n

� T (p, q)| > �
i
� c

�

,

where c
�

=

1
2 [1�

p
�(1� �/4)].

To construct the g
�

functions, we partition the space
[0, 1]d into m cubes R

j

and construct functions u
j

that
are compactly supported on R

j

. We then set g
�

= p +

K
P

m

j=1 �juj

for � 2 ⇤ = {�1, 1}m. By appropriately
selecting the functions u

j

, we can ensure that:

g
�

2 ⌃(s, L),

T (p, q)� T (g
�

, q) � ⌦(K2
)

h2
(Pn ⇥Qm, ¯Gn ⇥Qm

)  O(n2K4/m).

Ensuring smoothness requires K = O(m�s/d

) at which
point, making the Hellinger distance O(1) requires m =

⌦(n
2d

4s+d
). With these choices we can apply Lemma 7 and

arrive at the lower bound since K2
= m�2s/d

= n
�4s
4s+d .

As for the second part of the theorem, the n�1/2 lower
bound, we use a (to our knowledge) novel proof technique
which we believe may be applicable in other settings. The
first ingredient of our proof is a lower bound showing that
one cannot estimate a wide class of quadratic functionals
at better than n�1/2 rate. We provide a proof of this result
based on Le Cam’s method in the appendix although re-
lated results appear in the literature (Donoho & Liu, 1991).
Then starting with the premise that there exists an estimator
ˆT for T (p, q) with rate n�1/2�✏, we construct an estimator
for a particular quadratic functional with n�1/2�✏ conver-
gence rate, and thus arrive at a contradiction. A somewhat
surprising facet of this proof technique is that the proof has
the flavor of an upper bound proof; in particular, we apply
Theorem 5 in this argument.

The proof works as follows: Suppose there exists a ˆT
n

such that | ˆT
n

� T (p, q)|  c1n
�1/2�✏ for all n. If we

are given 2n samples, we can use the first half to train
KDEs p̂

n

, q̂
n

, and the second half to compute ˆT
n

. Armed
with these quantities, we can build an estimator for the first
and second order terms in the von Mises expansion, which,
once p̂

n

, q̂
n

are fixed, is simply a quadratic functional of
the densities. The precise estimator is ˆT

n

� C2T (p̂n, q̂n).
The triangle inequality along with Theorem 5 shows that
this estimator converges at rate n�1/2�✏

+ n
�3s
2s+d which is

o(n�1/2
) as soon as s > d/4. This contradicts the min-

imax lower bound for estimating quadratic functionals of
Hölder smooth densities. We refer the interested reader to
the appendix for details of the proof.

6. Experiments
We conducted some simulations to examine the empirical
rates of convergence of our estimators. We plotted the error
as a function of the number of samples n on a log-log scale
in Figure 2 for each estimator and over a number of prob-
lem settings. Since our theoretical results are asymptotic
in nature, we are not concerned with some discrepancy be-
tween the empirical and theoretical rates.

In the top row of Figure 2, we plot the performance of
bT
pl

and bT
lin

across four different problem settings: d =

1, s = 1; d = 1, s = 2; d = 2, s = 2; and d =

2, s = 4. The lines fit to the plug-in estimator’s er-
ror rate have slopes �0.25,�0.5,�0.1,�0.2 from left to
right while the lines for the linear estimator have slopes
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Figure 2. Top row: Rates of convergence for bTpl, bTlin on a log-log scale for: left: d = 1, s = 1, second from left: d = 1, s = 2, second
from right: d = 2, s = 2, right: d = 2, s = 4. Bottom Row: Left: Rate of convergence for bTquad with d = 1, s = 1.0, 2.0. Middle two:
Rates for linear estimator of D0.5(p, q), T0.5(p, q) (respectively). Right: Rate for L2

2 estimator. Dashed lines are fitted to the curves.

�0.7,�0.75,�0.65,�0.6. Qualitatively we see that the
bT
lin

is consistently better than bT
pl

. We also see that in-
creasing the smoothness s appears to improve the rate of
convergence of both estimators.

In the first plot on the bottom row, we record the error rate
for bT

quad

with d = 1 and s = 1.0, 2.0. The fitted lines
have slopes �0.82,�0.93 respectively, which demonstrate
that bT

quad

is indeed a better estimator than bT
lin

, at least
statistically speaking. Recall that we studied bT

quad

primar-
ily for its theoretical properties and to establish the critical
smoothness index of s > d/4 for this problem. Computing
this estimator is quite demanding, so we did not evaluate it
for larger sample size and in higher dimension.

Finally in the last three plots we show the rate of conver-
gence for our divergence estimators, that is bT

lin

plugged
into the equations for D

↵

or T
↵

and the quadratic-based
estimator for L2

2. Qualitatively, it is clear that the estima-
tors converge fairly quickly and moreover we can verify
that increasing the smoothness s does have some effect on
the rate of convergence.

7. Discussion
In this paper, we address the problem of divergence esti-
mation with corrections of the plug-in estimator. We prove
that our estimators enjoy parametric rates of convergence
as long as the densities are sufficiently smooth. Moreover,
through information theoretic techniques, we show that our
best estimator bT

quad

is nearly minimax optimal.

Several open questions remain.

1. Can we construct divergence estimators that are com-
putationally and statistically efficient? Recall that
bT
quad

involves numeric integration and is computa-
tionally impractical, yet bT

lin

, while statistically infe-
rior, is surprisingly simple when applied to the diver-
gences we consider. At this point we advocate for the
use of bT

lin

, in spite of its sub-optimality.
2. What other properties do these estimators enjoy? Can

we construct confidence intervals and statistical tests
from them? In particular, can we use our estimators to
test for independence between two random variables?

3. Do our techniques yield estimators for other di-
vergences, such as f -divergence and the Kullback-
Leibler divergence?

4. Lastly, can one prove a lower bound for the case where
↵ = � = 1, i.e. the L2 inner product?

We hope to address these questions in future work.
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