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This supplement consists of three sections. Section A provides further applications that were skipped from the paper.
Section B provides all proofs for paper’s Section 4 (Algebraic Interpretation), including several further details. Section C
provides details for paper’s Section 5 (Geometric Interpretation).

A. Further Applications

The first application studies a certain approach of biased random walks from our new geometric perspective. The second
application deals with Semi-Supervised Learning.

A.1. Topologically biased random walks

f -adjusting a graph changes most of the properties of the random walk on the graph. The stationary distribution is now ob-
viously proportional to f rather than d. Hitting times and commute times are affected as well. Zlatić et al. (2010) study what
they call “vertex centered biased random walks”: implicitly they modify the random walk matrix P = D−1W in a way that
can be represented as P̃f = D̃−1f W̃f for W̃f being the f -scaled graph with f = d� exp(2β · d/‖d‖∞), where � denotes
the Hadamard product and exp(·) is applied entry-wise. They observe that their particular choice leads to much better
clustering results. They conclude this from studying eigenvalues and eigenvectors of the symmetrization D̃−1/2f W̃f D̃

−1/2
f .

Since these quantities correspond to the eigenvalues and eigenvectors of L(W̃ ), their approach can be understood in terms
of normalized cuts of the f -scaled graph. Based on our analysis, we can now give an intuitive explanation of their approach:
their new random walk aims at studying the modified density p̃(x) = exp(2β · p(x)/pmax) · p(x)2. Hence, they amplify
high-density regions in space exponentially stronger than low-density regions, which drastically strengthens any density
cluster structure. Of course this only works to a certain extent, because it runs into the same problem as studying the
density pr for large r: suppose that A and B denote disjoint geometric areas of two different clusters at slightly different
“density plateaus”, that is, there exist a < b such that the level sets to every threshold t ∈ [a, b] only show, say, A but not
B. For any moderate bias/amplification (“small β > 0”, or “small r > 1”), A and B are both emphasized over any much
lower density areas between them. However, since A and B lie on different plateaus, they are affected in an increasingly
different way for a larger amplification. If the amplification is too strong, thenB is suppressed like other low-density areas,
since A is favored too much over anything else.

Further, note that the exponential scaling in the modified random walk is applied to p2 instead of p. Our technique
suggests that applying the modification f = exp(β · d/‖d‖∞) is a more natural choice, since it applies the intended
exponential influence directly on p. This implies to study the modified density p̃(x) = exp(β · p(x)/pmax) · p(x), without
squaring. Finally, one could fix the influence of the deviation d̃ 6= f on the spectrum by considering Lf (W ) everywhere
instead of L(W̃f ).
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A.2. Semi-Supervised Learning (SSL)

A.2.1. MERGING VERTEX WEIGHTS INTO EDGE WEIGHTS

Assume that we have additional knowledge given as vertex weights. For example in network traffic analysis one has to deal
with both edge congestion and vertex congestion. Moreover, it has been shown by Montenegro (2003) and Kannan et al.
(2006) that considering both edge bottlenecks and vertex bottlenecks simultaneously can drastically improve mixing time
bounds for random walks. However, many algorithms focus only on edge similarities, so does label propagation. In order
to make the vertex weights visible to the algorithm, we have to transform them into edge weights. The trivial strategy of
introducing selfloops does not affect label propagation at all, since selfloops do not change the probabilities of the random
trajectories. Our framework suggests to merge vertex weights into edge weights via f -adjusting (where only the implied
f -scaling takes an influence on label propagation).

Figure 1. Label propagation on original graph (left) and f -adjusted graph (right), showing Label Propagation on the two moons data set
with one labeled point per class (shown in blue). Black squares mark misclassified vertices.

As an example, consider the two-moons dataset for an unweighted 10NN graph on 1000 vertices with one labeled vertex
per cluster. Label propagation alone provides the rather bad results in Figure 1 (left). Now we add additional knowledge by
computing a measure of local centrality for each vertex: denote by N3(i) the set of vertices that have shortest path distance
exactly 3 to vertex i. Let ϕi be the sum of all pairwise shortest path distances between any two vertices in N3(i). Then
ϕ−1i penalizes those vertices that lie close to sharp cluster boundaries. Incorporating these vertex weights by f -adjusting
with fi := exp(−5 ·φi) gives the almost perfect result for label propagation on the adjusted graph (Figure 1, right).

A.2.2. LABEL PROPAGATION LIMIT BEHAVIOR

The soft labels computed by the label propagation algorithm in case of few labeled vertices tend to be flat, with sharp
spikes at the labeled vertices. In this situation, a meaningful threshold is increasingly difficult to find (Nadler et al., 2009).
Figure 2 (left) illustrates this problem for a Gaussian-weighted 50NN-graph on 2000 points (xi, yi, zi) sampled from
N (µ, 1)×N (0, 1)×N (0, 0.1), where µ ∈ {0, 4} for the 1000 points of each class, respectively. For each class, a single
vertex (denoted as `a resp. `b) near to µ is labeled.
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Figure 2. Soft threshold values s of label propagation on original graph (left) and f -adjusted graph (right). Both graphs are built on the
same sample drawn from two Gaussians, where each Gaussian is labeled by a single label point near to its center.

Figure 2 (right) shows the soft labels for the f -adjusted graph with fi := di · exp(−4 ·min{hd(i, `a),hd(i, `b)}), wherein
hd(x, y) denotes the hop-distance, that is the smallest number of edges on an xy-path in G. This adjustment can be
interpreted as extending the areas of attraction from single points (the labeled ones) to larger sets (neighborhoods around
labeled points). This biases the label propagation algorithm towards any labeled vertex, providing a sharp separation in the
soft labels. Instead of hd, any other distance measure can be used, for example some quantity that is derived from a coarser
cluster structure.
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B. Algebraic Interpretation
First we summarize the notation. Then we derive some general properties of weak graph matrices. Finally, we put some
effort into proving the main result of the algebraic interpretation, Theorem 4.3.

B.1. Notation

By the term graph matrix we refer to any element of W := {X ∈ Rn×n≥0 | X = XT , X1 > 0}. We generalize
this to W� := {X ∈ W + diag(Rn) | X1 > 0} = {X ∈ Rn×n≥0 + diag(Rn) | X = XT , X1 > 0}, the set of
weak graph matrices, whose elements further allow for negative diagonal entries as long as all row sums remain positive.
Obviously W ⊂W�.

Every weak graph matrix W ∈ W� corresponds to an undirected weighted graph G(W ) := (V,E,W ) that has W as
its weighted adjacency matrix, and edge set E := {ij | wij 6= 0}. With d := W1 and D := diag(d), we define the
unnormalized Laplacian L(W ) = [lij ] := D −W and the normalized Laplacian L(W ) = [`ij ] :=

√
D−1L(W )

√
D−1 =

I −
√
D−1W

√
D−1. If all off-diagonal entries of W are zero, then all vertices in G(W ) are isolated (each with a positive

selfloop attached). We refer to this special case as a trivial graph. A graph is trivial if and only if L(W ) = L(W ) = 0. It
is non-trivial if and only if n > 1 and wij 6= 0 for some i 6= j.

For f ∈ Rn>0 and c > 0 we define the following (weak) graph matrices

for W ∈W : f -scaled W̃f :=
√
FD−1W

√
FD−1 ∈W where F := diag(f)

for W ∈W� : f -selflooped W ◦f := W −D + F ∈W�

for W ∈W : (f , c)-adjusted W f ,c := W̃f − D̃f + cF ∈W� where D̃f := diag(W̃f1).

We consider the matrix decorations ,̃ ◦ and as operators on the matrixW , with the indices f and c as additional parameter
values. For example, for any matrix A ∈ W and any vector x ∈ Rn>0 we get that A◦x := A− diag(A1) + diag(x). Note
that (f , c)-adjusting is equal to f -scaling followed by cf -selflooping, that is W f ,c = (W̃f )

◦
c f .

For W ∈W, we define the f -adjusted Laplacian Lf (W ) as the normalized Laplacian of the f -adjusted graph,

Lf (W ) := L(W f ,1).

We study some of its properties in the following. In particular, Lemma 4.2 shows that Lf (W ) is a diagonal modification
of L(W ), that is Lf (W ) = L(W ) +X for some X ∈ diag(Rn).

B.2. General properties of weak graph matrices

W is closed under f -scaling: W ∈ W ⇒ W̃f ∈ W. However, W� is not closed under f -scaling, since for example
W =

(
−5
6

6
3

)
∈ W� would give that W̃1 =

(
−5
2

2
1/3

)
/∈ W�. For that reason, we consider f -scaling and f -adjusting

only applied to non-weak graph matrices.

W� is closed under f -selflooping, but W is not : for example W =
(
0
2

2
0

)
∈ W gives that W ◦1 =

(
−1
2

2
−1

)
/∈ W.

However, we achieve some sense of closedness of W when restricting to cf -selflooping for c ≥ c∗W,f as defined in the next
proposition.

Proposition B.1. Let W ∈ W�, f ∈ Rn>0 and c > 0. Define c∗W,f := maxi∈V {(di − wii)/fi} ≥ 0. Then it holds
that W ◦c f ∈W if and only if c ≥ c∗W,f .

Proof. FromW ◦c f = W−D+cF we get thatW ◦c f has no negative selfloop if and only ifwii−di+cfi ≥ 0 for all i ∈ V . In
the case c ≥ c∗W,f we get thatwii−di+cfi ≥ wii−di+maxi∈V {(di−wii)/fi}·fi = maxi∈V {(di−wii)}−(di−wii) ≥ 0
for all i ∈ V . For c < c∗W,f , choose k ∈ {i ∈ V | (di−wii)/fi = c∗W,f}, and get thatwkk−dk+cfk < wkk−dk+c∗W,f ·fk =
wkk − dk + (dk − wkk)/fk · fk = 0.
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Remark 1. It holds that c∗W,f = 0 if and only if W is trivial (because then di = wii for all i ∈ V ).

Remark 2. For non-trivial W ∈W� and any f ∈ Rn>0 we get the non-trivial partition:

{W ◦c f | c > 0} = {W ◦c f | 0 < c < c∗W,f}︸ ︷︷ ︸
⊆ W�\W

∪̇ {W ◦c f | c ≥ c∗W,f}︸ ︷︷ ︸
⊆ W

.

Fact B.2. For every W ∈W� it holds that W ◦cd ∈W for all positive c ≥ c∗W,d.

Proof. For trivial W this is obvious, and for non-trivial W this follows from Remark 2.

Fact B.3. For every W ∈W, f ∈ Rn>0 and c, a > 0 it holds that W̃af = a · W̃f and that W af ,c = a ·W f ,c.

Proof. By definition we get that W̃af =
√
aFD−1W

√
aFD−1 = a

√
FD−1W

√
FD−1 = a · W̃f , which further implies

that D̃af = a · D̃f . It follows that W af ,c = W̃af − D̃af + caF = a · (W̃f − D̃f + cF ) = a ·W f ,c.

Let us summarize some easy facts on the main diagonal of L(W ) = [lij ] and L(W ) = [`ij ] without proofs:

Fact B.4. For W ∈W it holds for all i ∈ V that:

(i) 0 ≤ wii ≤ di, 0 ≤ wii/di ≤ 1

(ii) lii = di − wii ∈ [0, di] with lii = 0 if and only if i is an isolated vertex.

(iii) `ii = 1− wii/di ∈ [0, 1] with `ii = 0 if and only if i is an isolated vertex.

These results generalize to weak graph matrices (now wii < 0 is possible) as follows:

Fact B.5. For W ∈W� it holds for all i ∈ V that:

(i) −∞ < wii ≤ di, −∞ < wii/di ≤ 1

(ii) lii = di − wii ∈ [0,∞) with lii = 0 if and only if i is an isolated vertex, and lii > di if and only if i has a
negative selfloop.

(iii) `ii = 1 − wii/di ∈ [0,∞) with `ii = 0 if and only if i is an isolated vertex, and `ii > 1 if and only if i has a
negative selfloop.

Trivially it holds that W = W ◦d . The next lemma shows how W and W ◦cd are related for all c > 0.

Lemma B.6. For all W ∈W� it holds that L(W ) = c · L(W ◦cd) for all c > 0.

Proof. L(W ◦cd) =
√

(cD)−1(cD − (W −D + cD))
√

(cD)−1 = c−1
√
D−1(D −W )

√
D−1 = c−1L(W ).
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This easy yet powerful lemma gives that all normalized Laplacians in {L(W ◦cd) | c > 0} share the same eigenvectors with
their corresponding eigenvalues simply scaled according to c. This implies for example that positive semi-definiteness of
L(W ) and L(W ) generalizes to non-weak graph matrices, as the next lemma shows.

Lemma B.7. For W ∈ W� it holds that L(W ) is positive semi-definite. Further, 0 is an eigenvalue of L(W ) with
multiplicity equal to the number of connected components in G(W ), and

√
d a corresponding eigenvector.

Proof. Adding/Removing selfloops does not affect the number of connected components. Thus, all results follow directly
from Lemma B.6 and Fact B.2, since there exists c > 0 with W ◦cd ∈W and L(W ) = c · L(W ◦cd). All stated properties are
well-known for non-weak graph matrices.

It is obvious that A = cW implies that L(A) = L(W ). The following lemma shows that for connected graph matrices
furthermore equivalence holds.

Lemma B.8. Let n > 1. For connected G(W ) ∈ G(W�) and any A ∈W� it holds that L(W ) = L(A) if and only if
A = c ·W for some c > 0.

Proof. “⇐”. A = cW for c > 0 yields L(A) = I −
√

(cD)−1cW
√

(cD)−1 = I −
√
D−1W

√
D−1 = L(W ). “⇒”. Let

[`ij ] := L(W ) = L(A) =: [`Aij ]. Further let t := A1 > 0. First, we show that t = αd for some α > 0. By Lemma B.7
we get that

√
d is the unique (up to scaling) eigenvector of L(W ) to the eigenvalue 0, similarly

√
t for L(A). Hence, if

t 6= αd for all α ∈ R, then L(W ) 6= L(A), since they differ in their first eigenspace. Otherwise we may choose a positive
α and get that ti = α · di for all i ∈ V .

For every i 6= j we get from `ij = wij/
√
didj = aij/

√
titj = `Aij that aij = wij ·

√
titj(didj)−1 = α · wij . For i = j

we get from `ij = (di − wii)/di = (ti − aii)/ti = `Aij that di − wii = di − aii/α, hence aii = α · wii.

Remark 3. With Fact B.3 this lemma also gives that Lf (W ) = Lαf (W ) for all α > 0. Further, for connected G(W ), even
the opposite holds: Lf (W ) = Lg(W ) if and only if f = αg for some α ∈ R>0.

B.3. f -adjustments are diagonally modified Laplacians

The following two lemmas are stated in the paper. Their proofs are straightforward.

Lemma 4.1 (Scaling Relation). For all W ∈W, f ∈ Rn>0 and c > 0 it holds that

L(W f ,1) = c · L(W f ,c).

Proof. This can be seen from W f ,1 = (W̃f )
◦
c f and applying Lemma B.6 to W̃f , or directly as follows:

c · L(W f ,c) = c ·
√

(cF )−1(cF − (W̃f − D̃f + cF ))
√

(cF )−1

=
√
F−1(F − (W̃f − D̃f + F ))

√
F−1

= L(W f ,1)
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Lemma 4.2 (Diagonally Modified Laplacian). For all W ∈W and f ∈ Rn>0 it holds that

Lf (W ) = D̃fF
−1 − W̃1.

Proof. Right from the definitions we get that:

Lf (W ) = I −
√
F−1(W̃ − D̃f + F )

√
F−1

= I −
√
F−1
√
FD−1W

√
FD−1

√
F−1 + D̃fF

−1 − I
= D̃fF

−1 −
√
D−1W

√
D−1

Remark 4. Recall that L(W ) = I − W̃1, hence

Lf (W ) = L(W )− (I − D̃fF
−1)︸ ︷︷ ︸

∈ diag(Rn)

=: L(W )− diag(h)

for h := (I −
√
F−1D−1W

√
FD−1)1, where h = (hi)i can be expressed element-wise as:

hi = 1−
n∑
j=1

wij

√
fj/fi√
didj

.

Remark 5. The trivial relation Ld(W ) = L(W ) is attained for h = (I − D−1W )1 = 0, which is noteworthy, since
D−1W is the random walk transition matrix.

B.4. Diagonally modified Laplacians are f -adjustments

We are now going to prove two lemmas that finally lead to our main result.

Lemma B.9 (Characterization of f -adjusted Laplacians). For connected G(W ) ∈ G(W) let

Λ := {Lf (W ) | f ∈ Rn>0}

denote the Laplacian orbit of W under f -adjusting. Further let

Λ′ := {Z − W̃1 | Z ∈ diag(Rn>0), ρ(Z−1W̃1) = 1}

for ρ(·) the Perron root of its argument. Then it holds that Λ = Λ′ with the relation Z = D̃fF
−1, wherein

√
f is the

unique (up to scaling) right eigenvector of Z−1W̃1 to eigenvalue 1.

Proof. It is well-known that G(W ) is connected if and only if W is irreducible. This implies, for any choice of
Z ∈ diag(Rn>0), that Z−1W̃1 is irreducible (and non-negative), too, since it has the same non-zero-pattern as W . This
allows to apply various aspects of the Perron-Frobenius-Theorem (PFT), see for example Stańczak et al. (2006) for an
overview.

Λ ⊆ Λ′: fix any Lf (W ) ∈ Λ for some f > 0 and set Z := D̃fF
−1 ∈ diag(Rn>0). We prove that ρ(Z−1W̃1) = 1 by

finding an all-positive eigenvector x to the following eigenvalue problem:

Z−1
√
D−1W

√
D−1x = x. (?)
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We propose that
√
f is such an eigenvector. Plugging D̃f = diag(

√
FD−1W

√
FD−11) into D̃fF

−1 = Z element-wise,
gives with Z = diag(z1, . . . , zn) that

D̃fF
−1 = Z

⇔
n∑
j=1

wij√
didj

·
√
fj = zi ·

√
fi for all i = 1, . . . , n

⇔
√
D−1W

√
D−1
√
f = Z

√
f

⇔ Z−1
√
D−1W

√
D−1
√
f =

√
f

(??)

Thus
√
f is indeed a solution to (?), hence an all-positive (right) eigenvector of Z−1W̃1 to the (existing) eigenvalue 1.

By PFT, there is exactly one eigenvalue providing all-positive eigenvectors. Further it determines the spectral radius and
is simple. Thus, we have that ρ(Z−1W̃1) = 1 and that the corresponding left and right eigenvectors are unique (up to
scaling). With Lemma 4.2 we get that Z = D̃fF

−1 is a valid choice for Z to represent Lf (W ) as an element in Λ′.

Λ′ ⊆ Λ: fix any Z − W̃1 ∈ Λ′ for some Z ∈ diag(Rn>0) with ρ(Z−1W̃1) = 1. By irreducibility of Z−1W̃1, there
exists by PFT a unique (up to scaling) all-positive solution x̂ of (?). By defining f := x̂2 we get that

√
f is a solution

to the eigenvalue problem (?). From (??) we see that this is equivalent to Z = D̃fF
−1. Thus, we get that Z − W̃1 =

D̃fF
−1 − W̃1 = Lf (W ) ∈ Λ for this unique (up to scaling) choice of f .

Remark 6. This lemma generalizes to unconnected graphs as follows: there is a permutation P of rows and columns such
that W ′ = PWPT has block diagonal form, wherein each block-submatrix is irreducible. Thus, all above arguments
can be carried out on each block individually, by restricting f to just the entries belonging to that block (= connected
component). This relaxes the uniqueness in the way, that now f may be scaled by an individual scaling factor chosen
independently for each connected component.

We have shown that f -adjusting can be understood as a diagonal modification of the form L(W ) +X = L(A) for some
X ∈ diag(Rn) and A ∈ W�. So far the question is left open if further the converse is true: does every such diagonal
modification imply that A is an f -adjustment of W ? We now answer this in the affirmative.

Lemma B.10 (Characterization of Diagonally Modified Laplacians). Let W ∈ W. Then L(W ) +X = L(A)
holds true for X ∈ diag(Rn) and A ∈W� if and only if A is an f -adjustment of W for some f ∈ Rn>0. Formally,

Λ = {L(W ) +X | X ∈ diag(Rn), L(W ) +X ∈ L(W�)}

with Λ the Laplacian orbit of W under f -adjusting.

Proof. “⊆”. This direction is clear by Lemma 4.2.

“⊇”. With Y := X + I we have that L(A) = Y −
√
D−1W

√
D−1 =: [`Aij ] for some A ∈W�. First we want to show that

this implies that Y = diag(y1, . . . , yn) has an all-positive diagonal. Fix any i ∈ V . From A ∈W� and Fact B.5 it follows
that `Aii ≥ 0, and from W ∈ W that wii ≥ 0. Thus, we get from `Aii = yi − wii/di ≥ 0 that yi ≥ wii/di ≥ 0. Thus yi is
non-negative. Now assume that yi = 0. This implies that wii = 0, hence `Aii = 0, so i must be an isolated vertex in G(A).
However, in G(W ) vertex i cannot be isolated, since wii = 0 implies by the positive degree constraint that wij > 0 for

some j 6= i. For such j it holds that −aij/
√
dAi d

A
j = `Aij = `ij = −wij/

√
didj < 0, hence that aij > 0 in contradiction

to i being an isolated vertex in A. Therefore, yi > 0 for all i ∈ V .

In the following we assume w.l.o.g. that W is connected, since all arguments can be applied to each connected component
individually, independent of all other components.

Lemma B.9 gives that for any all-positive diagonal matrix Y (in particular as chosen above) there exists some α > 0 and
some f -adjustment W f =: Mα ∈W� for some f ∈ Rn>0 such that L(Mα) = αY −

√
D−1W

√
D−1 ∈ Λ. We now show
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that for no β 6= α any Mβ ∈ W� with L(Mβ) = βY −
√
D−1W

√
D−1 exists. This finally implies that M1 itself is the

f -adjustment of W , which gives that L(A) = L(M1) ∈ Λ.

Therefore, fix any Mβ ∈ W� with L(Mβ) = βY −
√
D−1W

√
D−1 for some β ∈ R. Setting ε := β − α gives that

L(Mβ) = βY −
√
D−1W

√
D−1 = L(Mα) + εY . Now assume that ε > 0. By Lemma B.7, L(Mβ) is positive semi-

definite with v :=
√
Mβ1 an all-positive eigenvector to the eigenvalue 0. We get the contradiction 0 = vTL(Mβ)v =

vTL(Mα)v + εvTY v > 0, because vTL(Mα)v ≥ 0 by positive semi-definiteness of L(Mα), and εvTY v > 0 by all-
positivity of v and Y . Now assume that ε < 0. Let w :=

√
Mα1 denote the all-positive eigenvector of L(Mα) to the

eigenvalue 0. We get the contradiction 0 ≤ wTL(Mβ)w = wTL(Mα)w + εwTY w < 0, because wTL(Mα)w = 0, and
εwTY w < 0 by all-positivity of w and Y , and the first inequality due to positive semi-definiteness of L(Mβ). Thus, for
no ε 6= 0 any graph matrix of this form exists.

Now we have all ingredients to prove our main result on the algebraic interpretation of f -adjusting:

Theorem B.11 (Complete Characterization for Connected Graphs). For n > 1 and connected G(W ) ∈ G(W)
consider all solutions (X,A, c) ∈ diag(Rn)×W� × R of the equation

L(W ) +X = c · L(A).

For c ≤ 0 no solution exists. For c > 0, all solutions are given byA = W f ,c andX+I = D̃fF
−1 = Z for any choice

of f ∈ Rn>0. This is equivalent to choosing any Z ∈ diag(Rn>0) with Perron root ρ(Z−1W̃1) = 1, which determines√
f as the unique (up to scaling) right Perron eigenvector.

Proof. Let L(W ) =: [`ij ] and L(A) =: [`Aij ]. Since W is non-trivial, there exist i 6= j with wij > 0, hence `ij < 0.
The case c < 0 would imply that `Aij > 0, which is impossible for all A ∈ W�. The case c = 0 would imply that
L(W ) + X = 0, hence that all off-diagonal elements in W are zero, in contradiction to being non-trivial. Thus, no
solutions for c ≤ 0 exist.

Now consider the case c = 1, that is any solution of the formL(W )+X = L(A). We get from Lemma B.10 that every such
solution corresponds to fixing some f ∈ Rn>0 and setting A := W f ,1. This implies by Lemma 4.2 that X + I = D̃fF

−1.
It remains to show that this is equivalent to choosing Z ∈ diag(Rn>0) with the desired properties. For fixed f , we get from
Lemma B.9 that D̃fF

−1 = X + I = Z for some Z ∈ diag(Rn>0) with Perron eigenvalue ρ(Z−1W̃1) = 1 and
√
f the

corresponding right Perron eigenvector. The other way round, Lemma B.9 gives that choosing any Z ∈ diag(Rn>0) with
ρ(Z−1W̃1) = 1 implies by setting X := Z− I that L(W ) +X = L(A) for A = W f ,1, and further that Z = D̃fF

−1 with√
f being determined as the unique (up to scaling) right Perron eigenvector.

Now consider the case c > 0, that is L(W )+X = c·L(A) forX ∈ diag(Rn) andA ∈W�. From c·L(A)
B.6
= L(A◦c−1A1)

we get that L(W )+X equals the normalized Laplacian of a weak graph matrix. Thus, L(W )+X
B.10
= L(W g,1) for some

g ∈ Rn>0. This gives that L(A) = c−1L(W g,1)
4.1
= L(W g,c). Thus we have that A B.8

= α ·W g,c
B.3
= Wαg,c for some

α > 0. So A is the (f , c)-adjustment of W for f := αg. It follows as before that X + I = D̃g diag(g)−1 = D̃fF
−1 = Z

for some Z ∈ diag(Rn>0) with Perron eigenvalue ρ(Z−1W̃1) = 1 and
√
g a corresponding right Perron eigenvector as

well as
√
f =
√
αg another one, unique up to scaling.

For the other way round, choose any f ∈ Rn>0 (or equivalently any Z ∈ diag(Rn>0)). Setting A := W f ,c implies that

L(W f ,1)
4.1
= c · L(A) = L(W ) +X , hence by Lemma 4.2 that X + I = D̃fF

−1.

Remark 7. For arbitrary c > 0, the theorem implies that L(W ) + X = c · L(A) is a solution if and only if c · L(A) =
c · L(W f ,c) = L(W f ,1) = Lf (W ) for the specific vector f , that is if and only if L(W ) +X ∈ L(W�).
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Remark 8. From the special case c = 1 we get that all solutions (X,A) ∈ diag(Rn)×W� of the equation L(W ) +X =
L(A) are given by L(W ) + X = Lf (W ) for every f ∈ Rn>0. Furthermore, f and X are related to each other by
ρ((X + I)−1W̃1) = 1 with X + I ∈ diag(Rn>0) and

√
f the corresponding eigenvector.

In our paper we state Theorem B.11 slightly different as follows:

Theorem 4.3 (Complete Characterization). For any W ∈ W with L(W ) 6= 0 consider all solutions (X,A, c) ∈
diag(Rn)×W� × R of the equation

L(W ) +X = c · L(A).

For c ≤ 0 no solution exists. For c > 0, all solutions are given by A = W f ,c and X + I = D̃fF
−1 = Z for any

choice of f ∈ Rn>0. For connected G(W ), choosing f is equivalent to choosing any Z ∈ diag(Rn>0) with spectral
radius ρ(Z−1W̃1) = 1. This determines

√
f uniquely (up to scaling) as the eigenvector corresponding to the simple

eigenvalue 1 of the matrix Z−1W̃1.

Remark 9. All diagonal modifications of W with W +X ∈W� obviously correspond to f -selflooping, that is modifying
selfloops in any possible way. Theorem 4.3 shows a similar result for the normalized Laplacian, namely that all diagonal
modifications of L(W ) with L(W ) + X ∈ L(W�) correspond to f -adjusting for every f ∈ Rn>0. This shows that
f -adjusting is a very natural graph modification.
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C. Geometric Interpretation

In this section we provide more details on the convergence of the modified interspace quantities to their corresponding
modified continuous quantities. Both our propositions are already motivated in the paper in terms of the sum expressions
that define the interspace volumes and cut weights, respectively.

The proofs heavily rely on the arguments in Maier et al. (2009), where the convergence of interspace volumes and cut
weights to their corresponding continuous quantities is proven for different types of neighborhood graphs, for a fixed
density p : X → R>0. They show that volumes and cut weights refer to the continuous quantities

∫
p2 in the limit. They

study different types of neighborhood graphs for a single density p. In contrast to that, we relate two neighborhood graphs
of the same type, but according to different densities p and p̃ = fp to each other.

The limit quantities
∫
p2 combine two different effects, each rising one factor of p. These two effects are:

(i) one factor p comes from the sampling mechanism, which distributes the sample points according to p

(ii) another factor p refers to the weighted degrees in the original graph, which serve as a density estimate on p

This gets particularly apparent in the interspace view. In light of this we ask the question: “Can we modify these effects by
modifying edge weights in the given graph ?”

The first effect (i) cannot be modified by us, since the unknown sample is fixed. Therefore, the positions of the sample
points are always determined by a sampling mechanism according to p. However, we observe that the second effect (ii)
is not required to refer to degrees that estimate p. It can be chosen to represent any other function f on the underlying
space (as long as it satisfies the same technical assumptions that are made on p). Since we have access to the graph, we
can change its degrees by changing its edge weights plus adding selfloops in any way that we want. This gives us the
opportunity to influence the second effect freely.

There is no geometric interpretation of volumes and cuts under arbitrary modifications applied to the graph. But if we
modify the degrees and the cut weights by f -adjusting, and if we further assume that f is determined by any suitable
continuous function f , then we can interpret the resulting volumes and cuts in G in terms of

∫
fp, compared to their

original interpretation as
∫
p2 in G.

Technically, we achieve this by sneaking in a new term corresponding to f everywhere along the proofs in Maier et al.
(2009). This allows for “changing” the limit quantities

∫
p2 into any

∫
p =

∫
fp, for free to choose f . The full proofs

would cover at least 10 pages, and mainly deal with technical considerations on boundary effects. For that reason, we
decided to just sketch the general proof strategies here. The interested reader is referred to Maier et al. (2009).

Proposition 5.1. (Interspace volumes) LetG be a geometric graph based on n vertices drawn according to p. Denote
its degree vector by d and let f : X → R>0 be a continuous function. Define the vector f := (f(xi))i, and let G
be any graph modification of G that attains the degrees d = f . Then, under the convergence conditions mentioned
above, for all measurable A ⊂ Rd, C · vold(A)→ volf ·p(A) almost surely as n→∞, where C is a scaling constant
that depends on n, d.

Proof Sketch. The general line of argument is to decompose the deviations in bias and variance term. The convergence of
the bias term is straightforward to see, the convergence of the variance term can be proved by concentration arguments.

Proposition 5.2. (Interspace cuts) Let G be a geometric graph based on n vertices drawn according to p. Denote its
degree vector by d and let f : X → R>0 be a continuous function that is twice differentiable and has bounded gradi-
ent. Define the vector f := (f(xi))i, and let G̃ be the corresponding f -scaled graph with weight matrix W̃f . Consider
a hyperplaneH in Rd. Then, under the convergence conditions mentioned above, C · cutW̃f

(H)→ cutf ·p(H) almost
surely as n→∞, where C is a scaling constant that depends on n, d.
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Proof Sketch. The variance part can be solved by concentration arguments. For the bias term, we need to count the edges
in the graph that cross the hyperplane H . The main ingredient therefore is that we can control the distance of connected
points in the graph, with high probability. By concentration arguments we know that with high probability, each point
x is connected to all points within a certain distance rx, and is not connected to points exceeding a certain distance
Rx. For counting edges, we then need to compute the probability mass of the intersection of those balls with the given
hyperplane H .

Remark 10. We believe that all results generalize from hyperplanes to any other cut surfaces that are sufficiently regular.

Remark 11. A nice consequence of our modification is that we can implicitly define f relatively to p, just by defining f
as a modification applied to d in the graph. For example, and as argued below, f := dr refers implicitly to defining the
underlying function f := β · pr+1 for some global scaling factor β that only depends on r, the sample size n and the
intrinsic dimension d. This approach is only limited by the fact that the degrees d do not estimate p exactly, since they
provide estimates that are proportional to p. Precisely, di = αn,d · p(xi) for some global scaling factor αn,d that depends
on n and d. Usually n is known, but as long as we do not know d, we have to make sure that the unknown estimation factor
αn,d passes our modification just as another global scaling factor, without introducing some distortion. For example, in the
case f = dr we get that the implicitly defined function f equals f = αr+1

n,d · pr+1 = const · pr+1 as intended. However, if
we define f := ad2 +bd+c1 for a, b, c ∈ R>0, then the implicitly defined function f would not refer to f = ap2 +bp+c,
but to f = aα2

n,dp
2 + bαn,dp + c instead. Hence the unknown estimation factor αn,d introduces a distortion that implies

that f cannot be represented as f = γ(ap2 + bp+ c) for any scaling factor γ.

Note that f = dr is not the only valid choice of implicitly defining f in terms of p. See for example Section A.1.

Moreover, if d is given as prior information, or from some estimate on the intrinsic dimension, then we can determine αn,d
and use it to define f implicitly from p in much more various ways. For example, if we want to study ap2 + bp + c, then
defining the new degrees by f := ad2 + bαn,dd + cα2

n,d1 would indeed represent f = aα2
n,dp

2 + bα2
n,dp + α2

n,dc =

const · (ap2 + bp+ c) as intended. Hence any good estimate on the intrinsic dimension allows for more powerful ways of
how to define f from p implicitly, in order to study volumes and cuts according to

∫
fp.
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