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Abstract

We propose a method for producing ensembles of
predictors based on holdout estimations of their
generalization performances. This approach uses
a prior directly on the performance of predictors
taken from a finite set of candidates and attempts
to infer which one is best. Using Bayesian infer-
ence, we can thus obtain a posterior that repre-
sents our uncertainty about that choice and con-
struct a weighted ensemble of predictors accord-
ingly. This approach has the advantage of not re-
quiring that the predictors be probabilistic them-
selves, can deal with arbitrary measures of per-
formance and does not assume that the data was
actually generated from any of the predictors in
the ensemble. Since the problem of finding the
best (as opposed to the true) predictor among a
class is known as agnostic PAC-learning, we re-
fer to our method as agnostic Bayesian learning.
We also propose a method to address the case
where the performance estimate is obtained from
k-fold cross validation. While being efficient and
easily adjustable to any loss function, our exper-
iments confirm that the agnostic Bayes approach
is state of the art compared to common baselines
such as model selection based on k-fold cross-
validation or a learned linear combination of pre-
dictor outputs.
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1. Introduction
When designing a machine learning system that relies on
a trained predictor, one is usually faced with the problem
of choosing this predictor from a finite class of models.
In practice, the class of models might correspond to dif-
ferent learning algorithms or to different choices of hy-
perparameters for a specific learning algorithm. A com-
mon approach to this problem is to estimate the gen-
eralization performance of each predictor on a holdout
dataset (through a training/validation set split or using k-
fold cross-validation) and use the predictor with the best
performance. However, this approach is invariably noisy
and overfitting can become a problem. A more success-
ful procedure is to construct an ensemble of many differ-
ent learned predictors. Many machine learning contests are
won this way (Guyon et al., 2010). For instance, the win-
ning team of the Netflix’s contest relied on a final predic-
tor trained on the output of the learned models (Bell et al.,
2007). Great care must be taken however to avoid overfit-
ting, e.g. by carefully tuning the predictor’s own regular-
ization hyperparameters. The choice of the final predictor
is likely to influence the end result as well.

At the heart of this selection problem is our inability to
know for sure which predictor is the best among our model
class. One natural way to reason about such uncertainty
would be to formulate it in probabilistic terms. In this pa-
per, we propose to follow this paradigm by formulating pri-
ors about the expected performance of each predictor in our
chosen class of models. We then use the observed loss mea-
surements on each held-out example as evidence for updat-
ing our posterior over the identity of the best predictor in
the model class. At test time, we can use this posterior to
weight the contribution of each predictor in the ensemble
that performs the final prediction.
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We explore different ways of expressing priors over pre-
dictor performances and discuss how to perform Bayesian
inference. As we will see, this simple paradigm natu-
rally takes into account the correlation between the predic-
tor’s output so as to leverage diversity among the ensem-
ble, which is another desiderata for ensemble learning and
model averaging methods.

Unlike Bayesian model averaging (Hoeting et al., 1999),
our approach does not require that the predictors be them-
selves probabilistic. It can also deal with arbitrary perfor-
mance measures. More crucially, this approach does not
assume that the observed data has been generated by a pre-
dictor from the model class. In other words, we are not
looking for the predictor that best explains the observed
data, assuming it was generated by a predictor coming from
our model class. Instead, at the centre of our approach, we
want to find the best predictor in terms of a task’s perfor-
mance measure and among all available predictors, while
reasoning about our uncertainty around this problem in a
Bayesian way.

The non-reliance on the assumption that the true underly-
ing data generating function belongs to our model class is
also at the center of agnostic PAC-learning. For this reason,
we refer to the proposed framework as agnostic Bayesian
learning.

Section 2 formally describes the agnostic Bayes approach.
We then propose a few methods for obtaining a posterior
distribution over a set of predictors. Section 4 presents
an adaptation to k-fold cross-validation estimation of the
losses. Finally, several experimental results are presented
in Section 6.

2. Theoretical Setup
Throughout this paper, we use the inductive learning
paradigm and make the usual assumptions of PAC learn-
ing theory (Kearns et al., 1994; Valiant, 1984). Thus, a
task D corresponds to a probability distribution over the
input-output space X × Y . Given a training set S ∼ Dm,
the objective is to find, among a set H, the best function
h? : X → Y . In general, H could be any set. However,
this work will focus on the case where H is a finite set of
predictors obtained from one or many learning algorithms,
with various hyperparameters. We will refer to a member
ofH as an hypothesis.

To assess the quality of an hypothesis, we use a loss func-
tion L : Y × Y → R that quantifies the penalty incurred
when h predicts h(x) while the true answer is y. Then, we
can define the risk RD(h) as being the expected loss of h
on task D, i.e. RD(h) def= E

x,y∼D
L (h(x), y). Finally, the

best1 function is simply the one minimizing the risk, i.e.
h? def= argmin

h∈H
RD(h).

Since we do not observe D, it is not generally possible to
find h? with certainty. For this reason, we are interested in
inferring h? while modeling our uncertainty about it, using
a posterior probability distribution p(h?=h|S). Then, after
marginalizing h?, we obtain a probabilistic prediction

p(y?=y|x, S) =
∑
h∈H

p(h?=h|S)p(y?=y|x, h),

where y? stands for the prediction made by h? for a given
x. We note that the uncertainty in this prediction solely
comes from our lack of knowledge about h?.

In order to perform a final prediction ŷ for a given x it is
tempting to use the optimal Bayes decision theory

ŷ = argmin
y′∈Y

∑
y∈Y

p(yo=y|x, S)L (y′, y) ,

where yo is the random variable corresponding to the ob-
served values of y. However, the contrast between p(yo=
y|x, S) and p(y?= y|x, S) prevents us from using this ap-
proach. To this end, we use:

ŷ = argmax
y∈Y

p(y?=y|x, S),

the most probable answer. This yields the following en-
semble method:

E?(x) def= argmax
y∈Y

∑
h∈H

p(h?= h|S)I[h(x) = y] (1)

Before going further, we first review the usual Bayesian
model averaging approach to highlight the fact that it does
not exactly use p(h?=h|S).

2.1. Standard Bayesian Model Averaging

To address the inductive learning paradigm, a variant of
Bayesian model averaging can be used, where we suppose
that a deterministic function h→, belonging to H, is at the
origin of the observed relationship between x and y. To
perform inference on h→, we treat it as a random variable
and assume that the observations in S have been altered by
a noise model2 p(yo = y|x, h). Using the i.i.d. assump-
tion, p(S|h) =

∏m
i=1 p(yi|xi, h)p(xi). Next, by defining a

prior distribution over H, we can perform Bayesian infer-
ence to compute p(h→=h|S) ∝ p(S|h)p(h). Finally, after
marginalization of h, we obtain

p(yo=y|x, S) =
∑
h∈H

p(h→=h|S)p(yo=y|x, h),

1The best solution may not be unique.
2The noise model could also be inferred. In this work, we use

a fixed noise model.
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which can be used with the optimal Bayes decision theory,
to give the following ensemble decision rule

E→(x) def= argmin
y′∈Y

∑
y∈Y

p(yo=y|x, S)L (y′, y) . (2)

This formulation has proven to be very useful. However,
if the true data-generating hypothesis does not belong to
H, the posterior p(h→= h|S) may not converge to a pos-
terior peaked at the best hypothesis h?, as m → ∞. This
misbehavior has been studied by Grünwald and Langford
(2007) for the zero-one loss scenario. It was shown that
under some reasonable restrictions on the prior, there ex-
ists a distribution D where the risk of the Bayes predictor
is significantly higher than RD(h?).

One way to overcome this inconsistency is to commit to
a noise model that leverages the loss function, such as
p(yo = y|h, x) ∝ e−βL(h(x),y) for some fixed β > 0.
Then, we have that p(h→=h|S) ∝ p(h)e−mβRS(h), where
RS(h) is the empirical risk measured on S. As m → ∞,
the exponential part of the posterior ensures that any hy-
pothesis not having a risk as low as RD(h?) will have a
negligible weight. We will examine this ensemble method
to show that it is outperformed by the methods we propose
in this paper.

2.2. Agnostic Bayes

Our main contribution is to propose a method for obtaining
p(h? = h|S), to be used in our ensemble decision E?(x).
The core idea of our approach is to directly reason about
h? instead of assuming the existence in H of a data gener-
ating h→ and trying to infer it. Since the observed losses in
S suffice to distinguish h? from other hypotheses inH, we
do not have to commit to a particular model for the relation-
ship between x and y, and can limit ourselves to modeling
the losses under each hypothesis.

Specifically, we propose to treat the risk rh
def= RD(h) of

each hypothesis h as a random variable, over which we will
be defining a prior distribution. Let lh,i

def= L (h (xi) , yi)
be the observed loss of hypothesis h for a sample (xi, yi) ∈
S. We also treat lh,i as random variables, governed by
a conditional distribution p(lh,i|rh). For example, in the
zero-one loss L(y, y′) = I[y 6= y′] case, a natural choice
would be to treat the observed losses lh,i as Bernoulli trials
of parameter rh. Assuming a beta prior over rh, we could
then perform Bayesian inference in order to reason about
the uncertainty over rh given the losses observed from S.

In the case of ensemble learning where we have multi-
ple competing hypotheses, the losses lh,i are dependent
across the different hypotheses h for the same example
(xi, yi). Hence, we need to model the losses llli

def=(
l1,i, l2,i, . . . , l|H|,i

)
for a given example jointly, given the

joint risk for all hypotheses r def=
(
r1, r2, . . . , r|H|

)
. Sec-

tion 3 will discuss different joint priors p(r) and obser-
vation models p(llli|r). For now, we just note that from
p(llli|r), we can derive the likelihood of the set of losses
L def= {llli}mi=1 as p(L|r) =

∏m
i=1 p(llli|r) and, combined

with our prior p(r), perform Bayesian inference to obtain
p(r|L) ∝ p(L|r)p(r).

After obtaining p(r|L), we can now compute the posterior
probability that a given hypothesis h is the best hypothesis
h? with the lowest risk amongH

Pr (∀g ∈ H : rh ≤ rg |L)

= E
r∼p(·|L)

p (rh ≤ rg, ∀g 6= h|r)

= E
r∼p(·|L)

I (rh ≤ rg, ∀g 6= h) .

We propose to use this posterior as our ensemble posterior
in Equation (1). Under this model, L is a sufficient statistic
for r and thus for h, i.e. p (h|S) = p (h|L). Hence, to sam-
ple from p(h|S), it suffices to sample a joint risk r from
p (r|L) and to search for the hypothesis with the smallest
risk. With repeated sampling, we can then approximately
compute our ensemble decision rule. When Y is continu-
ous, this approximation can affect argmax

y∈Y
p(y? = y|S, x).

To address this issue, we consider a simple Gaussian model
to smooth p(y? = y|S, x). This yields a weighted average
of the predictions: E?(x) =

∑
h∈H p(h

? = h|S)h(x).

3. Priors Over the Joint Risk
In this section, we propose a few choices for the prior p(r)
and observation model p(llli|r). We also discuss how to per-
form inference for p(r|L) under different assumptions of
the loss function.

3.1. Dirichlet Distribution

We start with a proposal for the specific case of the zero-
one loss. As described in Section 2, the observations
lh,i ∈ {0, 1} are correlated and put together in a vec-
tor llli ∈ {0, 1}d, where d def= |H|. We propose to con-
sider the collection of observations {llli}mi=1 as coming from
a categorical distribution of N def= 2d possible states (i.e.
outcomes). Therefore, the counts of observations k def=
(k1, k2, . . . , kN ) ∈ NN come from a multinomial distri-
bution of parameters q and m, where q is the probability
of observing each event and sums to 1. With these assump-
tions, it is natural to use the Dirichlet distribution of pa-
rameter ααα as the model for the prior over q. The posterior
distribution p (q|k) is then a Dirichlet distribution of pa-
rameterααα+k. To convert the sample from p(q|L) to a sam-
ple from p(r|L), we define the state matrix G ∈ {0, 1}d×N
where the jth column corresponds to the binary representa-
tion of j. Then, to obtain a sample from p(r|L), we sample
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q from Dir (ααα+ k) and use r = Gq. Equivalently, we
have p (r|L) = E q∼Dir(ααα+k) I (Gq = r).

Naively sampling from this posterior yields an algorithm
with computational complexity of O(d2d). However, us-
ing a neutral prior of the form ααα = α̃1N and the stick
breaking representation of the Dirichlet (see Lemma 3.1 of
Sethuraman (1991)), we have the following identity

θXααα + (1− θ)Xk = Xααα+k,

where θ ∼ Beta(α̃N,m), Xααα ∼ Dir(ααα), Xk ∼ Dir(k),
Xααα+k ∼ Dir(ααα + k). Since most values in k are zeros,
samples from Dir(k) can be obtained in O(m). Thus, we
are left with the task of sampling from Dir(ααα), which can
be approximated efficiently using 10·α̃N samples from the
stick breaking process (Sethuraman, 1991). Since α̃N >
m yields too much importance to the prior, one can safely
assume that α̃N ≤ m and obtain a sample from the prior
with computational complexity O(m) .

3.2. Bootstrap Inference

We point out that the Dirichlet posterior presented in Sec-
tion 3.1 is a generalization of Rubin’s Bayesian bootstrap
(Rubin, 1981) and is equivalent in the limit α̃ → 0. Also,
Rubin showed that the Bayesian bootstrap is statistically
tightly related to Efron’s bootstrap (Efron, 1979). For these
reasons, we also consider the bootstrap as a candidate for
a simple and generic method to sample from p(r|L). This
is done by sampling with replacement a set {lll′i}

m
i=1 from

{llli}mi=1. To obtain r, we use rh ←
∑m
i=1

1
m l
′
h,i;∀h ∈ H.

3.3. t Distribution

In this section, we make the assumption that the variables llli
are observations coming from a multivariate normal distri-
bution of dimensionality |H| def= d, whose mean parameter
corresponds to the true risk r. While the normal assump-
tion is generally not true, it can be justified from the central
limit theorem. As we will see, experiments in Section 6
show that this assumption works well in practice even with
the zero-one loss function, which is one of the most ex-
treme cases of non Gaussian samples.

Specifically, assuming that p(llli|r,Λ) is normal, the likeli-
hood of L def= {lll}mi=1 is

p (L|r,Λ) ∝ |Λ|
m
2 e

(
− 1

2
∑m
j=1(lllj−r)TΛ(lllj−r)

)
. (3)

We want to favor the use of priors over r and covariance
matrix Λ−1 such that the posterior p(r,Λ|L) is tractable.
This can be achieved using the normal-Wishart distribution
(DeGroot, 2005, p. 178)

p (r,Λ) = N
(
r
∣∣∣r0, (κ0Λ)

−1
)
W (Λ|T0, ν0) ,

where N and W are the normal and Wishart distributions
respectively, r0 and T0 are the mean and covariance prior,
while κ0 and ν0 are parameters related to the confidence we
have in r0 and T0 respectively (with restrictions κ0 > 0 and
ν0 > d − 1). Thanks to conjugacy, after observing L, we
have that the posterior p (r,Λ|L) is also a normal-Wishart
distribution of parameters κm, νm, rm and Tm as follows:

κm = κ0 +m

νm = ν0 +m

rm =
κ0r0 +mlll

κm
(4)

Tm = T0 +mS +m
κ0

κm

(
r0 − lll

)(
r0 − lll

)T
where lll def= 1

m

∑m
i=1 llli and S def= 1

m

∑m
i=1(llli− lll)(llli− lll)T.

Since our goal is to obtain a posterior distribution over r
only, we have to marginalize out Λ from p (r,Λ|L). By
doing so, we obtain the multivariate Student’s t distribution
with ν̃ def= νm−d+1 degrees of freedom (DeGroot, 2005, p.
179)

p (r|L) = t
(
r
∣∣∣ν̃, rm, Tmκmν̃) . (5)

Samples from this multivariate t-distribution are done by
sampling from the normal distribution z ∼ N

(
0, Tmκmν̃

)
,

sampling from the chi-squared distribution ξ ∼ χ2(ν̃) and

computing rm+z
√

ν̃
ξ . This gives an overall computational

complexity of O
(
d2(m+ k + d)

)
to obtain k samples.

For setting the parameters r0, T0, κ0 and ν0 of the prior, we
chose values that were as neutral as possible and numeri-
cally stable: r0 = 0.5 × 1d, T0 = 0.25 × I , κ0 = 1 and
ν0 = d.

3.4. Posterior Behavior with Correlated Hypotheses

One advantage of the agnostic Bayes posterior for con-
structing an ensemble is that it naturally encourages diver-
sity among the predictors, even in the presence of correla-
tion between the predictors in H. We illustrate this with
a simple example, shown in Table 1, comparing an ag-
nostic Bayes ensemble with bootstrap inference (E?b ) and
a Bayesian model averaging ensemble with a loss-based
noise model and flat prior over the hypotheses (E→). Ta-
ble 1(top) illustrates the case of three equally good but dif-
ferent hypotheses, based on three observed losses for each
predictor. We see that both E?b and E→ equally weight the
three hypotheses, as expected.

Now, in Table 1(bottom), we include into H an additional
hypothesis h4, which is identical to h3. We then observe
that E?b naturally maintains diversity within the ensemble,
by reducing the mass of the identical hypotheses h3 and
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Table 1. Illustration of the posteriors in an agnostic Bayes ensem-
ble (E?

b ) and in Bayesian model averaging (E→). top: Uncorre-
lated predictors. bottom: Addition of a correlated predictor.

lll1 lll2 lll3 p(h?|S) p(h→|S)
h1 1 0 0 0.33 0.33
h2 0 1 0 0.33 0.33
h3 0 0 1 0.33 0.33

↓

lll1 lll2 lll3 p(h?|S) p(h→|S)
h1 1 0 0 0.31 0.25
h2 0 1 0 0.31 0.25
h3 0 0 1 0.19 0.25
h4 0 0 1 0.19 0.25

h4, compared to E→ which still weights all hypotheses
equally. Diversity is usually considered to be beneficial
when constructing an ensemble of predictors (Roy et al.,
2011), motivating the use of agnostic Bayes for this task.

4. Model Averaging for Trained Predictors
As mentioned in Section 2, one natural application for
the inference of the best hypothesis is model averaging
of trained predictors. Namely, let Aγ be a learning algo-
rithm with a hyperparameter configuration γ ∈ Γ and let
hγ = Aγ(T ) represent the classifier obtained using a train-
ing set T ∼ Dn, disjoint from S. The set H contains all
classifiers obtained from each γ ∈ Γ, when Aγ is trained
on T , i.e. H def= {hγ |γ ∈ Γ}. Finally, to obtain the poste-
rior p(h?γ = hγ |S), we rely on the set S. Experiments in
Section 6 will show that this approach significantly outper-
forms the usual method of selecting the hypothesis mini-
mizing RS(hγ).

Unfortunately, this scenario requires that the hypotheses hγ
be trained on a set of data T separate from S, in a train-
ing/validation split fashion, wasting an opportunity to mea-
sure the hypotheses performance on T as well. Our next
step is thus to adapt our agnostic Bayes approach to the k-
fold cross-validation scenario, which more fully uses the
available data.

4.1. Adapting to k-fold Cross-Validation

Let {V1, V2, . . . , Vk} be a partition of S, and let hγ,j
def=

Aγ (S \ Vj). Now, denote the loss of model γ on the
example (xi, yi) as l̃γ,i

def= L (hγ,ji(xi), yi), where ji is
the unique index j such that (xi, yi) ∈ Vj . Finally, let

l̃lli
def=
(
l̃1,i, l̃2,i, . . . , l̃|Γ|,i

)
. Unlike {lll}mi=1, it is well known

that the set of k-fold generated losses {̃lll}mi=1 contains de-
pendencies across the different examples that are induced

by the k-fold procedure (Bengio and Grandvalet, 2004).
Since the posteriors described in Section 3 relied on in-
dependence across examples, we cannot simply ignore the
dependencies induced within this process and must adapt
our approach.

Specifically, we make the simplifying assumption that
these dependencies only affect the effective number of sam-
ples. Intuitively, since samples are correlated, there may
not be as many as it seems and the estimation of p(r|L)
may be overly confident. We thus propose to add an extra
parameter ρ, the effective sample size ratio, to compensate
for these dependencies. While this parameter requires cal-
ibration, we describe in Section 4.2 an efficient method for
automatically adjusting its value.

To include the effective sample size ratio in the methods
described in Section 3, we will effectively act as if the col-
lection {lll}mi=1 had been generated by artificially replicating
a set of m original samples b times each, to give a new set
of bm′ def= m samples. Thus, the effective number of sam-
ples would be m′ = m/b. Now, supposing that we know
ρ = m′/m, we want to adapt the posterior’s parameters
in such a way that the posterior’s distribution remains the
same, on average, as before the “corruption”.

Bootstrap: This is probably the simplest method to adapt.
Out of them observed events, we sample with replacement
m′ events instead, where m′ = dρme.

Dirichlet: In this case, each observed event is made to
count for ρ instead of 1. After observing m events, the
vector of counts k′ def= (k′1, k

′
2, . . . , k

′
N ) will now sum to

m′ instead of m.

t-Distribution: In this case, we adapt the quantities de-
scribed in Equation (4) as follows: νm′ = ν0 + m′,
νm′ = ν0 +m′, rm′ = κ0r0+m′lll

κm′
and Tm′ = T0 +m′S +

m′ κ0

κm′

(
r0 − lll

)(
r0 − lll

)T
.

4.2. Tuning Parameters

To adjust ρ, we treat it as a parameter and fit it by
optimizing the resulting ensemble’s performance on S,
thereby measuring how well the ensemble’s weighting pos-
terior can predict each label yi in S from the hypothe-
ses (h1,ji(xi), h2,ji(xi), .., h|Γ|,ji(xi)). We’ve found this
to work well in practice. This procedure is also akin
to methods that learn a parameterized linear combination
of predictors by training on generated examples S̃ def={(

(h1,ji(xi), h2,ji(xi), .., h|Γ|,ji(xi)), yi
)}m
i=1

. The best ρ
from a set of 20 values equally spaced from 0.1 to 0.8 is
used. We use a similar procedure to tune the prior parame-
ter α̃ of the ensemble based on a Dirichlet prior.
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5. Related Work
To overcome some mentioned weaknesses of Bayesian
model averaging (such as the reliance on the existence of
a single data-generating hypothesis belonging to H), Kim
and Ghahramani (2012) proposed an alternative method for
Bayesian combination of classifiers. They suppose that, for
a given x, the true label is at the origin of the behavior of
each individual classifier. Therefore, by modeling the de-
pendencies between each classifier on a validation set, they
can perform inference of the original label. Unfortunately,
it relies on a combination of MCMC and rejection sampling
methods and the computational complexity of certain de-
pendency models grows exponentially with |H|. Thus, this
approach is viable only for combining a small set of clas-
sifiers. It also only tackles classification tasks and doesn’t
take into account the loss related to the task at hand, as we
do here.

Alternatively, ensemble pruning is an important approach
to ensemble methods. Zhang et al. (2006) used semidefi-
nite programming for solving a heuristic based on the co-
variance of the predictors. Interestingly, the core of their
idea is highly related to the covariance matrix used in our
t-distribution approach. Unfortunately, they can only ad-
dress an approximation of their heuristic and it is limited to
the zero-one loss.

6. Experiments
We performed experiments to assess the performance of the
agnostic Bayes ensemble approach and compared with a
few commonly used methods:

ArgMin (AMin): This method represents the common
approach of selecting the model hγ with the best estimated
holdout risk rγ

def= 1
m

∑m
i=1 lγ,i. When the minimum is not

unique, we select one at random.

SoftMin (SMin): We use the Gibbs distribution with pa-
rameter β to produce a posterior distribution over the col-
lection of hγ from rγ . i.e., p(hγ |S) ∝ e−βrγ and β is se-
lected with the method described in Section 4.2. This rep-
resents the alternative Bayesian model averaging approach
described in Section 2.1.

E?b , E
?
D, E

?
B , E

?
tE?b , E

?
D, E

?
B , E

?
tE?b , E

?
D, E

?
B , E

?
t : The different agnostic Bayes ensemble

decision methods based on Equation (1) and using posterior
inference based on the bootstrap, the Dirichlet distribution,
the Bayesian bootstrap and the t-distribution respectively.
Effective sample size ratio ρ and Dirichlet prior parame-
ter α̃ are adjusted according to Section 4.2, while the t-
distribution prior parameters are fixed to the values speci-
fied in Section 3.3. We use 1000 samples from p(r|L) to
estimate p(h|S).

MetaSVM (MSVM): We use MetaSVM to represent the

state of the art approach i.e., methods that learn a linear
model over the set of models as a final predictor. This is
done by using the collection S̃ described in Section 4.2 as
a training set for the linear SVM. Traditional cross valida-
tion is used to select the best soft margin parameter over 20
candidates values ranging from 10−3 to 100 on a logarith-
mic scale.

Meta Ridge Regression (MRR): When performing ex-
periments on regression tasks, we use ridge regression as
a substitution for MetaSVM. The regularization parameter
is selected by the leave one out method over 30 candidates
ranging from 10−4 to 104 on a logarithmic scale.

6.1. Comparing Learning Algorithms On Multiple
Datasets

The different model selection methods presented in the pre-
vious section are generic and are meant to work across dif-
ferent tasks. It is thus crucial that we test them on sev-
eral datasets. For that, we have to rely on methods that
do not assume commensurability across tasks, such as the
sign test, the Wilcoxon signed rank test (WSR) (Demšar,
2006) and the Poisson binomial test (PB test) (Lacoste
et al., 2012). The PB test is a Bayesian analogue of the
sign test meant for comparing learning algorithms on a col-
lection of tasks, called a context. More precisely, it pro-
vides a probabilistic answer to the question “Does algo-
rithm A have a higher probability of producing a better
predictor than algorithm B in the given context?”, denoted
by p (A � B|W), whereW represents the context.

To build a substantial collection of datasets, we used the
AYSU collection (Ulaş et al., 2009) coming from the
UCI and the Delve repositories and we added the MNIST
dataset. We also converted the multiclass datasets to binary
classification by either merging classes or selecting pairs
of classes. The resulting context contains 38 datasets. We
have also collected 22 regression datasets from the Louis
Torgo collection.3 to perform experiments using different
loss functions.

The set Γ of models used in this experiment is a combina-
tion of SVMs, Artificial Neural Networks (ANN), random
forests, extra randomized trees (Geurts et al., 2006) and
gradient tree boosting (Friedman, 2001) with several vari-
ants of hyperparameters. Considering the algorithm name
as a hyperparameter and a grid search for each algorithm,
this yields a set of 692 hyperparameter configurations, all
of which are evaluated using 10 folds cross validation. For
the experiments on regression datasets, we used a combi-
nation of Kernel Ridge Regression (KRR), Support Vec-

3These datasets were obtained from the following source :
http://www.dcc.fc.up.pt/˜ltorgo/Regression/
DataSets.html

http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
http://www.dcc.fc.up.pt/~ltorgo/Regression/DataSets.html
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tor Regression (SVR), random forests, extra randomized
trees and gradient boosted regression, yielding a total of
480 hyperparameter configurations. Except for a custom
implementation of ANN and KRR, we used scikit-learn
(Pedregosa et al., 2011) for all other implementations. For
more details on the choice of hyperparameters, we refer the
reader to the supplementary material.

6.2. Result Table Notation

Each conducted experiment compares the generalization
performances of a set of M algorithms on a set of N
datasets. In order to evaluate if the observed differences are
statistically significant, we use the pairwise PB test where
each cell of the table represents p (row � column). Since
the table has a form of symmetry, we have grayed out re-
dundant information and removed the first column. In ad-
dition, we also highlight in blue the results having p-values
lower than 0.1 according to the one tail sign test. In general,
we have observed a strong correlation between the p-values
of the sign test and the probabilities obtained from the PB
test. Note however that their values may differ and a high-
lighted cell does not imply a strong PB probability, nor the
converse. Finally, we added a column to each table which
reports the expected rank of each algorithm across the col-
lection of datasets. The rank of predictor hi = Ai(Sj) on
test set Tj is defined as

Rankhi,Tj
def=

M∑
l=1

I
[
RTj (hl) ≤ RTj (hi)

]
.

Then, the expected rank is obtained from the empirical av-
erage E [Rank]hi

def= 1
N

∑N
j=1 Rankhi,Tj .

6.3. Comparison of Ensemble Decision Methods on
Classification Tasks

Our first experiment compares the different methods and
baselines in the setting where the hypotheses have been
trained and validated on a single split of the dataset. In this
scenario, the training data generates the set of hypotheses
while the validation data provides observations for build-
ing an ensemble. Finally, a testing set is used to report the
performances. The effective sample size ratio is fixed to 1
in this scenario.

From Table 2, there are no significant differences between
our methods except for a slight reduction in generalization
performances for E?B , which corresponds to E?D with α̃
fixed to 0. In this experiment, the only adjusted parameter
is α̃ in the method E?D. This may explain why it is ranked
first according to the expected rank metric. To simplify the
result tables, further evaluations only includes E?b and E?t .

Table 3 exhibits a clear conclusion : The agnostic Bayes
ensemble generalizes better than AMin. Next, when com-

Table 2. Comparison of the four proposed agnostic model aver-
aging methods, in the single training/validation split experiment
(refer to Section 6.2 for notation).

E?DE
?
DE
?
D E?tE

?
tE
?
t E?bE

?
bE
?
b E?BE

?
BE
?
B E[rank]

E?DE
?
DE
?
D 0.500 0.509 0.524 0.652 2.43 /4
E?tE
?
tE
?
t 0.491 0.500 0.541 0.662 2.43 /4

E?bE
?
bE
?
b 0.476 0.459 0.500 0.640 2.46 /4

E?BE
?
BE
?
B 0.348 0.338 0.360 0.500 2.67 /4

paring against MSVM and Softmin, while the results are
note statistically significant, the expected rank is in favor of
both agnostic Bayes ensembles. Also, we note that MSVM
is not significantly better than AMin.

Table 3. Comparison with the baseline models in the single train-
ing/validation split experiment (refer to Section 6.2 for notation).

E?
bE?
bE?
b MSvm SMin AMin E[rank]

E?
tE?
tE?
t 0.541 0.613 0.787 0.911 2.63 /5

E?
bE?
bE?
b 0.500 0.592 0.763 0.905 2.66 /5

MSvm 0.408 0.500 0.623 0.789 2.92 /5
SMin 0.237 0.377 0.500 0.759 3.19 /5
AMin 0.095 0.211 0.241 0.500 3.57 /5

It is well known that k-fold cross-validation provides a bet-
ter estimate of the generalization performance of a learning
algorithm than a single training/validation fold experiment.
We thus performed another comparison for this setting. In
this scenario, the agnostic Bayes method must now take
into account the effective sample size ratio, as described
in Section 4.1. Selected values ranges from 0.1 to 1 and
were mainly concentrated between 0.3 and 0.6. The results
are expressed in Table 4 and are similar to that of Table 3.
Again, agnostic Bayes is significantly better than Argmin
while MSVM is not.

Table 4. Comparison with the baseline models in the cross-
validation experiment (refer to Section 6.2 for notation).

E?
tE?
tE?
t MSvm SMin AMin E[rank]

E?
bE?
bE?
b 0.507 0.575 0.707 0.840 2.70 /5

E?
tE?
tE?
t 0.500 0.578 0.720 0.840 2.75 /5

MSvm 0.422 0.500 0.577 0.725 2.95 /5
SMin 0.280 0.423 0.500 0.682 3.12 /5
AMin 0.160 0.275 0.318 0.500 3.46 /5

6.4. Changing the Loss Function

The results from the last section clearly demonstrate the
advantage of mixing models over selecting a single one.
While the agnostic Bayes methods outperform the base-
lines, we saw that simply using a linear learning algorithm
also exhibits good performances. But what happens when
the loss function changes? For example, we cannot use
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MetaSVM for combining models on a regression task. We
can adapt and use ridge regression but, since it minimizes
the quadratic loss, it may not perform well if our task
is to minimize the expected absolute difference loss (i.e.,
L(y, y′) = |y − y′|). In other words, to perform a linear
combination of models, we have to redesign the learning
algorithm for every loss functions. Moreover, some loss
functions yield a non-convex optimization problem which
requires some form of approximation, e.g., SVM uses the
hinge loss in place of the zero-one loss. In contrast, the pro-
posed agnostic Bayes approach is designed to work with
any loss function.

Table 5. Comparison with the baseline models on regression tasks
for the quadratic loss function (refer to Section 6.2 for notation).

E?
tE?
tE?
t MRR SMin AMin E[rank]

E?
bE?
bE?
b 0.839 0.547 0.929 0.992 2.22 /5

E?
tE?
tE?
t 0.500 0.468 0.793 0.986 2.64 /5

MRR 0.532 0.500 0.554 0.809 2.88 /5
SMin 0.207 0.446 0.500 0.992 3.02 /5
AMin 0.014 0.191 0.008 0.500 4.23 /5

Table 6. Comparison with the baseline models on regression tasks
for the absolute loss function (refer to Section 6.2 for notation).

E?
tE?
tE?
t SMin MRR AMin E[rank]

E?
bE?
bE?
b 0.735 0.953 0.859 0.995 2.10 /5

E?
tE?
tE?
t 0.500 0.932 0.821 0.995 2.37 /5

SMin 0.068 0.500 0.769 0.982 3.06 /5
MRR 0.179 0.231 0.500 0.485 3.39 /5
AMin 0.005 0.018 0.515 0.500 4.08 /5

To outline the independence to the loss function of the ag-
nostic Bayes methods, we performed experiments on re-
gression tasks using both the quadratic loss and the abso-
lute difference loss. We compared against the same base-
line methods except for MetaSVM which was replaced by
meta ridge regression (MRR) and its regularization param-
eter was selected by minimizing the appropriate loss func-
tion during cross validation. Table 5 presents the results
obtained when using the quadratic loss function. While we
worked with a totally different collection of datasets, the
conclusions that follow from this experiment are surpris-
ingly similar to the previous one. In this case, AMin is
far down in ranking and the statistical significance of the
observed differences are even stronger. Also, MRR is still
performing relatively well.

Now, let us see what happens when we change the loss
function to the absolute difference loss. Table 6 clearly
shows an important degradation of MRR while the relative
performances of the other methods are almost unchanged.
In addition, the agnostic Bayes approach is now signif-
icantly better than the linear model. This clearly shows
the importance of optimizing the appropriate loss function.

Thus, justifying the usage of the agnostic Bayes ensemble.

7. Conclusion
We proposed the agnostic Bayes framework, which can
be used to tackle the ubiquitous problem of model selec-
tion. This framework’s central idea is to model the relation-
ship between the hypotheses risks and observed empirical
losses, without relying on assumptions about the true data-
generating model. For one, this idea provides a new way
of reasoning about machine learning problems. Also, the
application to model selection has several desirable char-
acteristics.

Generalization: The generalization performance of the
agnostic Bayes ensemble is significantly better than just se-
lecting the model minimizing the empirical expected loss.
Also, our expected rank is systematically higher than any
other evaluated methods on all experiments.

Flexibility: While most existing model selection algo-
rithms is limited to a particular loss function, the agnostic
Bayes ensemble can be used with any loss function. Also,
our experiments showed how optimizing with the wrong
loss function can be detrimental.

Speed: The bootstrap algorithm is simple to implement
and has a linear computational complexity in the size of the
dataset. When measuring the learning speed, we observed
that the bootstrap algorithm can be several thousand times
faster than MetaSVM.
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