
Spherical Hamiltonian Monte Carlo for Constrained Target Distributions

Shiwei Lan SLAN@UCI.EDU

Department of Statistics, University of California, Irvine, CA 92697, USA.

Bo Zhou BZHOU1@UCI.EDU

Department of Statistics, University of California, Irvine, CA 92697, USA.

Babak Shahbaba BABAKS@UCI.EDU

Department of Statistics, University of California, Irvine, CA 92697, USA.

Abstract
Statistical models with constrained probability
distributions are abundant in machine learning.
Some examples include regression models with
norm constraints (e.g., Lasso), probit models,
many copula models, and Latent Dirichlet Al-
location (LDA) models. Bayesian inference in-
volving probability distributions confined to con-
strained domains could be quite challenging for
commonly used sampling algorithms. For such
problems, we propose a novel Markov Chain
Monte Carlo (MCMC) method that provides a
general and computationally efficient framework
for handling boundary conditions. Our method
first maps the D-dimensional constrained do-
main of parameters to the unit ball BD

0 (1), then
augments it to a D-dimensional sphere SD such
that the original boundary corresponds to the
equator of SD. This way, our method handles
the constraints implicitly by moving freely on the
sphere generating proposals that remain within
boundaries when mapped back to the original
space.

1. Introduction
Many commonly used statistical models in Bayesian analy-
sis involve high-dimensional probability distributions con-
fined to constrained domains. Some examples include re-
gression models with norm constraints (e.g., Lasso), pro-
bit models, many copula models, and Latent Dirichlet Al-
location (LDA) models. Very often, the resulting models
are intractable, simulating samples for Monte Carlo esti-

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

mations is quite challenging (Neal & Roberts, 2008; Sher-
lock & Roberts, 2009; Neal et al., 2012; Brubaker et al.,
2012; Pakman & Paninski, 2012), and mapping the do-
main to the entire Euclidean space for convenience would
be computationally inefficient. In this paper, we propose a
novel Markov Chain Monte Carlo (MCMC) method, which
provides a natural and computationally efficient framework
for sampling from constrained target distributions. Our
method is based on Hamiltonian Monte Carlo (HMC) (Du-
ane et al., 1987; Neal, 2010), which is a Metropolis algo-
rithm with proposals guided by Hamiltonian dynamics.

In recent years, several methods have been proposed to im-
prove the computational efficiency of HMC (Beskos et al.,
2011; Girolami & Calderhead, 2011; Hoffman & Gelman,
2011; Shahbaba et al., 2013b; Lan et al., 2012; Byrne &
Girolami, 2013). In general, these methods do not directly
address problems with constrained target distributions. In
this current paper, we focus on improving HMC-based al-
gorithms when the target distribution is constrained by in-
equalities. When dealing with such constrained target dis-
tributions, the standard HMC algorithm needs to evaluate
each proposal to ensure it is within the boundaries imposed
by the constraints. Computationally, this is quite ineffi-
cient. Alternatively, as discussed by Neal (Neal, 2010), one
could modify standard HMC such that the sampler bounces
off the boundaries by letting the potential energy go to in-
finity for parameter values that violate the constraints. This
approach, however, is not very efficient either. Byrne and
Girolami (Byrne & Girolami, 2013) discuss this method
for situations where constrained domains can be identified
as submanifolds. Pakman and Paninski (Pakman & Panin-
ski, 2012) also follow this idea and propose an exact HMC
algorithm specifically for truncated Gaussian distributions
with non-holonomic constraints. Brubaker et al. (Brubaker
et al., 2012) on the other hand propose a modified ver-
sion of HMC for handling holonomic constraint c(θ) = 0.
All these methods provide interesting solutions for specific

Spherical Hamiltonian Monte Carlo for Constrained Target Distributions

types of constraints. In contrast, our proposed method in
this paper provides a general and computationally efficient
framework for handling constraints given by inequalities
involving general vector norms.

In what follows, before we present our method, we provide
a brief overview of HMC (Section 2). We then present our
method for distributions confined to the unit ball in Section
3. The unit ball is a special case of q-norm constraints. In
Section 4, we discuss the application of our method for q-
norm constraints in general. In Section 5, we evaluate our
proposed method using simulated and real data. Finally, we
discuss future directions in Section 6.

2. HMC
HMC improves upon random walk Metropolis by propos-
ing states that are distant from the current state, but never-
theless accepted with high probability. These distant pro-
posals are found by numerically simulating Hamilton dy-
namics, whose state space consists of its position, denoted
by the vector θ, and its momentum, denoted by the vector
p. Our objective is to sample from the continuous proba-
bility distribution of θ with the density function f(θ). It is
common to assume that the fictitious momentum variable
p ∼ N (0,M), where M is a symmetric, positive-definite
matrix known as the mass matrix, often set to the identity
matrix I for convenience.

In this Hamilton dynamics, the potential energy, U(θ), is
defined as minus the log density of θ (plus any constant);
the kinetic energy, K(p) for the auxiliary momentum vari-
able p is set to be minus the log density of p (plus any con-
stant). Then the total energy of the system, Hamiltonian
function is defined as their sum:

H(θ, p) = U(θ) +K(p)

Given the Hamiltonian H(θ, p), the system of (θ, p)
evolves according to following Hamilton’s equations,

θ̇ = ∇pH(θ, p) = M−1p
ṗ = −∇θH(θ, p) = −∇θU(θ)

Note that since momentum is mass times velocity, v =
M−1p is regarded as velocity. Throughout this paper, we
express the kinetic energyK in terms of velocity, v, instead
of momentum, p (Beskos et al., 2011; Lan et al., 2012).

In practice when the analytical solution to Hamilton’s equa-
tions is not available, we need to numerically solve these
equations by discretizing them, using some small time step
ε. For the sake of accuracy and stability, a numerical
method called leapfrog is commonly used to approximate
the Hamilton’s equations (Neal, 2010). We numerically
solve the system for L steps, with some step size, ε, to pro-
pose a new state in the Metropolis algorithm, and accept or

reject it according to the Metropolis acceptance probability.
(See Neal, 2010, for more discussions).

Although HMC explores the target distribution more ef-
ficiently than random walk Metropolis, it does not fully
exploit its geometric properties. To address this issue,
Girolami and Calderhead (Girolami & Calderhead, 2011)
propose Riemannian Manifold HMC (RMHMC), which
adapts to the local Riemannian geometry of the target dis-
tribution by using a position-specific mass matrix M =
G(θ). More specifically, they set G(θ) to the Fisher in-
formation matrix. Our proposed sampling method can be
viewed as an extension of this approach since it explores
the geometry of sphere.

3. Sampling from distributions defined on the
unit ball

In many cases, bounded connected constrained regions
can be bijectively mapped to the D-dimensional unit ball

BD
0 (1) := {θ ∈ RD : ‖θ‖2 =

√∑D
i=1 θ

2
i ≤ 1}. There-

fore, in this section, we first focus on distributions confined
to the unit ball with the constraint ‖θ‖2 ≤ 1.

We start by augmenting the originalD-dimensional param-
eter θ with an extra auxiliary variable θD+1 to form an ex-
tended (D+1)-dimensional parameter θ̃ = (θ, θD+1) such
that ‖θ̃‖2 = 1 so θD+1 = ±

√
1− ‖θ‖22. This way, the do-

main of the target distribution is changed from the unit ball
BD

0 (1) to the D-dimensional sphere, SD := {θ̃ ∈ RD+1 :
‖θ̃‖2 = 1}, through the following transformation:

TB→S : BD
0 (1) −→ SD, θ 7→ θ̃ = (θ,±

√
1− ‖θ‖22)

(1)
Note that although θD+1 can be either positive or negative,
its sign does not affect our Monte Carlo estimates since
after applying the above transformation, we need adjust our
estimates according to the change of variable theorem as
follows: ∫

BD
0 (1)

f(θ)dθB =

∫
SD

+

f(θ̃)

∣∣∣∣dθBdθ̃S

∣∣∣∣ dθ̃S (2)

where
∣∣∣dθB
dθ̃S

∣∣∣ = |θD+1| as shown in Appendix A. Here,

dθB and dθ̃S are under Euclidean measure and spherical
measure respectively.

Using the above transformation, we define the dynamics on
the sphere. This way, the resulting HMC sampler can move
freely on SD while implicitly handling the constraints im-
posed on the original parameters. As illustrated in Figure 1,
the boundary of the constraint, i.e., ‖θ‖2 = 1, corresponds
to the equator on the sphere SD. Therefore, as the sampler
moves on the sphere, passing across the equator from one
hemisphere to the other translates to “bouncing back” off

Spherical Hamiltonian Monte Carlo for Constrained Target Distributions

●●●● ●●● ●●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●●●● ●● ●●● ●●●●● ●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●●●●● ●●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ● ●●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ● ● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ● ● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ● ● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ● ●●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●● ●●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●●●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●●●● ●● ●● ●● ●●● ● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●●● ● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ● ● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●●●● ●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●●●● ●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●●●● ●● ●● ●●●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●●●● ●● ●● ●●●● ●● ●●●● ●●●● ●● ●●●● ●● ●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●● ●● ●● ●●● ●●●● ●●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●● ●●●● ●●●● ●●● ●● ●● ●● ●●● ●●● ●● ●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●●● ● ●●●● ●●●● ●●●● ●●●● ●●●● ● ●● ● ●●●● ●● ●●●● ● ●● ● ●●●● ●●●● ● ●● ●●●●● ●●●● ●●●● ● ●● ● ●●●● ●● ●● ●●●● ● ●● ●● ● ●●●● ●●●● ● ●● ● ●●●● ●●●● ●●●● ●●●● ● ●● ●●●●● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ●●●● ●●●● ● ●● ● ●●●●● ●● ● ●●●● ●●●● ●● ●●●● ● ●● ● ●●●● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ● ●● ● ●●●● ●●●● ●●●● ● ●● ● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ● ●● ● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ● ●● ● ●● ●● ● ●● ●● ●● ● ●● ●● ●●●● ● ●● ●● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ●● ● ●●●● ● ●● ● ●●●● ●●●● ● ●● ● ● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ● ●● ● ●●●● ● ●● ● ● ●● ● ●●●● ● ●● ●● ●● ● ● ●● ● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●● ● ●●●● ● ●● ●● ●● ● ● ●● ● ● ●● ● ●●●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ● ●●●● ● ●● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ● ● ●● ● ● ●● ● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ●●●● ● ●● ●●●●● ● ●● ● ●● ●● ●● ●● ●●●● ● ●● ● ●●●● ●● ●● ● ●● ● ●●●● ●●●● ● ●● ●● ●● ● ●● ●● ●● ●●●● ●● ●● ● ●● ●● ●● ● ●●●● ●● ●● ●●●● ● ●● ● ●● ●● ●●●● ●● ●● ●●●● ● ●● ●● ●● ● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ●●●● ● ●● ● ●●●● ● ●● ● ●●●● ● ●● ● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ●●●● ● ●● ● ●● ●● ● ●● ●● ● ●● ●● ● ●● ● ● ●● ● ● ●● ● ●●●● ●●●● ● ●● ●● ●● ● ●●●● ●● ●● ● ●● ● ●●●● ●● ●● ● ●● ● ● ●● ●●● ●● ●●●● ● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ● ●● ●●● ●● ●●●● ● ●● ● ●● ● ●● ● ● ●● ● ●●●● ●● ●● ● ●● ●● ●● ● ●●●● ● ●● ●● ●● ●●● ●● ●●●● ● ●● ●● ●● ●● ●● ● ●●●● ● ●● ● ● ●● ● ●● ●● ● ●● ● ● ●● ● ● ●● ●● ●● ●● ●● ● ●●●● ●●●● ● ●● ● ●● ●● ● ●● ● ●●●● ●● ●● ● ●● ● ●●●● ● ●● ●● ●● ●●● ●● ●● ●● ●●●● ●● ●●● ●● ●● ● ●●●● ●● ●● ●● ●● ●● ●● ● ●● ● ● ●● ● ●●●● ●● ●● ●● ●● ● ●● ● ●●●● ●● ●● ●●●● ● ●● ●●●●● ●● ●● ● ●● ● ●●●● ● ●● ● ●● ●● ●● ●● ●●●● ●●●● ● ●● ● ●●●● ● ●● ● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ● ●● ● ●●●● ●●●● ● ●● ● ●● ●● ● ●● ● ●● ● ●● ●●● ●● ●●●● ● ●● ● ●● ●● ●●●● ● ●● ● ●●●● ●● ●●● ●● ●● ●● ● ● ●● ● ●●●● ● ●● ● ●●●● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ● ●● ● ● ●● ● ● ●● ● ● ●● ● ●● ●● ● ●● ●● ●● ● ●●●● ● ●● ● ●●●● ●● ●● ● ●● ●● ●● ●● ● ●●●● ● ●● ●● ●● ●● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ● ● ●● ● ●●●● ●●●● ●●●●● ●● ●●●●● ●● ●● ●● ●● ● ●● ● ●●●● ● ●● ● ●● ●● ● ●● ● ●●●● ●● ●●●● ●● ●● ●● ●● ●● ●●●● ● ●● ● ●●●● ●● ●●●● ●● ●● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ● ●● ● ●●●● ●●●● ●● ●● ● ●● ● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●●●● ● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●● ●●●●● ●● ●● ●● ● ●●●● ● ●● ● ● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ● ●●● ●● ●●●● ● ●● ● ●●●● ●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ●●● ●●● ●● ● ●●●● ● ●● ● ●● ●● ● ●● ● ●●●● ●● ●●●● ●● ●●●● ●● ●●●● ●●●● ●● ●●●● ●● ●● ● ●● ●● ●● ● ●●●● ● ●● ● ●●●● ●●●● ● ●● ● ●●●● ●● ●● ● ●● ● ●●●● ●● ● ●● ● ● ●● ● ●●●● ● ●● ● ●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ●●●● ●● ●●● ●● ● ●●●● ● ●● ● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ●●●● ● ●● ● ●●●● ●●●● ●● ●● ● ●● ● ●●●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ● ●●●● ●● ●● ● ●● ● ● ●● ● ●● ●●●● ●●● ●● ● ● ●● ● ● ●● ● ●●●● ● ●● ● ●● ●● ● ●● ● ●●●● ● ●● ● ●●●● ● ●● ● ●● ●● ●●●● ● ●● ●● ●● ● ● ●● ● ● ●● ●● ●● ● ●●●● ●●●● ● ●● ●● ●● ●●● ●●●● ●●● ●● ●● ●● ● ●● ●● ●●●● ●● ●● ●● ●● ● ●● ●●● ● ●● ● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ● ●● ●●● ●● ●●●● ●●●● ● ●● ●● ●● ●●● ●● ● ●● ● ●●●● ●● ●● ●●●● ●●●● ●● ●● ● ●● ● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ● ●● ● ●● ●● ● ●● ● ●●●● ● ●● ● ● ●● ● ●● ●● ● ●● ●●● ●● ●● ●● ● ●● ●● ● ●●●● ●●●● ● ●● ● ●●●●● ●● ●●● ●● ● ●● ● ●● ●● ● ●● ● ● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ●● ●●● ●● ● ●● ●● ●●●● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ● ● ●● ●● ●● ● ●● ●● ●●●● ●●●●● ●● ●●●●●● ●● ●●● ●● ● ●● ● ●●●● ●● ●●●● ● ●● ● ● ●● ● ●● ●● ● ●● ● ●● ●● ●● ●● ●●●●● ●● ●●● ●● ●● ●● ●●●● ● ●● ● ●● ●●●● ●● ●● ●● ●● ●● ● ●● ● ●●●● ●●●● ●●●● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ● ●● ●●● ●●●● ●● ●● ●● ●● ●●● ●● ●● ● ●●●● ●●●●● ●● ●●●●● ● ●● ●●● ●● ● ●● ● ● ●● ● ●● ●● ● ●● ●●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●●● ●● ●●● ●● ●● ●●●● ●● ● ●● ● ●●●● ● ●● ●● ●● ● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ●● ●●● ●● ●●● ●●●● ●● ●● ●●●● ● ●● ● ● ●● ● ●●●● ● ●● ● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●●●● ●●●● ● ●● ● ●●●● ● ●● ●●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ● ●● ● ● ●● ● ● ●● ● ●●●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●●●● ●●●● ●● ●● ●● ●● ● ●● ●●● ●● ● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●●● ●● ● ●●●● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●● ● ●●●● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ● ●● ● ●●●● ● ●● ●●● ●● ●● ●● ●● ●●●● ● ●● ● ● ●● ● ●●●● ●●●● ● ●● ● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ● ●● ● ●● ●● ● ●● ●●● ●● ●●●● ●● ●● ●●●● ● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ● ● ●● ●● ●● ● ●● ●● ●●●● ● ●● ● ●●●● ● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ● ●● ● ● ●● ● ●●●● ●●●● ● ●● ● ●● ●● ●●●● ●●●● ●●●● ● ●● ● ●● ●● ● ●● ● ●●●● ●● ●● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ●● ●●● ●● ● ●●●● ●●●●● ●● ● ●● ●● ●● ● ●● ● ●● ●● ● ●● ● ● ●● ● ●● ●● ●●●● ● ●● ● ●●●● ● ●● ● ●● ●● ● ●● ●● ●● ●●● ●● ●●●● ● ●● ● ●●●● ● ●● ● ●●●● ● ●● ●● ●● ●● ●● ● ● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ●● ●● ●●● ●● ●●●● ●● ●●● ● ●● ●● ●●●● ●●●● ●● ●●● ●● ● ●●●● ● ●● ● ●● ●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●●●● ●●●● ● ●● ● ● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●●●●● ●● ●● ●●●● ●●●● ● ●● ●●● ●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ● ●● ●● ●● ● ●●●● ●●●● ●●●● ●● ●● ●●●● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ●●● ●● ● ●●●● ●● ●● ●● ●● ● ● ●●●● ●● ●● ●●●● ●●●● ●●●● ●●●● ●● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●●●● ●● ●● ● ●● ● ●● ●● ●● ●● ●●●● ●● ●●● ●● ●●● ●●● ●● ● ●● ●● ●●●● ●● ●● ●●●● ●● ●●●● ●●●● ●● ●●●● ●● ● ●● ● ● ●● ● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ●● ●● ● ●● ● ●● ●● ● ●● ● ●● ●● ● ●● ● ●●●● ●● ●● ●●●● ●●●● ●● ●● ● ●● ● ●●●● ● ●● ●● ●● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ● ●●●● ● ●● ●● ●● ● ●● ●● ● ●● ● ● ●● ●● ●● ● ● ●● ● ● ●● ● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ●●●● ● ●● ●● ●● ● ●●●● ●● ●● ●● ●● ●●●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●●● ● ●● ● ●●●● ●●●● ●●●● ● ●● ● ●●●● ●● ●● ● ●● ● ●●●● ● ●● ● ●● ●● ●● ●● ● ●● ● ●● ●● ● ●● ●● ●● ● ●●●● ● ●● ●● ●● ● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●● ●●●● ● ●● ● ●● ●● ●●●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ●● ●● ●● ●● ●● ●● ●●●● ●●●● ●● ●●●● ●●●● ●● ● ●● ● ●● ●●●● ●● ●●●● ●●●● ●● ●● ● ●● ●●● ●●● ●● ● ●●●●● ●● ●●● ●● ●●●● ● ● ●● ●● ●●●● ●●●● ●● ●● ●●●● ● ●● ● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ●●●● ● ●● ●●● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●● ● ●● ●●● ●● ●●● ●●●● ●●●● ● ●● ● ●● ●● ● ●● ● ●●●● ●●●● ● ●● ● ●● ●● ●● ●● ●●●● ●●●● ● ●● ●● ●● ● ●●●● ●● ●● ● ●● ●● ●● ●● ● ● ●● ● ●● ●● ● ●● ●● ●● ● ●●●● ● ●● ● ●●●● ●● ●● ● ●● ● ●● ●● ●●●● ● ●● ● ●●●● ●● ●●●● ●● ●● ●●●● ● ●● ● ●●●● ●●●● ● ●● ● ● ●● ● ●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●● ● ●● ●●● ● ●● ●● ●● ●● ●●●● ●●●● ●● ●● ● ●● ● ●●●● ●●●● ●●●● ●● ●● ●●●●● ●● ●●● ●● ●● ●● ●●●● ●●●● ●●●● ●● ●● ●● ●●●● ●●●● ●● ●● ● ●● ● ●●●● ●● ●● ●● ●● ● ● ●●●● ●● ●●●● ●● ●● ●● ●●●● ●● ●●●● ●● ●● ●● ●● ●●● ●● ● ●●●● ●● ●● ●● ● ●● ● ●●●● ●●●● ●● ●●● ●● ●● ●● ● ●●●●● ●● ●● ●● ●● ● ●● ●●●● ●●●●●● ●● ●● ●●●●● ●● ●●●● ● ● ●● ●● ●●● ●●● ●● ●●●●●● ●●● ●● ●●●● ●● ●●●● ●●●● ●● ●● ●● ●● ●●●●● ●●● ●●●●

●

A B

●●●●●
●●●●●

●
●

●●
● ●

●●●

●
●

●

●
●●

● ●●
●●

● ●

●●

●
●

●

●
●

●
●

●
●

●
●●● ●

●●

●●

●
●●

●

●

●
●

●

●

●●●

●
●

●

●

●
●

●

●

●●

●
●●

●

●

●

●●
● ●

●

●

●

●
●

●●

●

●

●●

●

●

●●

●
●

●
●

●

●●

●

●
●

●
●

●

●●

●
● ●

●●

●

●●

●● ●

●
●

●

●

●
●

●
●

●● ●
●

●

●●
●

●

●

●●

●
●

●

●
●

●

●

●●●

●●

●

●
●●

●

● ●

●

●

●

●●

● ●

●

●

●
●

●

●

●
●

●●

●
●●

●

●
●

●

●
●

●

●

●
●●

●
●

●●

●

●
●

●
●

●

●●
● ●

●
●

●

●●

●●

●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

● ●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●● ●
●

●

●

●
●

●
●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●● ● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●●

● ●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

● ●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

● ●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●●
●●

●

●●

●

●
●●

●

●

●

●
●

●●

●
●

●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●●

●
●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●● ●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●●

●●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●●
●

●
●

●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

● ●

●

●
●

●

●

●●
●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●●

●

●●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

●●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●●●

●

●

●●
●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

● ●

●

●

● ●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●● ●

●

●

●
●

●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●

●
●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●●●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
● ●

●

●

●●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●
●●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●●
●●

●

●● ●

●●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●
●●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

●●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●
●

●

●

● ●●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●●●

●

●

●

●

●

●●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●●●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●● ●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●
●

●

●

●●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●●
●

● ●

●

●

●

●●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●
●●

●●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●
●●

●

●●

●

●

●● ●
●

●

●

●

●●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

● ●

●

● ●

●

●●

●

● ●●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●
● ●

●

●

●

●●●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

● ●

●

● ●

●

●

●

●

●
●●

●

●

●

●

●●

●●

●
●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●
● ●

●

●

●
●

●

●

●●●
●

●

●

●

●

●● ●●

●

●

●
●

●

●● ●

●

●

●

●

●

●

●

● ●
●

●

●
●●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●●●
●

●

●●

●

●

●
● ●

●
●●

●

●

●

●
●

● ● ●●

●

●●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●
●

●

●

●●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●
● ●●

●

●
●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●●

●

●
●

●

●● ●

●

●●
●

●

●

●

●●

●

●

●

●
●

●

● ●●
●

●●

●

●●●

●

●

●

● ●●
●●

●

● ●

●

●

●●

●

●
●● ●

●

●

●

●

●

●

●

●●

●

●
●

●

●

● ●
●●

●

●● ●

●

●
● ●

●
●

●

●

●● ●●

●

●

●

●

●

●
● ●

●
●

●

●●
●

●

●

●

●●

●

●●

● ●

●●

●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●● ●
●●

●

●●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●
●

●

●

●

● ● ●

●

●

● ●
●●

●

●

●

●●●
●●

●
●●

●

●

●

●●

●

●●●

●

●

●

●

● ●● ●
●

●

●

●
●

●●●

●

●

●

●

●
●

● ●

●

●●

●

●
●●

●

●

●●
●

●

●●

●

● ●

●

●● ●
● ●

●

●●

●

● ●●

●

●● ●●●

●
●

●

●

●
●

●
●

●

●

●●●

●

●

●
●

●●

●

●
●

●●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●●

● ●●

●●

●●

●●

●

●●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●●

●

●●●

●

●

●
●

● ●
●

●

●

●

●

●

●●

●

●

●

●●●

●

●
●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●● ● ●●

●

●
●

●

● ●
●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●
● ●

●

● ●
●

●

●●

●

●●

●

● ●●●

●

●●●

●

●●
●

●
●

●●

●

●●

●

●

●

●●●

●

●
●●●

●

● ●●

●

● ●● ●●

●

●

●

●●
●

●

●

● ●●

●

●
●

● ●●

●

●
●●

●

●●

●

●● ●

●

●● ●●
●

●

●

●

● ●●

●

●
●

●●●●

●

● ●●

●

●
●●

●

●●● ●● ●
●

●

● ●●●●

●

●
●

●
●

●

● ● ●

●
●

● ●●● ●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

● ●● ●

●●

● ●●

●

●

●●

●

●● ●
●

●●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●

●
●

●●

●●

●●● ●●

●

●
●

●

●●

●

●

●

● ● ●●

●

●

●

●●●
●

●●

●● ●●

●

●
●

●

●

●

●●●●
●

●

● ●

●

●
●

●

●

●

●

●

● ●● ●
●

●

●

●●

●

●
●

●

●

●

●●●●●

●

●●●●●●●

●

●●●● ●●●●

●

● ●●●

●

●●●

●

● ●●● ●

●

● ●●●●

●
● ●

●

●●●●
●

●●● ●●●
●

●●
●

●● ●
●

●● ●●
●

●● ●●
●

●●
●

● ●● ●●
●

●●
●

●●● ●●● ●● ●●● ●●● ●●●●● ●●● ●●● ●●●● ●●● ●●● ●●● ●●● ●●●●●●●●●●

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●
●●●●
●●●●

●●●●●
●●●●●

●●●●●●
●●●●●●●●●

●●

●●●●●●●●●●●●●●● ●● ●●●● ●●● ●●● ● ●● ●●● ●● ● ●● ●●● ● ●●●● ●●●● ●
●

●
●

●●●● ●●
●

●
●

● ●●●●
●

●●●
●

●●● ●
●

●
●

●●●●● ●●
●

● ●●

●

●●●
●

●●● ●

●

●●●● ●●

●

●●

●

●●●●●

●

●● ●●●●●

●

●●●●●●●

●

●●● ● ●

●

● ●

●

●

●

● ●●

●

● ●
● ●●

●

●●

●●

●
●

●

●

●

●

●●
●

● ●●

●●

●●
●

●

●●●

●

●

●

●
●

●

●

●●

●

● ●●

●

●
●

●

●

●

●●
●

●

●●●●

●

●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●●

●●

●

●●

●●●

●●

●
●

●

●

● ●●

●

●

●

●●

●

●●

●●

●●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●●

●

●●● ●
●

●●

●

●●

●

●
●

●
●●

●

● ●●●

●

●
● ●● ●● ●●

●

●
●

●

● ●●
●

●

●●
●

●●

●

●●● ●

●

●
●

● ● ●●

●

●● ●●

●

●

●● ●
●

●

●● ●
●

●

●

●

●●

●

● ●
●

●

●● ●

●

●● ●●

●

●●●

●

●● ●
●

●

●

●●

●

●

●●●●

●

●
●

●●
●

●

●

●●

●

●●● ●● ●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●● ●

●

●●

●

●
●

●

●

●● ●●

●

●●

●

●

●
●

●●●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●●● ●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●●

● ●●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

● ● ●
●

●

●

●
●

●

●

●

● ● ●

●

●

●
●

●

●

●

●

●●

●

●●
●●

●

● ●

●

●● ●

●
●

●
●

●●

●

●● ●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

● ●●
●

●

●

●

●●

●

●●
●

●

●● ●
●

● ●●

●

●
●

●● ●

●

●●● ●

●

●

●● ●

● ●
● ●

●

●

●

●●●
●●

●

●

●●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●
●● ●● ●

●

●
●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●●

●

●●

●

●● ●

●

●

●
●

●
●

●
●

●

● ●

●

● ●
●

●

●

●

●
●●

●

●●

●

●

●

●

●

●
●

●●
●

●

●

●

●●

●

●

●

●●
● ●●

●

●

●

●

●●●

●

●

●
● ●●

●

●

●

● ●●

●

●

●

●

●

●
● ●

●

●● ●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●●

●●

●

●

●

● ●
●

●

●

●●
●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●
● ●●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●●

●

●●

●
● ●

●

● ●●●

●
●

●

● ●

● ●
●●●

●

●

●

●

●

●

●
●●

●

●●
●

●

●

●

●

●

●

●

●●
●

●

● ●● ●

●

●

●

● ●
●●

●

●

●

● ●

●

●

● ●●
●

●

●
●●

●

●

●

●

●

●

● ●● ●

●

●
●

●

●

● ●●

●

●

●

● ●
●

●● ●

●

●

●
●

●

●

●●

●

●●

●

● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●● ●

●

●

● ●●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●●

● ●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

● ● ●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

● ●●

●

●●
●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

● ●

●

●

●
●

●

●
●

●●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●

●
● ●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●●

●
●

●

●

●
●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●● ●

●

● ●
●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●●

●

● ● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ● ●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

● ●

●●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●●

●

●●

●

●

●●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

● ●

●●

●

●● ●
●●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●●

●

●

●

●

●
●

●

● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●
●

●●
●

●

●●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●
● ●

●
● ●

●

●

● ●

●

●●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●● ●

●
●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●
●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●
●●

●

●
●

●
●

●

● ●

●

●

● ●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●
●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●
●●

●

●● ●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●
●●

●

●

●

●

● ●●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●●

●
●

● ●

●

●
●

●

●
●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

● ●●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●
●●●

●

●

●

●●

●

●
●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●●

●

●
●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
● ●

●

● ●
●

●

●●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●

●●
●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●

●

●
●

●

●●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●● ●

●

●

●
●

●
●

●

●

●

●

●●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●
●

●
●

●

● ●

●
●

● ●
●

●●

●

●

●

●
●

●

●●
●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

● ●
●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●●

●
●

●
●

●

●

●
●

●●

●

●

●●

●

●

●●
●

●●

●

●
●

●
●

●

●●

●
●

●●
●

●●

●

●

●●

●

●

●●
●

●

●●

●
● ●

●●

●

●

●
● ●

●

●

●●

●

●
●

●

●
●

●

●● ●

●

●
●

●●

●
●●

●

●

●

●

●

●●● ●
●

●
●

●●

● ●

●
●

●

●

●

●●
●●

● ●
●

●
●●

●●
●

● ●●
●●
●●

●
●

●●●●●●
●●●●

● A

B

Figure 1. Transforming unit ball BD
0 (1) to sphere SD .

the the boundary in the original parameter space.

By defining HMC on the sphere, besides handling the con-
straints implicitly, the computational efficiency of the sam-
pling algorithm could be improved by using splitting tech-
niques discussed in (Beskos et al., 2011; Shahbaba et al.,
2013b; Byrne & Girolami, 2013). Consider a family of
target distributions, {f(· ; θ)}, defined on the unit ball
BD

0 (1) (i.e., the original parameter space) endowed with
the Euclidean metric I. The potential energy is defined as
U(θ) := − log f(· ; θ). Associated with the auxiliary vari-
able v (i.e., velocity), we define the kinetic energy K(v) =
1
2v
T Iv for v ∈ TθBD

0 (1), which is a D-dimensional vector
sampled from the tangent space of BD

0 (1). Therefore, the
Hamiltonian is defined on BD

0 (1) as

H(θ, v) = U(θ) +K(v) = U(θ) +
1

2
vT Iv (3)

Next, we derive the corresponding Hamiltonian function
on SD. The potential energy U(θ̃) = U(θ) remains the
same since the distribution is fully defined in terms of the
original parameter θ, i.e., the first D elements of θ̃. How-
ever, the kinetic energy, K(ṽ) := 1

2 ṽ
T ṽ, changes since the

velocity ṽ = (v, vD+1) is now sampled from the tangent
space of the sphere, Tθ̃S

D := {ṽ ∈ RD+1|θ̃T ṽ = 0},
with vD+1 = −θT v/θD+1. As a result, the Hamiltonian
H∗(θ̃, ṽ) is defined on the sphere SD as follows:

H∗(θ̃, ṽ) = U(θ̃) +K(ṽ) (4)

Viewing {θ,BD
0 (1)} as a coordinate chart of SD, this is

equivalent to replacing the Euclidean metric I with the
canonical spherical metric GS = ID + θθT /(1 − ‖θ‖22).
Therefore, we can write the Hamiltonian function (4) as

H∗(θ̃, ṽ) = U(θ̃) +
1

2
ṽT ṽ = U(θ) +

1

2
vTGSv (5)

More details are provided in Appendix A.

Now we can sample the velocity v ∼ N (0,G−1S) and set

ṽ =

[
I

−θT /θD+1

]
v. Alternatively, we can sample ṽ di-

rectly from the standard (D + 1)-dimensional Gaussian,

ṽ ∼ N
(

0,

[
I

−θT /θD+1

]
G−1S

[
I − θ/θD+1

])
(6)

which simplifies to

ṽ ∼ N(0, ID+1 − θ̃θ̃T) (7)

The Hamiltonian function (5) can be used to define
the Hamilton dynamics on the Riemannian manifold
(BD

0 (1),GS) in terms of (θ, p), or equivalently as the fol-
lowing Lagrangian dynamics in terms of (θ, v) (Lan et al.,
2012):

θ̇ = v
v̇ = −vTΓv −G−1S ∇U(θ)

(8)

where Γ are the Christoffel symbols of second kind de-
rived from GS. The Hamiltonian (5) is preserved under
Lagrangian dynamics (8). (See Lan et al., 2012, for more
discussion).

(Byrne & Girolami, 2013) split the Hamiltonian (5) as fol-
lows:

H∗(θ̃, ṽ) = U(θ)/2 +
1

2
vTGSv + U(θ)/2 (9)

However, their approach requires the manifold to be em-
bedded in the Euclidean space. To avoid this assumption,
instead of splitting the Hamilton dynamics, we split the cor-
responding Lagrangian dynamics (8) as follows:{

θ̇ = 0
v̇ = − 1

2G
−1
S ∇U(θ)

{
θ̇ = v
v̇ = −vTΓv

(10)

(See Appendix C for more details.) Note that the first dy-
namics (on the left) only involves updating velocity ṽ in
the tangent space Tθ̃S

D and has the following solution (see
Appendix C for more details):

θ̃(t) = θ̃(0)

ṽ(t) = ṽ(0)− t
2

([
ID
0

]
− θ̃(0)θ(0)T

)
∇U(θ(0))

(11)

where t denotes time.

The second dynamics (on the right) only involves the ki-
netic energy; hence, it is equivalent to the geodesic flow
on the sphere SD with a great circle (orthodrome or
Riemannian circle) as its analytical solution (see supple-
mentary document at http://www.ics.uci.edu/

˜slan/SphHMC for more details),

θ̃(t)=θ̃(0) cos(‖ṽ(0)‖2t)+ ṽ(0)
‖ṽ(0)‖2 sin(‖ṽ(0)‖2t)

ṽ(t)=−θ̃(0)‖ṽ(0)‖2 sin(‖ṽ(0)‖2t)+ṽ(0) cos(‖ṽ(0)‖2t)
(12)

http://www.ics.uci.edu/~slan/SphHMC
http://www.ics.uci.edu/~slan/SphHMC

Spherical Hamiltonian Monte Carlo for Constrained Target Distributions

Algorithm 1 Spherical HMC

Initialize θ̃(1) at current θ̃ after transformation
Sample a new momentum value ṽ(1) ∼ N (0, ID+1)
Set ṽ(1) ← ṽ(1) − θ̃(1)(θ̃(1))T ṽ(1)
Calculate H(θ̃(1), ṽ(1)) = U(θ(1)) +K(ṽ(1))
for ` = 1 to L do
ṽ(`+

1
2) = ṽ(`) − ε

2

([
ID
0

]
− θ̃(`)(θ(`))T

)
∇U(θ(`))

θ̃(`+1) = θ̃(`) cos(‖ṽ(`+ 1
2)‖ε) + ṽ(`+

1
2
)

‖ṽ(`+
1
2
)‖

sin(‖ṽ(`+ 1
2)‖ε)

ṽ(`+
1
2)←−θ̃(`)‖ṽ(`+ 1

2)‖ sin(‖ṽ(`+ 1
2)‖ε)

+ ṽ(`+
1
2) cos(‖ṽ(`+ 1

2)‖ε)

ṽ(`+1) = ṽ(`+
1
2)− ε

2

([
ID
0

]
− θ̃(`+1)(θ(`+1))T

)
∇U(θ(`+1))

end for
CalculateH(θ̃(L+1), ṽ(L+1)) = U(θ(L+1))+K(ṽ(L+1))
Calculate the acceptance probability

α = exp{−H(θ̃(L+1), ṽ(L+1)) +H(θ̃(1), ṽ(1))}

Accept or reject the proposal according to α
Calculate the corresponding weight |θ(n)D+1|

Note that (11) and (12) are both symplectic. Due to the ex-
plicit formula for the geodesic flow on sphere, the second
dynamics in (10) is simulated exactly. Therefore, updating
θ̃ does not involve discretization error so we can use large
step sizes. This could lead to improved computational effi-
ciency. Since this step is in fact a rotation on sphere, we set
the trajectory length to be 2π/D and randomize the number
of leapfrog steps to avoid periodicity. Algorithm 1 shows
the steps for implementing this approach, henceforth called
Spherical HMC.

4. Norm constraints
The unit ball region discussed in the previous section is in
fact a special case of q-norm constraints. In this section we
discuss q-norm constraints in general and show how they
can be transformed to the unit ball so that the Spherical
HMC method can be used. In general, these constraints are
expressed in terms of q-norm of parameters,

‖β‖q =

{
(
∑D
i=1 |βi|q)1/q, q ∈ (0,+∞)

max1≤i≤D |βi|, q = +∞ (13)

For example, when β are regression parameters, q = 2
corresponds to ridge regression and q = 1 corresponds to
Lasso (Tibshirani, 1996). In what follows, we show how
this type of constraints can be transformed to SD.

4.1. Norm constraints with q = +∞

When q = +∞, the distribution is confined to a hypercube.
Note that hypercubes, and in general hyper-rectangles, can
be transformed to the unit hypercube, CD := [−1, 1]D =
{β ∈ RD : ‖β‖∞ ≤ 1}, by proper shifting and scaling
of the original parameters. (Neal, 2010) discusses this kind
of constraints, which could be handled by adding a term
to the energy function such that the energy goes to infinity
for values that violate the constraints. This creates “energy
walls” at boundaries. As a result, the sampler bounces off
the energy wall whenever it reaches the boundaries. This
approach, henceforth called Wall HMC, has limited appli-
cations and tends to be computationally inefficient.

To use Spherical HMC, the unit hypercube can be trans-
formed to its inscribed unit ball through the following map:

TC→B : [−1, 1]D → BD
0 (1), β 7→ θ = β

‖β‖∞
‖β‖2

(14)

Further, as discussed in the previous section, the resulting
unit ball can be mapped to sphere SD through TB→S for
which the Spherical HMC can be used. See Appendix B
for the derivation of the corresponding weights needed for
the change of variable.

4.2. Norm constraints with q ∈ (0,+∞)

A domain constrained by q-norm QD := {x ∈ RD :
‖β‖q ≤ 1} for q ∈ (0,+∞) can be transformed to the
unit ball BD

0 (1) via the following map:

TQ→B : QD → BD
0 (1), βi 7→ θi = sgn(βi)|βi|q/2

(15)
As before, the unit ball can be transformed to the sphere
for which we can use the Spherical HMC method. See Ap-
pendix B for the derivation of the corresponding weights
required for the change of variable.

5. Experimental results
In this section, we evaluate our proposed methods, Spher-
ical HMC, by comparing its efficiency to that of Ran-
dom Walk Metropolis (RWM) and Wall HMC using sim-
ulated and real data. To this end, we define efficiency
in terms of time-normalized effective sample size (ESS).
GivenB MCMC samples for each parameter, ESS =B[1+
2ΣKk=1γ(k)]−1, where ΣKk=1γ(k) is the sum of K mono-
tone sample autocorrelations (Geyer, 1992). We use the
minimum ESS normalized by the CPU time, s (in sec-
onds), as the overall measure of efficiency: min(ESS)/s.
All computer codes are available online at http://www.
ics.uci.edu/˜slan/SphHMC.

http://www.ics.uci.edu/~slan/SphHMC
http://www.ics.uci.edu/~slan/SphHMC

Spherical Hamiltonian Monte Carlo for Constrained Target Distributions

β1

β 2

−2 −1 0 1 2

−2
−1

0
1

2

 0.
02

 0.
04

 0

.0
6

 0
.0

8

 0.1 0.12

 0.14

 0.16

β1

β 2

−2 −1 0 1 2

−2
−1

0
1

2
Figure 2. Density plots of a truncated bivariate Gaussian using ex-
act density function (left) and MCMC samples from Spherical
HMC (Right).

Table 1. Comparing RWM, Wall HMC, and Spherical HMC in
terms of acceptance probability (AP), seconds (s) per iteration,
and Min(ESS)/s.

Dim Method AP s/Iteration Min(ESS)/s
RWM 0.64 1.6E-04 8.80

D=10 Wall HMC 0.93 5.8E-04 426.79
Spherical HMC 0.81 9.7E-04 602.78
RWM 0.72 1.3E-03 0.06

D=100 Wall HMC 0.94 1.4E-02 14.23
Spherical HMC 0.88 1.5E-02 40.12

5.1. Truncated Multivariate Gaussian

For illustration purposes, we first start with a truncated bi-
variate Gaussian distribution,(

β1
β2

)
∼ N

(
0,

[
1 .5
.5 1

])
,

0 ≤ β1 ≤ 5, 0 ≤ β2 ≤ 1

The lower and upper limits are l = (0, 0) and u = (5, 1) re-
spectively. The original rectangle domain can be mapped to
the 2-dimensional unit sphere through the following trans-
formation:

T : [0, 5]× [0, 1]→ S2, β 7→ β′ = (2β − (u+ l))/(u− l)

7→ θ = β′
‖β′‖∞
‖β′‖2

7→ θ̃ =
(
θ,
√

1− ‖θ‖22
)

The left panel of Figure 2 shows the heatmap based on the
exact density function, and the right panel shows the corre-
sponding heatmap based on MCMC samples from Spheri-
cal HMC.

To evaluate the efficiency of the above-mentioned methods
(RWM, Wall HMC, and Spherical HMC), we repeat this
experiment for higher dimensions, D = 10, and D = 100.
As before, we set the mean to zero and set the (i, j)-th el-
ement of the covariance matrix to Σij = 1/(1 + |i − j|).
Further, we assume 0 ≤ βi ≤ ui, where ui (i.e., the upper
bound) is set to 5 when i = 1; otherwise, it is set to 0.5.

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

2
1

10
8

4
6

Bayesian Lasso
 Gibbs Sampler

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

5
2

7
1

10
4

3

Bayesian Lasso
 Wall HMC

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

5
2

7
1

10
6

4
3

9

Bayesian Lasso
 Spherical HMC

Figure 3. Bayesian Lasso using three different sampling algo-
rithms: Gibbs sampler (left), Wall HMC (middle) and Spherical
HMC (right).

For each method, we obtain 10000 MCMC samples after
discarding the initial 1000 samples. We set the tuning pa-
rameters of algorithms such that their overall acceptance
rates are within a reasonable range. As shown in Table 1,
Spherical HMC is substantially more efficient than RWM
and Wall HMC. For RWM, proposed states are rejected
about 95% of times due to violation of constraints. On aver-
age, Wall HMC bounces off the wall around 7.68 and 31.10
times per iteration for D = 10 and D = 100 respectively.
In contrast, by augmenting the parameter space, Spherical
HMC handles the constraints in an efficient way.

5.2. Bayesian Lasso

In regression analysis, overly complex models tend to over-
fit the data. Regularized regression models control com-
plexity by imposing a penalty on model parameters. By far,
the most popular model in this group is Lasso (least abso-
lute shrinkage and selection operator) proposed by Tibshi-
rani (Tibshirani, 1996). In this approach, the coefficients
are obtained by minimizing the residual sum of squares
(RSS) subject to

∑D
j=1 |βj | ≤ t. Park and Casella (Park

& Casella, 2008) and Hans (Hans, 2009) have proposed a
Bayesian alternative method, called Bayesian Lasso, where
the penalty term is replaced by a prior distribution of the
form P (β) ∝ exp(−λ|βj |), which can be represented as
a scale mixture of normal distributions (West, 1987). This
leads to a hierarchical Bayesian model with full conditional
conjugacy; Therefore, the Gibbs sampler can be used for
inference.

Our proposed method in this paper can directly handle
the constraints in Lasso models. That is, we can conve-
niently use Gaussian priors for model parameters, β|σ2 ∼
N (0, σ2I), and use Spherical HMC with the transforma-
tion discussed in Section 4.2.

We evaluate our method based on the diabetes data set
(N=442, D=10) discussed in (Park & Casella, 2008).
Figure 3 compares coefficient estimates given by the
Gibbs sampler (Park & Casella, 2008), Wall HMC, and
Spherical HMC algorithms as the shrinkage factor s :=

Spherical Hamiltonian Monte Carlo for Constrained Target Distributions

0
200

400
600

800
100

0

Shrinkage Factor

Min
(ES

S)/
s

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Gibbs Sampler
Wall HMC
Spherical HMC

Figure 4. Sampling efficiency of different algorithms for
Bayesian Lasso based on the diabetes dataset.

‖β̂Lasso‖1/‖β̂OLS‖1 changes from 0 to 1. Here, β̂OLS

denotes the estimates obtained by ordinary least squares
(OLS) regression. For the Gibbs sampler, we choose dif-
ferent λ so that the corresponding shrinkage factor s varies
from 0 to 1. For Wall HMC and Spherical HMC, we
fix the number of leapfrog steps to 10 and set the trajec-
tory length such that they both have comparable acceptance
rates around 70%.

Figure 4 compares the sampling efficiency of these three
methods. As we impose tighter constraints (i.e., lower
shrinkage factors s), our method becomes substantially
more efficient than the Gibbs sampler and Wall HMC.

5.3. Bridge regression

The Lasso model discussed in the previous section is in
fact a member of a family of regression models called
Bridge regression (Frank & Friedman, 1993), where the
coefficients are obtained by minimizing the residual sum
of squares subject to

∑D
j=1 |βj |q ≤ t. For Lasso, q = 1,

which allows the model to force some of the coefficients
to become exactly zero (i.e., become excluded from the
model).

As mentioned earlier, our Spherical HMC method can eas-
ily handle this type of constraints through the following
transformation:

T : QD → SD, βi 7→ β′i = βi/t

7→ θi = sgn(β′i)|β′i|q/2, θ 7→ θ̃ =
(
θ,
√

1− ‖θ‖22
)

Figure 5 compares the parameter estimates of Bayesian
Lasso to the estimates obtained from two Bridge regres-
sion models with q = 1.2 and q = 0.8 for the diabetes
dataset (Park & Casella, 2008) using our Spherical HMC
algorithm. As expected, tighter constraints (e.g., q = 0.8)
would lead to faster shrinkage of regression parameters as
we decrease s.

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

5
2

7
1

10
6

4
3

9

Beysian Bridge
 Lasso (q=1)

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

5
2

1
10

8
6

3
9

Beysian Bridge
 q=1.2

−3
0

−2
0

−1
0

0
10

20
30

Shrinkage Factor

Co
eff

icie
nts

0 0.2 0.4 0.6 0.8 1

7
5

1
4

9

Beysian Bridge
 q=0.8

Figure 5. Bayesian Bridge Regression by Spherical HMC: Lasso
(q=1, left), q=1.2 (middle), and q=0.8 (right).

5.4. Modeling synchrony among multiple neurons

Shahbaba et al. (Shahbaba et al., 2013a) have recently
proposed a semiparametric Bayesian model to capture de-
pendencies among multiple neurons by detecting their co-
firing patterns over time. In this approach, after discretizing
time, there is at most one spike in each interval. The result-
ing sequence of 1’s (spike) and 0’s (silence) for each neuron
is called a spike train, which is denoted as Y and is mod-
eled using the logistic function of a continuous latent vari-
able with a Gaussian process prior. For n neurons, the joint
probability distribution of spike trains, Y1, . . . , Yn, is cou-
pled to the marginal distributions using a parametric copula
model. LetH be n-dimensional distribution functions with
marginals F1, ..., Fn. In general, an n-dimensional copula
is a function with the following form:

H(y1, ..., yn) = C(F1(y1), ..., Fn(yn)), for all y1, . . . , yn

Here, C defines the dependence structure between the
marginals. Shahbaba et al. (Shahbaba et al., 2013a) use
a special case of the Farlie-Gumbel-Morgenstern (FGM)
copula family (Farlie, 1960; Gumbel, 1960; Morgenstern,
1956; Nelsen, 1998), for which C has the following form:

[
1 +

n∑
k=2

∑
1≤j1<···<jk≤n

βj1j2...jk

k∏
l=1

(1− Fjl)
] n∏
i=1

Fi

where Fi = Fi(yi). Restricting the model to second-order
interactions, we have

H(y1, . . . , yn) =
[
1 +

∑
1≤j1<j2≤n

βj1j2

2∏
l=1

(1− Fjl)
] n∏
i=1

Fi

Here, Fi = P (Yi ≤ yi) for the ith neuron (i = 1, . . . , n),
where y1, . . . , yn denote the firing status of n neurons at
time t. βj1,j2 captures the relationship between the j1th and
j2th neurons, with βj1,j2 = 0 interpreted as “no relation-
ship” between the two neurons. To ensure that probabil-
ity distribution functions remain within [0, 1], the following
constraints on all

(
n
2

)
parameters, βj1j2 , are imposed:

1 +
∑

1≤j1<j2≤n

βj1j2

2∏
l=1

εjl ≥ 0, ε1, · · · , εn ∈ {−1, 1}

Spherical Hamiltonian Monte Carlo for Constrained Target Distributions

Table 2. Comparing RWM, Wall HMC, and Spherical HMC
based on the copula model.

Scenario Method AP s/Iteration Min(ESS)/s
RWM 0.69 8.2 2.8E-04

I Wall HMC 0.67 17.0 7.0E-03
Spherical HMC 0.83 17.0 2.0E-02
RWM 0.67 8.1 2.8E-04

II Wall HMC 0.75 19.4 1.8E-03
Spherical HMC 0.81 18.0 2.2E-02

Considering all possible combinations of εj1 and εj2 in
the above condition, there are n(n− 1) linear inequalities,
which can be expressed as

∑
1≤j1<j2≤n |βj1j2 | ≤ 1. For

this model, we can use the square root mapping described
in section 4.2 to transform the original domain (q = 1) of
parameters to the unit ball before using Spherical HMC.

We apply our method to a real dataset based on an exper-
iment investigating the role of prefrontal cortical area in
rats with respect to reward-seeking behavior discussed in
(Shahbaba et al., 2013a). Here, we focus on 5 simultane-
ously recorded neurons under two scenarios: I) rewarded
(pressing a lever by rats delivers 0.1 ml of 15% sucrose so-
lution), and II) non-rewarded (nothing happens after press-
ing a lever by rats). There are 51 trails for each sce-
nario. The copula model detected significant associations
among three neurons: the first and forth neurons (β1,4) un-
der the rewarded scenario, and the third and forth neurons
(β3,4) under the non-rewarded scenario. All other parame-
ters were deemed non-significant (based on 95% posterior
probability intervals). As we can see in Table 2, Spherical
HMC is order(s) of magnitudes more efficient than RWM
and Wall HMC.

6. Discussion
We have introduced a new efficient sampling algorithm for
constrained distributions. Our method first maps the pa-
rameter space to the unit ball and then augments the re-
sulting space to a sphere. Further, by using the splitting
strategy, we could improve the computational efficiency of
our algorithm. A dynamical system is then defined on the
sphere to propose new states that are guaranteed to remain
within the boundaries imposed by the constraints.

In this paper, we assumed the Euclidean metric I on unit
ball, BD

0 (1). The proposed approach can be extended to
more complex metrics, such as the Fisher information met-
ric GF, in order to exploit the geometric properties of the
parameter space (Girolami & Calderhead, 2011). This way,
the metric for the augmented space could be defined as
GF + θθT /θ2D+1. Under such a metric however, we might
not be able to find the geodesic flow analytically. This
could undermine the added benefit from using the Fisher
information metric.

Acknowledgments
We would like to thank Jeffrey Streets, Max Welling, and
Alexander Ihler for helpful discussion. This work is sup-
ported by NSF grant IIS-1216045 and NIH grant R01-
AI107034.

Appendix

A. From unit ball to sphere
Consider the D-dimensional ball BD

0 (1) = {θ ∈ RD :
‖θ‖2 ≤ 1} and the D-dimensional sphere SD = {θ̃ =
(θ, θD+1) ∈ RD+1 : ‖θ̃‖2 = 1}. Note that {θ,BD

0 (1)}
can be viewed as a coordinate chart for SD. The first fun-
damental form ds2 (i.e., squared infinitesimal length of a
curve) for SD is explicitly expressed in terms of the differ-
ential form dθ and the canonical metric GS as

ds2 = 〈dθ, dθ〉GS
= dθTGSdθ

which can be obtained as follows (Spivak, 1979):

ds2 =

D+1∑
i=1

dθ2i =

D∑
i=1

dθ2i + (d(θD+1(θ)))2

= dθT dθ +
(θT dθ)2

1− ‖θ‖22
= dθT [I + θθT /θ2D+1]dθ

Therefore, the canonical metric GS of SD is

GS = ID +
θθT

θ2D+1

For any vector ṽ = (v, vD+1) ∈ Tθ̃S
D = {ṽ ∈ RD+1 :

θ̃T ṽ = 0}, one could view GS as a mean to express the
length of ṽ in v:

vTGSv = ‖v‖22 +
vT θθT v

θ2D+1

= ‖v‖22 +
(−θD+1vD+1)2

θ2D+1

= ‖v‖22 + v2D+1 = ‖ṽ‖22
The determinant of the canonical metric GS is given by the
matrix determinant lemma,

detGS = det(ID +
θθT

θ2D+1

) = 1 +
θT θ

θ2D+1

=
1

θ2D+1

and the inverse of GS is obtained by the Sherman-
Morrison-Woodbury formula (Golub & Van Loan, 1996)

G−1S =

[
ID +

θθT

θ2D+1

]−1
= ID−

θθT /θ2D+1

1 + θT θ/θ2D+1

=ID−θθT

We now find the Jacobian determinant of TS→B. Using the
volume form (Spivak, 1979), we have∫

SD
+

f(θ̃)dθ̃S =

∫
BD

0 (1)

f(θ)
√

detGSdθB

Spherical Hamiltonian Monte Carlo for Constrained Target Distributions

The transformation TB→S : θ 7→ θ̃ = (θ, θD+1 =√
1− ‖θ‖22) bijectively maps the unit ball BD

0 (1) to the
upper-hemisphere SD+ . Using the change of variable theo-
rem, we have∫

SD
+

f(θ̃)dθ̃S =

∫
BD

0 (1)

f(θ)

∣∣∣∣∣ dθ̃SdθB

∣∣∣∣∣ dθB
from which we can obtain the Jacobian determinant of
TB→S as follows:∣∣∣∣∣ dθ̃SdθB

∣∣∣∣∣ =
√

detGS = 1/|θD+1|

Therefore, the Jacobian determinant of TS→B is |θD+1|.

B. Transformations between different
constrained domains

Denote the general hyper-rectangle type constrained do-
main as RD := {β ∈ RD : l ≤ β ≤ u}. For transfor-
mations TS→R and TS→Q, we can find the Jacobian deter-
minants as follows. First, we note

TS→R = TC→R ◦ TB→C ◦ TS→B

TS→B : θ̃ 7→ θ

TB→C : θ 7→ β′ = θ
‖θ‖2
‖θ‖∞

TC→R : β′ 7→ β =
u− l

2
β′ +

u+ l

2

The corresponding Jacobian matrices are

dTB→C :
dβ′

dθT
=
‖θ‖2
‖θ‖∞

[
I + θ

(
θT

‖θ‖22
−
eTargmax |θ|

θargmax |θ|

)]

dTC→R :
dβ

d(β′)T
= diag(

u− l
2

)

where eargmax |θ| is a vector with (arg max |θ|)-th element
1 and all others 0. Therefore,

|dTS→R| = |dTC→R| |dTB→C| |dTS→B|

=

∣∣∣∣ dβ

d(β′)T

∣∣∣∣ ∣∣∣∣ dβ′dθT

∣∣∣∣ ∣∣∣∣dθBdθ̃S

∣∣∣∣ = |θD+1|
‖θ‖D2
‖θ‖D∞

D∏
i=1

ui − li
2

Next, we note

TS→Q = TB→Q ◦ TS→B : θ̃ 7→ θ 7→ β = sgn(θ)|θ|2/q

The Jacobian matrix for TB→Q is

dβ

dθT
=

2

q
diag(|θ|2/q−1)

Therefore the Jacobian Determinant of TS→Q is

|dTS→Q| = |dTB→Q| |dTS→B|

=

∣∣∣∣ dβdθT
∣∣∣∣ ∣∣∣∣dθBdθ̃S

∣∣∣∣ =

(
2

q

)D (D∏
i=1

|θi|

)2/q−1

|θD+1|

C. Splitting Hamilton dynamics on SD

Splitting the Hamiltonian function and its usefulness in im-
proving HMC is a well-studied topic of research (Leimkuh-
ler & Reich, 2004; Shahbaba et al., 2013b; Byrne & Giro-
lami, 2013). Splitting the Lagrangian function (used in our
approach), on the other hand, has not been discussed in
the literature, to the best of our knowledge. Therefore,
we prove the validity of our splitting method by starting
with the well-understood method of splitting Hamiltonian
(Byrne & Girolami, 2013),

H∗(θ, p) = U(θ)/2 +
1

2
pTGS

−1p+ U(θ)/2

The corresponding systems of differential equations,{
θ̇ = 0
ṗ = − 1

2∇U(θ)

{
θ̇ = GS

−1p

ṗ = − 1
2p
TGS

−1dGSGS
−1p

can be written in terms of Lagrangian dynamics as follows:
in (θ, v) (Lan et al., 2012):{
θ̇ = 0
v̇ = − 1

2G
−1
S ∇U(θ)

{
θ̇ = v
v̇ = −vTΓv

To solve the first dynamics, we note that

θ̇D+1 = − θT

θD+1
θ̇ = 0

v̇D+1 = − θ̇
T v+θT v̇
θD+1

+ θT v
θ2D+1

θ̇D+1 =
1

2

θT

θD+1
G−1S ∇U(θ)

Therefore, we have

θ̃(t) = θ̃(0)

ṽ(t) = ṽ(0)− t

2

[
I

− θ(0)T

θD+1(0)

]
[I − θ(0)θ(0)T]∇U(θ)

where[
I

− θ(0)T

θD+1(0)

]
[I − θ(0)θ(0)T] =

[
I − θ(0)θ(0)T

−θD+1(0)θ(0)T

]
=

[
I
0

]
− θ̃(0)θ(0)T

Finally, we note that ‖θ̃(t)‖2 = 1 if ‖θ̃(0)‖2 = 1 and
ṽ(t) ∈ Tθ̃(t)SD if ṽ(0) ∈ Tθ̃(0)SD.

Spherical Hamiltonian Monte Carlo for Constrained Target Distributions

References
Beskos, A., Pinski, F. J., Sanz-Serna, J. M., and Stuart,

A. M. Hybrid Monte-Carlo on Hilbert spaces. Stochastic
Processes and their Applications, 121:2201–2230, 2011.

Brubaker, M. A., Salzmann, M., and Urtasun, R.. A fam-
ily of mcmc methods on implicitly defined manifolds.
In Lawrence, N. D. and Girolami, M. A. (eds.), Pro-
ceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics (AISTATS-12), vol-
ume 22, pp. 161–172, 2012.

Byrne, S. and Girolami, M. Geodesic Monte Carlo on Em-
bedded Manifolds. ArXiv e-prints, January 2013.

Duane, S., Kennedy, A. D., Pendleton, B J., and Roweth,
D. Hybrid Monte Carlo. Physics Letters B, 195(2):216
– 222, 1987.

Farlie, D. J. G. The performance of some correlation coef-
ficients for a general bivariate distribution. Biometrika,
47(3/4), 1960.

Frank, I. E. and Friedman, J. H. A Statistical View of Some
Chemometrics Regression Tools. Technometrics, 35(2):
109–135, 1993.

Geyer, C. J. Practical Markov Chain Monte Carlo. Statisti-
cal Science, 7(4):473–483, 1992.

Girolami, M. and Calderhead, B. Riemann manifold
Langevin and Hamiltonian Monte Carlo methods. Jour-
nal of the Royal Statistical Society, Series B, (with dis-
cussion) 73(2):123–214, 2011.

Golub, G. H. and Van Loan, C. F. Matrix computations
(3rd ed.). Johns Hopkins University Press, Baltimore,
MD, USA, 1996. ISBN 0-8018-5414-8.

Gumbel, E. J. Bivariate exponential distributions. Jour-
nal of the American Statistical Association, 55:698–707,
1960.

Hans, C.. Bayesian lasso regression. Biometrika, 96(4):
835–845, 2009.

Hoffman, M. and Gelman, A. The No-U-Turn Sampler:
Adaptively Setting Path Lengths in Hamiltonian Monte
Carlo. arxiv.org/abs/1111.4246, 2011.

Lan, S., Stathopoulos, V., Shahbaba, B., and Giro-
lami, M. Lagrangian Dynamical Monte Carlo.
arxiv.org/abs/1211.3759, 2012.

Leimkuhler, B. and Reich, S. Simulating Hamiltonian Dy-
namics. Cambridge University Press, 2004.

Morgenstern, D. Einfache beispiele zweidimensionaler
verteilungen. Mitteilungsblatt für Mathematische Statis-
tik, 8:234–235, 1956.

Neal, P. and Roberts, G. O. Optimal scaling for random
walk metropolis on spherically constrained target densi-
ties. Methodology and Computing in Applied Probabil-
ity, Vol.10(No.2):277–297, June 2008.

Neal, P., Roberts, G. O., and Yuen, W. K. Optimal scal-
ing of random walk metropolis algorithms with discon-
tinuous target densities. Annals of Applied Probability,
Volume 22(Number 5):1880–1927, 2012.

Neal, R. M. MCMC using Hamiltonian dynamics. In
Brooks, S., Gelman, A., Jones, G., and Meng, X. L.
(eds.), Handbook of Markov Chain Monte Carlo. Chap-
man and Hall/CRC, 2010.

Nelsen, R. B. An Introduction to Copulas (Lecture Notes
in Statistics). Springer, 1 edition, 1998.

Pakman, A. and Paninski, L. Exact Hamiltonian Monte
Carlo for Truncated Multivariate Gaussians. ArXiv e-
prints, August 2012.

Park, T. and Casella, G.. The bayesian lasso. Journal
of the American Statistical Association, 103(482):681–
686, 2008.

Shahbaba, B., Zhou, B., Ombao, H., Moorman, D., and
Behseta, S. A semiparametric Bayesian model for neural
coding. arXiv:1306.6103, 2013a.

Shahbaba, B., Lan, S., Johnson, W. O., and Neal, R. M.
Split hamiltonian monte carlo. Statistics and Comput-
ing, pp. 1–11, 2013b. ISSN 0960-3174. doi: 10.1007/
s11222-012-9373-1.

Sherlock, C. and Roberts, G. O. Optimal scaling of the ran-
dom walk metropolis on elliptically symmetric unimodal
targets. Bernoulli, Vol.15(No.3):774–798, August 2009.

Spivak, M. A Comprehensive Introduction to Differential
Geometry, volume 1. Publish or Perish, Inc., Houston,
second edition, 1979.

Tibshirani, R. Regression shrinkage and selection via the
lasso. Journal of the Royal Statistical Society, Series B,
58(1):267–288, 1996.

West, M. On scale mixtures of normal distributions.
Biometrika, 74(3):646–648, 1987.

