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Abstract
Bundle discounts are used by retailers in many
industries. Optimal bundle pricing requires
learning the joint distribution of consumer val-
uations for the items in the bundle, that is, how
much they are willing to pay for each of the
items. We suppose that a retailer has sales trans-
action data, and the corresponding consumer val-
uations are latent variables. We develop a statisti-
cally consistent and computationally tractable in-
ference procedure for fitting a copula model over
correlated valuations, using only sales transac-
tion data for the individual items. Simulations
and data experiments demonstrate consistency,
scalability, and the importance of incorporating
correlations in the joint distribution.

1. Introduction
Item bundles, when a collection of items are sold together
at a discount, are used across many industries, especially
in retail. Both theoretical and empirical work has shown
that introducing an appropriately priced bundle can signif-
icantly increase profits, with low risk to the retailer (Eppen
et al., 1991). Even if a bundle has not been previously of-
fered, useful information about how to price the bundle can
be obtained from the sales history of the individual items
included in the bundle. Choosing the optimal bundle price
relies critically on a knowledge of the price consumers are
willing to pay for each item in the bundle, called their val-
uations, as well as the interplay between the valuations of
items in the bundle. A retailer generally does not know the
full, joint distribution of valuations. However, the retailer
likely does have historical sales transaction data for the in-

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

dividual items. We introduce a procedure for learning the
joint distribution of valuations from individual item sales
transaction data, thus allowing for optimal bundle pricing.

The economics literature on bundling has extensively ex-
amined the economic efficiency of bundling and how
bundling can be used for price discrimination (Adams &
Yellen, 1976; Schmalensee, 1982; McAfee et al., 1989).
These foundational studies have been extended in many di-
rections. Several papers have focused on analytical solu-
tions for the optimal bundle price and other quantities of
interest (Venkatesh & Kamakura, 2003; McCardle et al.,
2007; Eckalbar, 2010). These analytical results were ob-
tained for the special case of uniformly distributed valua-
tions, with the distributions for items in the bundle either
independent or perfectly correlated. Schmalensee (1984)
obtained some analytical results and insights by assuming
the joint distribution to be bivariate normal. Other results
have been obtained for a finite collection of deterministic
valuations (Hanson & Martin, 1990).

A number of useful insights can be gained from these
simplified models (see, for example, Stremersch & Tellis,
2002). However, our main interest is in learning the con-
sumer response to bundling from data. When working with
data, such strong assumptions about the joint distribution,
particularly independence, are no longer appropriate. Je-
didi et al. (2003) eschew independence assumptions and
use methodology based in utility theory to measure val-
uations. Their measurement procedure requires offering
the bundle at various prices to elicit the demand function
for the bundle. Based on their empirical results, they re-
port that “models that assume statistical independence are
likely to be misspecified.” Venkatesh & Mahajan (1993)
also study bundle pricing without distributional assump-
tions for valuations, by mailing out questionnaires that di-
rectly asked consumers for their valuations. Conjoint anal-
ysis has also been used to estimate the valuation distri-
bution from questionnaire data in the context of bundling
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(Goldberg et al., 1984; Wuebeker & Mahajan, 1999).

Our contribution is an inference procedure for predicting
the expected change in profits when a bundle is offered at a
particular price. The procedure is developed for sales trans-
action data, and does not require collecting sales data for
the bundle a priori, nor does it require direct elicitation
of valuations via questionnaires. The procedure is based
on inference of a copula model over latent consumer val-
uations, which allows for arbitrary marginal distributions
and does not assume independence. Because the valuations
are unobserved, the likelihood function involves integrating
over the latent valuations, and standard formulas for copula
fitting cannot be directly applied. We show how these com-
putationally intractable integrals can be transformed into
distribution function evaluations, thus allowing for efficient
estimation. Our simulation studies and data experiments
suggest that the inference procedure allows for data-based
bundling decisions which can help retailers increase profits.

2. Copula Inference and Bundle Pricing
We suppose that a collection of n items have been selected
as a candidate bundle, and our goal is to determine the op-
timal price and its associated profit if the bundle were to
be introduced1. We consider the situation where the items
have not previously been offered as a bundle, but historical
sales transaction data are available for the individual items.

The transaction data that we consider consist of two com-
ponents: purchase data yt and price data xt. Specifically,
we let yt = [yt1, . . . , y

t
n] denote the sales data for transac-

tion t, with yti = 1 if item i was purchased in transaction t,
and 0 otherwise. We assume that the price of each item at
the time of each transaction is known, and denote the price
of item i at the time of transaction t as xti. Let T denote the
total number of transactions.

2.1. Valuations and Consumer Rationality

We suppose that each consumer has a valuation for each
item, with vti representing the (unobserved) valuation for
item i by the consumer in transaction t. As is done through-
out the bundling literature and much of the economics liter-
ature, we assume that consumers are rational. Specifically,
we model consumers as having infinite budget, and as pur-
chasing the assortment of items that maximizes the total
difference between their valuation and the price:

yt ∈ argmax
y∈{0,1}n

n∑
i=1

(vti − xti)yi. (1)

1The type of bundle that we consider here is called mixed
bundling, in which consumers are offered both the bundle and the
individual items, with the bundle discounted relative to the sum
of the item prices.

The rationality assumption implies that yti = 1 if and only
if vti > xti.

2

The rationality assumption provides a model for the rela-
tionship between valuations vti and transaction data yti and
xti. Using this model, we now derive likelihood formulas
for inferring a joint distribution of valuations from sales
transaction data. Then we show how the valuation distribu-
tion can be used to find the optimal bundle price.

2.2. Joint Distribution Models and Copula Inference

The most straightforward approach to model a joint distri-
bution is to assume independence. This type of joint model
allows for arbitrary margins, however independence is a
potentially unreasonable assumption, especially because
correlations are quite important for bundling, as we show
in Section 3. Modeling the joint distribution as a multivari-
ate normal allows for correlations via a covariance matrix,
however it requires the margins to be normally distributed,
which can also be a strong assumption when learning from
data. Here we model the joint distribution using a copula
model, which is a class of joint distributions that allows for
both correlation structures and arbitrary margins. Copula
models are widely used in statistics and finance, and are
becoming increasingly utilized for machine learning due to
their flexibility and computational properties (see, for ex-
ample, Elidan, 2010; 2013).

We assume consumers are homogeneous, and model the
consumer valuations vt as independent draws from a joint
distribution with distribution function F (v1, . . . , vn). Our
goal is to infer this joint distribution. Let Fi(vi) be the
marginal distribution function for item i. Then, a copula
C(·) for F (·) is a distribution function over [0, 1]n with
uniform margins such that

F (v1, . . . , vn) = C(F1(v1), . . . , Fn(vn)).

The copula combines the margins in such a way as to re-
turn the joint distribution. A copula allows for the correla-
tion structure to be modeled separately from the marginal
distributions, in a specific way which we show below. The
field of copula modeling is based on a representation the-
orem by Sklar (1973) which shows that every distribution
has a copula, and if the margins are continuous, the copula
is unique. The copula representation for a joint distribu-
tion has a number of interesting properties that are helpful
for efficient inference - see Trivedi & Zimmer (2005) for a
more detailed exposition.

Our approach to estimating F (·) will be to choose paramet-
ric forms for the margins Fi(·) and the copula C(·), and
then find the parameters for which C(F1(v1), . . . , Fn(vn))

2We model vti as a continuous random variable, and thus do
not need to devote attention to the case vti = xti .
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is closest to F (v1, . . . , vn), in a likelihood sense. Specif-
ically, suppose each margin is a distribution function with
parameters θi, and the copula distribution belongs to a fam-
ily with parameters φ. We denote the parameterized mar-
gins as Fi(vi;θi) and the parameterized joint distribution
as F (v;θ,φ) = C(F1(v1;θ1), . . . , Fn(vn;θn);φ). We
are interested in the maximum likelihood problem(

θ̂ML, φ̂ML

)
∈ argmax

θ,φ
`(θ,φ),

where `(θ,φ) is the appropriate log-likelihood function.
The main advantage in using a copula model is that the
parameters can be separated into those that are specific to
one margin (θi) and those that are common to all margins
(φ). Using a procedure called inference functions for mar-
gins (IFM) (Joe & Xu, 1996), the optimization can be per-
formed in two steps. First each margin is fit independently,
and then the margin estimates are used to fit the correlation
structure:

θ̂i ∈ argmax
θi

`i(θi), i = 1, . . . , n (2)

φ̂ ∈ argmax
φ

`(θ̂,φ). (3)

This gives computational tractability by significantly re-
ducing the dimensionality of the optimization problem that
must be solved. In general, IFM does not yield exactly
the maximum likelihood estimate: (θ̂ML, φ̂ML) 6= (θ̂, φ̂).
However, the IFM estimates (θ̂, φ̂), like the maximum like-
lihood estimates, are statistically consistent and asymptoti-
cally normal (Joe & Xu, 1996; Xu, 1996).

The inference problem that we face here differs from a typ-
ical copula modeling problem because the distribution of
interest is that over valuations, which are unobserved, latent
variables. In the next two sections, we use the rationality
assumption of (1) to derive tractable likelihood formulas to
be used in (2) and (3).

2.3. Margin Likelihood and Demand Models

We first consider the margin maximum likelihood problem
in (2). Let pi(xti) be the probability of purchase for item i at
price xti, that is, the demand model for item i. The follow-
ing proposition shows an equivalence between the marginal
valuation distribution function and demand models.
Proposition 1. The demand function and the inverse
marginal valuation distribution function are identical, i.e.,

pi(x
t
i) = 1− Fi(x

t
i;θi).

Proof. By the rationality assumption of (1), item i is pur-
chased if and only if vti > xti:

pi(x
t
i) = P(vti > xti) = 1− Fi(x

t
i;θi).

We thus choose the following likelihood model for the ob-
served purchase data:

yti ∼ Bernoulli(1− Fi(x
t
i;θi)).

Given data {xti, yti}Tt=1, the log-likelihood function for each
margin is:

`i(θi) =

T∑
t=1

(
yti log(1− Fi(x

t
i;θi))

+ (1− yti) log(Fi(x
t
i;θi))

)
. (4)

If Fi(·;θi) is linear in θi, for example when using a linear
demand model, then the maximum likelihood problem is a
concave maximization. For general demand models, a lo-
cal maximum can easily be found using standard optimiza-
tion techniques. In Section 2.7 we discuss some possible
choices for the family of Fi(·;θi).

2.4. Copula Inference over Latent Variables

Once the margin parameters θ̂i have been estimated by
maximizing (4), these estimates are used, together with the
data, to obtain an estimate of the copula parameters φ. We
now derive an expression for the log-likelihood of φ.

`(θ̂,φ) =

T∑
t=1

log p(yt|xt, θ̂,φ)

=

T∑
t=1

log

∫
p(yt|vt,xt, θ̂,φ)p(vt|xt, θ̂,φ)dvt.

(5)

Given vt and xt, yt is deterministic, with yti = 1 if vti > xti
and 0 otherwise. Thus the integral over vt can be limited
to all vt that are consistent with yt and xt, meaning the
integral is over vti > xti for i such that yti = 1, and over
vti ≤ xti for i such that yti = 0. We then define the lower
and upper limits of integration as,

vt,`i =

{
−∞ if yti = 0,

xti if yti = 1,
and vt,ui =

{
xti if yti = 0,

+∞ if yti = 1.

The quantity p(vt|xt, θ̂,φ) = p(vt|θ̂,φ) is exactly the
copula density function, which we denote as f(·; θ̂,φ).
Continuing the likelihood expression from (5), we have,

`(θ̂,φ)

=

T∑
t=1

log

∫ vt,u
n

vt,`
n

. . .

∫ vt,u
1

vt,`
1

f(vt1, . . . , v
t
n; θ̂,φ)dvt1 . . . dv

t
n.

(6)

The integral in (6) renders the likelihood formula in-
tractable. To allow for efficient inference, we will use the
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following formula for a rectangular integral of a probability
density function. This formula is critical to the scalability
of our inference procedure as it allows us to replace the
multidimensional integral in (6) with distribution function
evaluations.

Lemma 1. Let f(·) be a joint probability density function
over continuous random variables z1, . . . , zn with the cor-
responding joint distribution function F (·). Then,∫ zu

n

z`
n

. . .

∫ zu
1

z`
1

f(z1, . . ., zn)dz1 . . . dzn

=

n∑
k=0

(−1)k
∑

I⊆{1,...,n}
|I|=k

F (z̃(I)),

where z̃i(I) =

{
z`i if i ∈ I,
zui otherwise.

Proof. Define the probability events Ai = {zi ≤ z`i} for
each i. Let B = ∩ni=1{zi ≤ zui }. Then,∫ zu

n

z`
n

. . .

∫ zu
1

z`
1

f(z1, . . . , zn)dz1 . . . dzn

= P (B ∩ (∩ni=1A
c
i))

= P
(
B ∩ (∪ni=1Ai)

c)
= P(B)− P (B ∩ (∪ni=1Ai))

= P(B)− P (∪ni=1 (B ∩Ai))

= P(B)−
n∑

k=1

(−1)k−1
∑

I⊆{1,...,n}
|I|=k

P(B ∩AI)

by the inclusion-exclusion formula, with AI = ∩i∈IAi.
Substituting P(B) = F (zu1 , . . . , z

u
n) and P(B ∩ AI) =

F (z̃(I)) as defined above, we obtain the statement of the
lemma.

With Lemma 1, we are now equipped to evaluate the log-
likelihood expression in (6):

`(θ̂,φ) =

T∑
t=1

log

n∑
k=0

(−1)k
∑

I⊆{1,...,n}
|I|=k

F (ṽt(I); θ̂,φ),

(7)
where as before

ṽti(I) =

{
vt,`i if i ∈ I,
vt,ui otherwise.

For the most simple case of two items in a bundle, the inner

expression in (7) evaluates to

2∑
k=0

(−1)k
∑

I⊆{1,2}
|I|=k

F (ṽt1(I), ṽt2(I))

=


F (xt1, x

t
2) if y = (0, 0),

F1(xt1)− F (xt1, x
t
2) if y = (0, 1),

F2(xt2)− F (xt1, x
t
2) if y = (1, 0),

1− F1(xt1)− F2(xt2) + F (xt1, x
t
2) if y = (1, 1).

2.5. Consistency and Scalability

Combining (4) and (7) yields the complete inference pro-
cedure, which we give in the following proposition.

Proposition 2. The inference procedure

θ̂i ∈ argmax
θi

T∑
t=1

(
yti log(1− Fi(x

t
i;θi))

+ (1− yti) log(Fi(x
t
i;θi))

)
φ̂ ∈ argmax

φ

T∑
t=1

log

n∑
k=0

(−1)k
∑

I⊆{1,...,n}
|I|=k

F (ṽt(I); θ̂,φ)

is statistically consistent.

Because the inference is exactly the IFM procedure, it fol-
lows from Joe & Xu (1996) that it is statistically consistent.

The computation is exponential in the size of the bundle
n, however in retail practice bundle offers generally do not
contain a large number of items. Importantly, the computa-
tion is linear in the number of transactions T , which allows
inference to be performed even on very large transaction
databases. The main computational step is evaluating the
copula distribution function in (7). For many copula mod-
els, such as the Gaussian copula which we describe in Sec-
tion 2.7, efficient techniques are available for distribution
function evaluation.

2.6. Computing the Optimal Bundle Price

Given the joint valuation distribution, the expected profit
per consumer as a function of item and bundle prices can
be computed. For notational convenience, here we give
the result for n = 2. Consumers are rational, in that they
choose the option (item 1 only, item 2 only, bundle, or no
purchase) that maximizes their surplus vi − xi. For this
result, we assume that the valuation for the bundle is the
sum of the component valuations vB = v1 + v2, although
this could easily be relaxed to other bundle valuation mod-
els such as those in Venkatesh & Kamakura (2003). Note
that inferring the joint valuation distribution does not re-
quire any assumption on how valuations combine, rather
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this assumption is only used to compute the expected profit
of bundling. We denote the cost of item i as ci and assume
that the bundle cost is the sum of the component costs.

Proposition 3. For joint valuation density function f(·)
and joint valuation distribution function F (·), the expected
profit per consumer obtained when items 1, 2, and the bun-
dle are priced at x1, x2, and xB respectively is

E [profit] = (x1 − c1)(F2(xB − x1)− F (x1, xB − x1))

+ (x2 − c2)(F1(xB − x2)− F (xB − x2, x2))

+ (xB − c1 − c2)

(
1− F1(xB − x2)

− F2(xB − x1) + F (xB − x2, xB − x1)

−
∫ x1

xB−x2

∫ xB−v1

xB−x1

f(v1, v2)dv2dv1

)
.

The proof relies on Lemma 1 and is given in the Appendix.
Similar results, albeit notationally complex, can be ob-
tained for n > 2. The inference procedure from Propo-
sition 2 is used to estimate the valuation distribution func-
tion, which allows the expression in Proposition 3 to be
evaluated. Maximizing the expected profit with respect to
xB yields the optimal bundle price, or maximizing over xB
and the item prices simultaneously yields a complete pric-
ing strategy. The formula in Proposition 3 is not concave in
general, but a local maximum can be found using standard
numerical optimization techniques.

2.7. Distributional Assumptions

The likelihood formulas in (4) and (7) hold for arbitrary
margins Fi(·;θi) and an arbitrary copula model C(·;φ).
To apply these formulas to data requires choosing the dis-
tributional form of the margins and the copula family.

The connection between marginal valuation distributions
and demand models given in Proposition 1 shows that the
margin distribution can naturally be selected by choosing
an appropriate demand model. Many retailers already use
demand models for sales forecasting, and these existing
models could be directly converted to marginal valuation
distributions. For example, two common choices for de-
mand models are the linear demand model and the normal-
cdf demand model. The linear demand model is

p(xi;βi, ηi) = min(1,max(0, βi − ηixi)),

and the corresponding valuation distribution is uniform:

vi ∼ Unif
(
β − 1

η
,
β

η

)
.

When the demand model is the normal distribution function

p(xi;µi, σ
2
i ) = 1− Φ(xi;µi, σ

2
i ),

the corresponding marginal valuation distribution is the
normal distribution:

vi ∼ N (µi, σ
2
i ).

Remark. Additional covariates like competitors’ prices or
the prices of substitutable and complimentary products are
sometimes used in demand modeling, for instance in a
choice model. Seasonality effects are also often handled
using covariates. Models with covariates can also be trans-
formed into valuation distributions using Proposition 1.

There is a large selection of copula models, which differ
primarily in the types of correlation they can express. One
of the most popular copula models, and that which we use
in our simulations and data experiments here, is the Gaus-
sian copula:

C(F1(v1), . . . , Fn(vn);φ) = Φ(F1(v1), . . . , Fn(vn);φ),

where Φ(·;φ) represents the multivariate normal distribu-
tion function with correlation matrix φ. The Gaussian cop-
ula is in essence an extension of the multivariate normal
distribution, in that it extends the multivariate normal cor-
relation structure to arbitrary margins, as opposed to con-
straining the margins to be normally distributed. If a corre-
lation matrix structure is not appropriate to model the de-
pendencies in a particular application, then alternative cop-
ula models are available - see Trivedi & Zimmer (2005).

3. Simulation Studies
We demonstrate the inference procedure using a series of
simulation studies. We first use simulations to show empir-
ically how the estimated parameters converge to their true
values as T grows. We then use a simulated dataset to illus-
trate the importance of including correlations in the model.

We generated purchase data for a pair of items using
uniform marginal valuation distributions and a Gaussian
copula, which for two items is characterized by the correla-
tion coefficient φ. The correlation coefficient φ was taken
from {−0.9,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 0.9}
and the number of transactions T was taken from
{100, 250, 500, 750, 1000, 1500, 2000}. For each com-
bination of φ and T , 500 datasets were generated, for a
total of 31,500 simulated datasets. For each dataset, the
margin parameters vmin and vmax for each of the two
uniform valuation distributions were chosen independently
at random, to allow the simulations to capture a large
range of margin distributions. The parameter vmin was
chosen from a uniform distribution over [−25, 75] and
vmax chosen from a uniform distribution over [100, 200].
For all simulations, the transactions were spread uniformly
across three price points, with the prices of the two items
taken to be 100 for one third of transactions, 75 for one
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Figure 1. Convergence of both (A) margin parameters and (B) the correlation coefficient to their true values as the number of simulated
transactions T is increased. In (A), the lines indicate the first and third quartiles of the margin parameter errors across all simulations with
the same number of transactions T . In (B), each pair of lines shows the first and third quartiles of the estimated correlation coefficient φ̂
across all simulations with the corresponding values of φ and T .
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Figure 3. Change in relative profits from introducing the bundle
at a particular discount relative to the sum of item prices, as es-
timated from the true distribution, the fitted copula model, and a
distribution using the fit margins but assuming independence.

third, and 50 for the remaining third. In each simulation,
the copula defined by the combination of the correlation
coefficient and the margin parameters was used to generate
T sets of valuations for the items. These valuations were
combined with the prices under the rationality assumption
of (1) to produce binary purchase data.

We applied the inference procedure in Proposition 2 to the
transaction data, with the goal of recovering the true, gen-
erating copula model. Figure 1 shows that as the number of
transactions grows, both the margin estimates and the cor-
relation coefficient estimates converge to their true values.
This holds for the full range of possible values of the corre-
lation coefficient. In these simulations, only a few thousand
samples were required to recover the true distribution with
high accuracy, suggesting that these techniques are not lim-
ited to retailers with very large datasets.

To further illustrate the simulation results, we selected at
random a simulated dataset with T = 2000 transactions
and φ = 0.5. We show in Figure 2 the fitted margins for
this particular simulated dataset. The estimated correlation
coefficient, found by maximizing (7), was 0.48. To illus-
trate the potential profitability of bundling, in Figure 3 we
held the item prices at 100 and set the cost per item to the
retailer to a 50% markup, meaning, sales price 50% higher
than the retailer’s cost. We show for a range of bundle dis-
counts the profit relative to the profit obtained in the ab-
sence of a bundle discount. The estimated distribution is
very close to the true distribution, and both reveal that of-
fering a bundle discount of about 12% will increase profits
by about 10%. Using the same estimated margins but as-
suming independence to obtain a joint distribution yields
very different results. This example highlights the impor-
tance of accounting for correlations in valuations when es-
timating the response to bundle discounts.
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4. Data Experiments
We provide further evaluation and illustration of the in-
ference procedure by applying it to actual retail transac-
tion data. We use the publicly available Ta-Feng dataset,
which contains four months of transaction level data from a
Taiwanese warehouse club, totaling about 120,000 transac-
tions and 24,000 items (Hsu et al., 2004). After some data
pre-processing which is described in the Appendix, we se-
lected the three items with the highest support and consid-
ered the four possible bundles that could be obtained from
these items (three pairs and one bundle of three). Through-
out this section we refer to the three items as item 38, item
14, and item 08 - the full EAN-13 for the items is given in
the Appendix. Note that in these experiments the inference
procedure scales to a much larger dataset than those used
in the simulation studies.

As in Section 3, we model the joint valuation distribution
using linear demand models (uniform marginal valuation
distributions) and a Gaussian copula. In Figure 4 we show
the demand models fit by maximizing (4) for each item.
The off-diagonal elements of the correlation matrix φ cor-
responding to pairs 38-14, 38-08, and 14-08 were jointly
estimated as 0.085, 0.133, and 0.172 respectively.

We evaluated the predictive performance of the copula
model using 10-fold cross validation, by fitting the model
to 9 folds of the data and then evaluating the (predictive)
log-likelihood on the remaining fold. This was done sep-
arately for each pair of items (38-14, 38-08, and 14-08)
and for the collection of all three items (38-14-08), and
the results are compared to the model using the same fitted
margins but assuming independence. Figure 5 shows that
for all 10 folds and for all bundles, the copula model had
higher predictive likelihoods than the corresponding inde-
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Figure 5. Copula predictive log-likelihood minus the indepen-
dence model log-likelihood, across 10 folds of cross-validation
for each of the four bundles.

pendence model.

To illustrate the results, we report the relative expected
profit under various bundle scenarios in Figure 6. For these
results we took the item prices as the mode of the price dis-
tribution in the data, and since the item costs are unknown,
we set them to a 35% markup. In a similar way as Fig-
ure 3, Figure 6 shows that introducing a discounted bundle
can increase profits, and that assuming independence can
lead to very different predictions. This further highlights
the importance of including correlations in the valuation
distribution model.

5. Discussion and Conclusions
We used copula modeling in the context of an important
business analytics problem, and in the process have devel-
oped new methodological results on learning a copula dis-
tribution over latent variables. Business analytics is a bud-
ding application area in machine learning, and our work
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Figure 6. Change in relative profits by introducing bundles (A) 38-14, (B) 38-08, (C) 14-08, and (D) 38-14-08 as a function of the level
of bundle discount, estimated from the Ta-Feng dataset. In red is the prediction obtained from the fitted copula model, and in blue is the
prediction obtained using the same fitted margins, but assuming independence.

provides foundational results for inferring consumer valua-
tions. The ability to predict the effect of introducing a bun-
dle at a particular price using only historical sales data is a
major advancement in data-driven pricing, and the copula
model at the core of the inference here is flexible enough
to be useful in real applications. Because the copula allows
for arbitrary margins, if a retailer has already developed de-
mand models for a particular item, the demand model can
be used directly to obtain the marginal valuation distribu-
tion. The likelihood formulas that we derived in this paper
provide a theoretically and computationally sound frame-
work for copula learning over latent valuations.

6. Appendix
Here we give the proof of Proposition 3, and describe the
data pre-processing done with the Ta-Feng dataset.

6.1. Proof of Proposition 3

The profit can be decomposed into that obtained from each
of the purchase options.

E [profit] = (x1 − c1)P(Purchase item 1 only)

+ (x2 − c2)P(Purchase item 2 only)

+ (xB − c1 − c2)P(Purchase the bundle).

The options no purchase, purchasing item 1 only, purchas-
ing item 2 only, and purchasing the bundle give the con-
sumer surplus 0, v1 − x1, v2 − x2, and v1 + v2 − xB re-
spectively. Let us consider the consumers that purchase
only item 1. By the rationality assumption, v1 − x1 ≥ 0,
v1 − x1 ≥ v2 − x2, and v1 − x1 ≥ v1 + v2 − xB . Thus,

P(Purchase item 1 only)

= P ({v1 ≥ x1} ∩ {v2 ≤ xB − x1})
= F2(xB − x1)− F (x1, xB − x1),

by Lemma 1. A similar derivation applies to item 2. For
the bundle,

P(Purchase the bundle)

= P ({v1 ≥ xB − x2} ∩ {v2 ≥ xB − x1}
∩{v1 + v2 ≥ xB})

= P ({v1 ≥ xB − x2} ∩ {v2 ≥ xB − x1})
− P ({v1 ≥ xB − x2} ∩ {v2 ≥ xB − x1}

∩{v1 + v2 ≤ xB})
= 1− F1(xB − x2)− F2(xB − x1)

+ F (xB − x2, xB − x1)

−
∫ x1

xB−x2

∫ xB−v1

xB−x1

f(v1, v2)dv2dv1,

using Lemma 1.

6.2. Data Pre-processing

Each entry in the Ta-Feng dataset corresponds to the sale
of a single item within a transaction. To form the complete
transaction of (potentially) multiple items, we grouped all
sales that occurred on the same day with the same user ID.
For simplicity, we assumed that for each day there was a
single price for each item. If there were multiple prices at
which an item was sold on a given day, we took that day’s
price as the median of the observed prices. If an item was
not sold on a particular day, then we took that day’s price as
the price of the preceding day. To further smooth the prices,
we allowed only prices that covered at least 5% of transac-
tions, and any price that did not meet that support threshold
was rounded to the nearest price that did. After removing
items that did not have at least three prices in the data,
the three items with the highest support were (EAN-13)
4714981010038, 4711271000014, and 4710583996008. In
Section 4 we refer to these items by their last two digits.
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