
Learning Complex Neural Network Policies with Trajectory Optimization

A. Simulation and Cost Details
The swimmer consisted of 3 links, with 10 state dimen-
sions corresponding to joint angles, joint angular veloci-
ties, and the position, angle, velocity, and angular velocity
of the head, with two action dimensions corresponding to
the torques between the joints. The simulation applied drag
on each link of the swimmer to roughly simulate a fluid, al-
lowing it to propel itself. The simulation step was set to
0.05s, and the reward weights were wu = 0.0001, wv = 1,
and wh = 0, with the desired velocity was v?x = 1m/s.

The bipedal walker consisted of seven links: a torso and
three links for each leg, for a total of 18 dimensions, includ-
ing joint angles, the global position and orientation of the
torso, and the corresponding velocities. The action space
had six dimensions, corresponding to each of the joints.
MuJoCo was used to simulate soft, differentiable contacts
to allow gradient-based optimization to proceed even in the
presence of contact forces. The simulation step was set
to 0.01s, and the reward weights for all walker tasks were
wu = 0.0001, wv = 1, and wh = 10, with desired velocity
and height v?x = 2.1m/s and p?y = 1.1m.

B. Sample-Based Gradients
As discussed in Section 3.1, the Laplace approximation
may not accurately capture the structure of πθ(ut|xt) in the
entire region where q(xt) is large, and since the policy is
trained by sampling states from q(xt), policy optimization
optimizes a different objective. This can lead to noncon-
vergence when the policy is highly nonlinear. To reconcile
this problem, we can approximate the policy terms in the
objective with M random samples xti, drawn from q(xt),
rather than by using a linearization of the policy:

L(q) ≈
T∑
t=1

`(x̂t, ût) +
1

2
tr (Σt`xu,xut)−

1

2
log |At|+

λt
2M

M∑
i=1

(uti − µπt (xti))
TA−1t (uti − µπt (xti))+

λt
2

tr
(
A−1t Σπt

)
+
λt
2

log |At| ,

where the actions are given by uti = Ktxti + ût.
Note that the samples xti depend on x̂t, according to
xti = x̂t + LT

t sti, where sti is a sample from a zero-mean
spherical Gaussian, and Lt is the upper triangular Cholesky
decomposition of St.4 As before, we differentiate with re-
spect to ût, substituting Qu,ut and Qut as needed:

Lut = Qut + λtA
−1
t µ̂πt

Lu,ut = Qu,ut + λtA
−1
t ,

4Keeping the same samples sti across iterations reduces vari-
ance and can greatly improve convergence.

where µ̂πt = 1
M

∑M
i=1(uti − µπt (xti)) is the average dif-

ference between the linear feedback and the policy. This
yields the following correction and feedback terms:

kt = −
(
Qu,ut + λtA

−1
t

)−1 (
Qut + λtA

−1
t µ̂πt

)
Kt = −

(
Qu,ut + λtA

−1
t

)−1 (
Qu,xt − λtA−1t µ̂πxt

)
,

where µ̂πxt = 1
M

∑M
i=1 µ

π
xt(xti) is the average policy gra-

dient. So far, the change to the mean is identical to sim-
ply averaging the policy values and policy gradients over
all the samples. In fact, a reasonable approximation can
be obtained by doing just that, and substituting the sample
averages directly into the equations in Section 3.1. This
is the approximation we use in our experiments, as it is
slightly faster and does not appear to significantly degrade
the results. However, the true gradients with respect to At

are different. Below, we differentiate the objection with
respect to At and K̂t as before, where we use K̂t to dis-
tinguish the covariance term from the feedback in the first
dynamic programming pass, which is no longer identical.
The derivatives with respect to At and K̂t are

LAt =
1

2
Qu,ut +

λt − 1

2
A−1t −

λt
2
A−1t MA−1t

LK̂t = Qu,utK̂tSt +Qu,xtSt + λtA
−1
t (K̂tŜt −Ct),

where M = Σπt +
∑M
i=1(uti − µπt (xti))(uti − µπt (xti)),

Ŝt = 1
M

∑M
i=1 xtix

T
ti, and Ct = 1

M

∑M
i=1 µ

π
t (xti)x

T
ti,

where we simplified using the assumption that x̂t and ût
are zero. We again solve for At by solving the CARE in
Equation 8. To solve for K̂t, we rearrange the terms to get

K̂tŜtS
−1
t +

1

λt
AtQu,utK̂t = CtS

−1
t −

1

λt
AtQu,xt.

This equation is linear in K̂t, but requires solving a sparse
linear system with dimensionality equal to the number of
entries in K̂t, which increases the computational cost.

Differentiating with respect to St, we get:

LSt =
1

2

[
Qx,xt + KT

t Qu,xt +Qx,utKt + KT
t Qu,utKt

+choldiff(Dt) + choldiff(Dt)
T
]

where Dt=
λt
M

∑M
i=1(K̂t−µπxt(xti))TA−1t (uti−µπt (xti))s

T
ti

and choldiff(. . .) indicates the differentiation of the
Cholesky decomposition, for example using the method
described by Giles in “An extended collection of matrix
derivative results for forward and reverse mode algorithmic
differentiation” (2008). While this will provide us with the
correct gradient, choldiff(Dt) + choldiff(Dt)

T is not guar-
anteed to be positive definite. In this case, we found it use-
ful to regularize by interpolating the gradient with the one
obtained from the Laplace approximation.

