
Condensed Filter Tree for Cost-Sensitive Multi-Label Classification

A. Proof of Theorem 1

Theorem 1. Under the proper ordering and K-
classifier tricks, for each x and the multi-label clas-
sifier h formed by chaining K binary classifiers
(h1, ..., hK) as in the prediction procedure of Filter
Tree, the regret rg(h,P) is

rg(h,P)≤
∑

t∈〈r,y∗〉

Jhk(x,t)6=y[k]Krg

(
hk(x,t),FTt(P,hk+1,...,hK)

)
,

where k denotes the layer that t is on, and
FTt (P, hk+1, ..., hK) represents the procedure that gen-
erates weighted examples (x, b, w) to train the node at
index t based on sampling y from P|x and considering
the predictions of classifiers in the lower layers.

Proof. The proof is similar to the one in (Beygelzimer
et al., 2008), which is based on defining the overall-
regret of any subtree. The key change in our proof is
to define the path-regret of any subtree to be the total
regret of the nodes on the ideal path of the subtree.
The induction step follows similarly from the proof
in (Beygelzimer et al., 2008) by considering two cases:
one for the ideal prediction to be in the left subtree and
one for the ideal prediction to be in the right. Then an
induction from layer K to the root proves the theorem.

For each node t on layer k, hk makes a weighted
binary classification decision of 0 or 1, which di-
rects the prediction procedure to move to either the
node t0 or t1. Without loss of generality, assume
hk(x, t) = 1. We denote t̂ as the prediction (leaf)
on x when starting at node t. For each leaf node
ỹ, let C̄(ỹ) ≡ Ey∼P|xC(y, ỹ). Then, the node regret

rg(t) is simply C̄(t̂1)−mini∈{0,1} C̄(t̂i). Obviously,

rg(t) ≥ C̄(t̂1)− C̄(t̂0) for all node t.

In addition to the regret of nodes, we also define the
regret of the subtree Tt rooted at node t. The re-
gret of the subtree Tt is as defined as the regret of the
predicted path (vector) t̂ within the subtree Tt, that
is, rg(Tt) = C̄(t̂)− C̄(t∗) , where t∗ denotes the op-
timal prediction (leaf node) in the subtree Tt. By this
definition, rg(h,P) can be treated as rg(Tr).

We now prove by induction from layer K to the root.
The induction hypothesis is that

rg(Tt) ≤
∑

t′∈〈t,t∗〉

Jhk(x, t′) 6= y[k]Krg(t′),

where k is the corresponding layer of each node t′.
The hypothesis states that the regret of the subtree
is bounded by the sum of the regrets for the wrongly
predicted nodes from t to the ideal prediction t∗. The
base case is the reduction tree with one single in-
ternal node t and two leaf nodes, which is a cost-
sensitive binary classification with rg(Tt) = rg(t) triv-
ially. If h1 predicts correctly, then rg(Tt) = 0. Other-
wise rg(Tt) = rg(t). Then the induction hypothesis is
satisfied.

For the inductive step, for node t on layer k, assume

R0 ≡ rg(Tt0)≤
∑

t′∈〈t0,t∗0〉

Jhk(x, t′) 6= y[k]Krg(t′),

and

R1 ≡ rg(Tt1)≤
∑

t′∈〈t1,t∗1〉

Jhk(x, t′) 6= y[k]Krg(t′).

The optimal prediction t∗ is either on the right sub-
tree T1 or the left subtree T0. For the first case, it
implies t∗ = t∗1 and y[k] = hk(x, t) = 1, then

rg(Tt) = C̄(t̂1)− C̄(t∗)
= C̄(t̂1)− C̄(t∗1)

= R1 ≤
∑

t′∈〈t1,t∗1〉

Jhk(x, t′) 6= y[k]Krg(t′)

=
∑

t′∈〈t,t∗〉

Jhk(x, t′) 6= y[k]Krg(t′).

For the second case, it implies t∗ = t∗0 and y[k] 6=
hk(x, t) = 1, then

rg(Tt) = C̄(t̂1)− C̄(t∗)
= C̄(t̂1)− C̄(t∗0)
= C̄(t̂1)− C̄(t̂0) + C̄(t̂0)− C̄(t∗0)
≤ rg(t) + R0

≤ rg(t) +
∑

t′∈〈t0,t∗0〉

Jhk(x, t′) 6= y[k]Krg(t′)

=
∑

t′∈〈t,t∗〉

Jhk(x, t′) 6= y[k]Krg(t′).

Then we complete the induction.

B. Datasets

Here we summarize the basic statistics of the used
datasets in Table 1.
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Table 1. The properties of each dataset
Dataset # Instances # Labels (K)
CAL500 502 174
emotions 593 6
enron 1702 53
imdb 86290 28
medical 662 45
scene 2407 6
slash 3279 22
tmc 28596 22
yeast 2389 144
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