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Abstract
The performance of machine learning methods is
heavily dependent on the choice of data represen-
tation. In real world applications such as scene
recognition problems, the widely used low-level
input features can fail to explain the high-level
semantic label concepts. In this work, we ad-
dress this problem by proposing a novel patch-
based latent variable model to integrate latent
contextual representation learning and classifi-
cation model training in one joint optimization
framework. Within this framework, the latent
layer of variables bridge the gap between inputs
and outputs by providing discriminative expla-
nations for the semantic output labels, while be-
ing predictable from the low-level input features.
Experiments conducted on standard scene recog-
nition tasks demonstrate the efficacy of the pro-
posed approach, comparing to the state-of-the-art
scene recognition methods.

1. Introduction

The success of machine learning algorithms generally de-
pends on the choice of data representation, since a good
representation can disentangle the underlying explanatory
factors behind the observed data and facilitate classifica-
tion model learning (Bengio et al., 2012). Though learning
from low-level features extracted from raw inputs produces
good performance in many classification tasks with simple
label concepts, it is difficult to learn complex semantic la-
bel concepts, such as scene labels, directly from low-level
features. A scene label typically expresses a semantic con-
cept that can be described by presence patterns of a set of
high-level objects. For example, as shown in Figure 1, a
“street” scene may consist of objects such astree, road,
buildingandsky, and a “coast” scene may consist of objects
such asship, sea, sky, andmountain. Recognition of such
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high-level semantic concepts often requires human ingenu-
ity and high-level statistical domain knowledge, neither of
which can be captured in low-level features. Thus a crit-
ical challenge for automatic scene recognition lies in the
semantic gap between the low-level image features, such
as the local gradient-based SIFT and HOG features (Lowe,
2004; Dalal & Triggs, 2005), and the high-level semantic
scene concepts.

In this paper, we address the challenge of semantic scene
classification by learning a latent semantic representation
of the input data. Specifically, we propose to use a patch-
based latent layer of variables to model the intrinsic con-
textual structure of the semantic output concepts, while en-
suring them to be predictable from the original low-level
input features. The latent variables can be viewed as an in-
termediate representation between the low-level inputs and
the high-level outputs. Moreover, we encode the spatial in-
formation of the images by using a Laplacian regularizer
over the latent representation vectors of the patches within
each image, which enforces a spatially smooth change of
the semantic contents. We formulate the learning problem
as a joint optimization problem over both the latent rep-
resentation variables and the prediction model parameters,
which simultaneously minimizes the regression losses from
the inputs to the latent representation and the prediction
losses from the latent representation to the output labels.
We expect such a model can automatically capture intrin-
sic explanations of the output semantic concepts, and hence
improve the overall prediction performance from the low-
level inputs to the high-level outputs. Our experimental re-
sults on standard scene classification datasets show that the
proposed approach outperforms a few baseline and state-
of-the-art scene classification methods.

2. Related Work

For image analysis and scene classification, numerous data
representations built upon low-level features have been in-
troduced in the recent decade. The widely employed bag-
of-word model (Sivic et al., 2005) uses a histogram repre-
sentation which is efficient to compute from the low-level
input features, but lacks contextual information for com-
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Figure 1.Scene is a semantic concept that consists of different objects. Top rowpresents the scene images,open country, street, and
coast. Bottom row presents the regions occupied by different object categories in each corresponding image.

plex semantic scene recognition. Contextual information
can be interpreted as object interactions or co-occurrences.
Many works exploit such interactions between objects to
learn intermediate representations of the data for improv-
ing recognition performance (Li & Guo, 2012; Blaschko
& Lampert, 2009; Choi et al., 2010; Divvala et al., 2009;
Fidler et al., 2009; Sadeghi & Farhadi, 2011). Most of
these works model pairwise object interactions. For exam-
ple, Sadeghi & Farhadi (2011) proposed a semantic con-
cept,visual phases(objects performing an action or a pair
of objects interacting with each other), to assist recogni-
tion tasks. In addition, the probabilistic graphical model
proposed in (Li & Guo, 2012) integrates a chain struc-
ture to capture the co-occurrence of objects. Moreover, the
work in (Li et al., 2012) models the visual appearance of
a group of objects to capture high-order contextual interac-
tions. Kumar & Koller (2010) presented a two-layer model
based on bottom-up over-segmentation algorithms, where
the first layer assigns each pixel to a unique connected re-
gion and the second layer assigns each region to a unique
label. Kwitt et al. (2012) proposed a spatial pyramid match-
ing architecture to combine the mid-level theme represen-
tation with the spatial pyramid structure for scene recogni-
tion. This approach however relies on predefined meaning-
ful semantic themes and requires weakly supervision such
as the presence knowledge of the semantic themes. Another
group of works explore contextual information by identi-
fying intermediate representations using topic models. For
example, Wang & Grimson (2007) proposed a spatial latent
Dirichlet allocation model which clusters co-occurring and
spatially neighboring visual words into the same topic. He
& Zemel (2008) presented a hybrid framework for image
labeling, which combines a generative topic model with
discriminative prediction models. Most recently, a state-of-
the-art work in (Niu et al., 2012) proposes a discrimina-
tive latent Dirichlet allocation model to capture two types
of contextual information, global spatial layout and visual
coherence in uniform local regions, for scene recognition.

However, these models mostly have high requirement for
object or scene component identification, and involve com-
plicated training processes.

From the perspective of learning intermediate representa-
tions with latent variable layers, there are some related
works on learning layer-wise models. Hinton et al. (2006)
proposed a fast learning algorithm for multi-layer genera-
tive deep belief nets. Lee et al. (2009) presented a genera-
tive convolutional deep belief network, which learns useful
high-level visual features, such as object parts, from unla-
beled object and natural scene images. Jarrett et al. (2009)
investigated a two-stage system with random nonlinear fil-
ters for feature extraction. These models however are gen-
erative models and are not optimized to capture latent se-
mantic representations that are most discriminative for the
target labels. In addition to these, Bergamo et al. (2011)
proposed a compact code learning method for object cate-
gorization, which uses a set of latent binary indicator vari-
ables as the intermediate representation of images. How-
ever, they identify latent concepts from the whole image
instead of local patches, without considering the spatial dis-
tribution of the latent concepts. Moreover, the latent vari-
ables are represented implicitly using indicator functions
in their model, which eliminates the capacity of encoding
prior knowledges over the latent representations.

Different from these methods, the proposed approach in
this paper employs a patch-based latent layer of variables
to model the contextual structure of the semantic output
concepts. The proposed model has a larger modeling ca-
pacity than previous contextual information based meth-
ods since the high-level visual concepts in our model can
be any useful visual entities such as objects, object parts,
their composites and co-occurrences, and the spatial infor-
mation between the patches can be reserved in the latent
representation by enforcing spatial Laplacian regularizers.
Patch-based learning has also been exploited in previous
work (Ranzato et al., 2006) for unsupervised image feature
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extraction based on an autoencoder model. Their method
however is an unsupervised encoding and decoding process
from patch to patch.

3. Proposed Approach

In this section, we present a patch-based latent semantic
representation learning model for scene recognition. We
first formulate the problem as a joint minimization problem
over the latent variables and the prediction model parame-
ters, while encoding the spatial information across patches
within each image with a Laplacian regularizer. Then we
develop an efficient alternating optimization procedure to
solve it. Below we use1 to denote any column vector with
all 1 values assuming its size can be determined from con-
text, and useIs to denote an identity matrix with sizes.

3.1. Latent Variable Model

Scene recognition is a multi-class prediction problem.
Givent labeled images{(xi,yi)}ti=1

, wherexi denotes the
i-th image andyi ∈ {−1,+1}k is its scene label vector,
we aim to learn a prediction model fromxi to yi. We first
partition each input image into a bag ofn non-overlapping
patches, where each patch forms a low-level input feature
vector with lengthd. The observed features from then
patches of thei-th image can be represented as a matrix
Xi ∈ R

n×d, whosej-th row,Xi
j , contains the input vector

from its j-th patch. The scene labels are very semantic and
abstractive concepts, and they are difficult to be predicted
directly from the low-level input features. To bridge this
gap, we first learn a latent contextual representation vector
Zi
j ∈ {0, 1}1×m for eachj-th patch of thei-th image and

assume each entry ofZi
j indicates the existence of a latent

high-level visual entity. We then learn the output label con-
cept of an image based on the summary of the high-level
latent visual entities inferred from its local patches. The
m latent visual entities can be any individual or compos-
ite visual concepts from the set of images, but they need to
be both directly predictable from the low-level input fea-
tures and discriminative for the target semantic scene la-
bels. Under this assumption, we formulate the scene label
prediction problem with latent representation variables as
the following unified optimization over two loss functions

min
{Zi},Θ,W

t
∑

i=1





αi

∑n
j=1

L
(

Zi
j , f(X

i
j ; Θ)

)

+V
(

yi, g(
∑

jZ
i
j ;W )

)



 (1)

+ γfR(Θ) + γgR(W ) + γz
∑

iRz(Z
i)

subject to Zi ∈ {0, 1}n×m for i = 1, . . . , t;

wheref(·) is the function that predicts the latent visual en-
tities from the input features of each patch andg(·) is the
function that predicts the output labels from the latent vi-

Figure 2.Illustration of the prediction process of the proposed la-
tent variable model.

sual entities contained in the whole image;Θ andW de-
note the model parameters of these two prediction func-
tions respectively;L(·) andV(·) are loss functions;R(·)
andRz(·) are regularization functions. The prediction pro-
cess encoded in this latent variable model is intuitively
demonstrated in Figure 2.

To produce a concrete optimization problem, we consider
simple least square loss functions forL(·) and V(·), a
Frobenius-norm regularization functionR(·) = ‖ · ‖2F , and
the following linear prediction functions

f(Xi
j ; Θ,b) = Xi

jΘ
⊤ + b⊤, (2)

g(
∑

jZ
i
j ;W,q) =

∑

jZ
i
jW + q⊤. (3)

Moreover, since the integer constraints induce hard opti-
mization problems, we relax the integer constraints over
Zi into inequality constraintsZi ≥ 0 while enforcing a
L1-norm regularization functionRz overZi to promote its
sparsity. The optimization problem we obtained is

min
{Zi},Θ,b,W,q

t
∑

i=1





αi‖Zi −XiΘ⊤ − 1b⊤‖2F
+‖yi⊤ − 1⊤ZiW − q⊤‖22



(4)

+ γf‖Θ‖2F + γg‖W‖2F + γz
∑

i‖Zi‖1
subject to Zi ≥ 0, for i = 1, . . . , t;

whereΘ ∈ R
m×d andb ∈ R

m are the model param-
eters of the linear functionf(·); W ∈ R

m×k and q ∈
R

k are the model parameters of the linear functiong(·);
‖ · ‖F , ‖ · ‖2, ‖ · ‖1 denote Frobenius norm, Euclidean
norm and entrywise L1-norm respectively. It is obvious that
our proposed model can capture bothlocal information,
through the patches, andglobal information, through the
summarization of the latent visual entity representationsin
the whole image, for target semantic label prediction.
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3.2. Laplacian Regularization

The latent representation variables in our proposed model
encode the high-level visual concepts that are directly pre-
dictable from the input features while being useful for iden-
tifying the target semantic scene labels. For each patch, its
latent representation vector can be viewed as its mid-level
prediction outputs. To better identify these mid-level out-
puts, we next propose to enforce a Laplacian regulariza-
tion term over each set of latent vectorsZi for eachi-th
image. Laplacian regularization has been typically used in
semi-supervised learning scenarios to enforce the smooth-
ness of the prediction values on unlabeled instances with
respect to the intrinsic affinity structure of the input data
(Belkin & Niyogi, 2002; Belkin et al., 2005). We propose
to exploit this output regularization principle to improve
the mid-level latent output learning by exploiting the affin-
ity structures of the images.

In particular, we consider a natural affinity structure for
each image, i.e., the spatial adjacency structure. For thei-
th imageXi, we construct a spatial adjacency matrixAi ∈
{0, 1}n×n over all then patches, such thatAi

ab = 1 only if
thea-th patch and theb-th patch are spatial neighbors in the
i-th image. The Laplacian matrix based on this spatial ad-
jacency matrix can be computed asLi = diag(Ai1)−Ai.
With the spatial Laplacian matrices constructed for all im-
ages, the Laplacian regularized optimization problem is ob-
tained as following

min
{Zi},Θ,b,W,q

t
∑

i=1





αi‖Zi −XiΘ⊤ − 1b⊤‖2F
+‖yi⊤ − 1⊤ZiW − q⊤‖22



(5)

+ γf‖Θ‖2F + γg‖W‖2F + γz
∑

i‖Zi‖1
+µ

∑

itr(Z
i⊤LiZi)

subject to Zi ≥ 0, for i = 1, . . . , t

3.3. Optimization Algorithm

The joint minimization problem in (5) is a non-convex op-
timization problem. We develop an iterative optimization
algorithm to solve it by alternatively optimizing the model
parameters and the latent variable values. In each iteration,
given fixed latent variables{Zi}, the model parameters for
the prediction functionsf(·) andg(·) can be trained inde-
pendently with closed-form solutions.

Proposition 1 Given fixed {Zi}ti=1
, the minimization

problem over{Θ,b} in (5) has the following closed-form
solution:

Θ =
(
∑

iαiẐi
⊤
X̂i

)(

γfId +
∑

iαiX̂i
⊤
X̂i

)−1
, (6)

b = Z̄⊤ −ΘX̄⊤, (7)

where

X̄ =
1

n
∑

i αi

(
∑

iαi1
⊤Xi), X̂i = Xi − 1X̄, (8)

Z̄ =
1

n
∑

i αi

(
∑

iαi1
⊤Zi), Ẑi = Zi − 1Z̄. (9)

Proposition 2 Given fixed {Zi}ti=1
, the minimization

problem over{W,q} in (5) has the following closed-form
solution:

W = (M⊤HM + γgIm)−1M⊤HY, (10)

q =
1

t
(Y −MW )⊤1, (11)

whereH = It − 1

t
11⊤, Y = [y1,y2, · · · ,yt]⊤, andM =

[1⊤Z1;1⊤Z2; · · · ;1⊤Zt].

Proposition 1 and Proposition 2 can be proved by simply
setting the partial derivatives of the optimization objective
function regarding each of the model parameters to zeros.

Given fixed prediction model parameters{Θ,b,W,q}, the
optimization problem over the latent variables{Zi} can be
decomposed into a set of independent sub-problems, one
for eachZi matrix, which enables the capacity of exploit-
ing parallel computation resources for large scale compu-
tation. Specifically, the optimization problem over each la-
tent Zi matrix is a quadratic minimization problem with
non-negativity constraints:

min
Zi

ℓ(Zi) subject to Zi ≥ 0 (12)

where

ℓ(Zi) = αi‖Zi −XiΘ⊤ − 1b⊤‖2F
+ ‖yi⊤ − 1⊤ZiW − q⊤‖22
+ γz1

⊤Zi1+ µtr(Zi⊤LiZi). (13)

However standard second-order quadratic solvers are very
inefficient for solving this minimization problem and have
scalability problem for large images, since eachZi is typ-
ically large and the Hessian matrix will be quadratically
large. We propose to use an efficient and scalable first-order
projected gradient descent algorithm to conduct minimiza-
tion, as shown in Algorithm 1. In this algorithm, for each
iteration, we first compute the gradient matrix from the ob-
jective function

∇ℓ(Zi) = 2EZiWW⊤ + 2αiZ
i − 2αi(X

iΘ⊤ + 1b⊤)

+ 21(q⊤ − yi⊤)W⊤ + γz + 2µLiZi (14)

whereE is a square matrix of sizen with all 1 values. Then
we take a gradient update overZi with stepsize1/ρ and
project it onto the non-negativity constraints. We useρ =
2αi+2n‖WW⊤‖F +2µ

√
m‖Li‖F , which guarantees the

convergence of the projected gradient descent procedure.



Latent Semantic Representation Learning

Algorithm 1 Projected gradient descent algorithm
Procedure:

while not converged
1. compute the gradient matrix∇ℓ(Zi) at the

current pointZi using Eq. (14).
2. updateZi = max(0, Zi − 1

ρ
∇ℓ(Zi)).

end while

Lemma 1 Given the continuously differentiable function
ℓ(·) in (13), andρ = 2αi +2n‖WW⊤‖F +2µ

√
m‖Li‖F .

For anyL ≥ ρ, let

QL(A,B) = ℓ(B) + 〈A−B,∇ℓ(B)〉+ L

2
‖A−B‖2F .

(15)

Then we haveℓ(A) ≤ QL(A,B) for all A,B ∈ R
n×m.

Proof: It is easy to check thatρ = 2αi + 2n‖WW⊤‖F +
2µ

√
m‖Li‖F is a Lipschitz constant of∇ℓ(·), such that

‖∇ℓ(A)−∇ℓ(B)‖F ≤ ρ‖A−B‖F , ∀A,B ∈ R
n×m

Then following (Beck & Teboulle, 2009, Lemma 2.1), we
can draw the conclusion of this lemma.�

Let pρ(Zi) = argminA≥0 Qρ(A,Z
i). It has a closed-form

solution

pρ(Z
i) = max(0, Zi − 1

ρ
∇ℓ(Zi)). (16)

Following Lemma 1, we have

ℓ(pρ(Z
i)) ≤ Q(pρ(Z

i), Zi) ≤ Q(Zi, Zi) = ℓ(Zi) (17)

Thus the projected gradient descent steps in Algorithm 1 is
guaranteed to continuously improve the convex objective
function (13) and reach the optimal solution.

3.4. Testing

With the trained model, given a new test image, we first col-
lectns patches from it and represent them as ans×d matrix
Xs. Then, the trained prediction model can be applied by
settingZs = XsΘ⊤ + 1b

⊤ andys = 1⊤ZsW + q⊤ se-
quentially. The final prediction of the scene-level category
y for this test image is

y = argmax
r∈{1,··· ,k}

ys(r). (18)

4. Experimental Results

We evaluated the proposed method on 3 standard scene
datasets: MIT LabelMe Urban and Natural Scene (La-
belMe) (Oliva & Torralba, 2001), 15 Natural Scene dataset

(Lazebnik et al., 2006) (Scene 15) and UIUC Sports (Li &
Fei-Fei, 2007). The LabelMe dataset contains 2694 color
images across 8 scene categories. The Scene 15 dataset
contains 15 scene classes, with200 ∼ 400 images per
class. The UIUC Sports dataset has 8 complex sports scene
classes and each class has around800 ∼ 2000 images. In
all experiments, we randomly selected 80 images per cate-
gory for training and used the rest for testing for all meth-
ods except the convolutional neural networks which need
more training data. All results reported in this section are
averages over 10 runs, with different random selections of
training and testing images.

In each experiment, we compared the proposed spatial reg-
ularized latent semantic representation learning method,
denoted asSR-LSR, with its variantLSRthat drops the spa-
tial Laplacian regularizers by settingµ = 0, and eight other
related methods for scene classification:

(1) Bag-of-word based SVM (SVM), which is a base-
line method that trains SVM classifiers with the
dictionary-based bag-of-word model.

(2) Neural Network with a single hidden layer (1-NN).
(3) Neural Network with two hidden layers (2-NN).
(4) Deep Belief Net (DBN)(Hinton & Salakhutdinov,

2006) with 3 hidden layers.
(5) Convolutional Neural Network with three feature

stages (CNN-L3)(LeCun et al., 1998).
(6) Convolutional Neural Network with two feature stages

(CNN-L2).
(7) Chain Model, which is the probabilistic graphical

model with latent object chain structure for scene
recognition (Li & Guo, 2012).

(8) CA-TM, which is the recent discriminative latent
Dirichlet allocation model from (Niu et al., 2012).

For the proposed approach, we set the number of latent
variables, i.e., them value in our model, same as the num-
ber of latent units in each hidden layer of the 1-NN, 2-
NN and DBN methods. Without special specification, the
m value we used in the experiments is 20. For CNN-L3,
we used the same model setting as the LeNet-5 in (LeCun
et al., 1998). CNN-L2 has the same setting as CNN-L3
except we dropped the third feature stage (LeCun et al.,
2010). Moreover, we used much more training data for
CNN-L3 and CNN-L2 to get reasonable results. Specifi-
cally, 1600, 6400 and 3000 training images are used on La-
belMe, UIUC Sports and Scene 15 respectively.

In each experiment, we used 5-fold cross-validation tech-
nique to select the trade-off parameters for all methods.
For the proposed method, we conducted parameter selec-
tion for the trade-off parametersγg and γz from the set
[0.005, 0.05, 0.1, 0.5, 1, 5], and performed selection forµ
from the set[0.1, 0.5, 1, 5, 10], while settingγf = 0.5 and



Latent Semantic Representation Learning

Table 1.Classification results on theLabelMedataset. Each column contains the average classification accuracies of acomparison
method on all scene categories. The first eight rows contain results over individual categories and the last row contains their averages.
The bold and italic numbers highlight the best and the second best results respectively on each category.

Methods SVM 1-NN 2-NN DBN CNN-L3 CNN-L2 Chain Model CA-TM LSR SR-LSR
coast 0.625 0.446 0.532 0.971 0.681 0.747 0.685 0.890 0.882 0.916
forest 0.844 0.766 0.786 0.980 0.610 0.875 0.880 0.950 0.912 0.950
highway 0.633 0.678 0.667 0.239 0.501 0.729 0.431 0.840 0.911 0.910
insidecity 0.720 0.623 0.746 0.925 0.915 0.908 0.662 0.920 0.948 0.950
mountain 0.572 0.429 0.473 0.446 0.497 0.503 0.499 0.810 0.881 0.886
opencountry 0.355 0.361 0.442 0.000 0.387 0.511 0.370 0.760 0.860 0.889
street 0.588 0.665 0.552 0.774 0.563 0.648 0.691 0.860 0.897 0.905
tallbuilding 0.808 0.544 0.511 0.431 0.373 0.211 0.579 0.930 0.708 0.797
Average 0.601 0.544 0.575 0.578 0.547 0.682 0.636 0.870 0.884 0.898

Table 2.Classification results on theUIUC Sportsdataset. Each column contains the accuracy results of one comparison method across
all class categories. The first eight rows contain the classification accuracies over eight scene categories and the bottom row contains
their averages. The bold and italic numbers highlight the best and the second best results respectively on each category.

Methods SVM 1-NN 2-NN DBN CNN-L3 CNN-L2 Chain Model CA-TM LSR SR-LSR
badminton 0.947 0.728 0.474 1.000 0.677 0.810 0.985 0.940 0.939 0.938
bocce 0.822 0.585 0.678 0.966 0.411 0.746 0.880 0.490 0.963 0.885
croquet 0.649 0.597 0.035 0.000 0.689 0.641 0.634 0.740 0.749 0.793
polo 0.323 0.329 0.439 0.000 0.472 0.713 0.698 0.690 0.703 0.746
rockclimbing 0.337 0.446 0.446 0.010 0.230 0.484 0.441 0.940 0.429 0.641
rowing 0.776 0.688 0.618 0.229 0.307 0.538 0.779 0.750 0.829 0.920
sailing 0.734 0.642 0.633 0.716 0.770 0.505 0.891 0.830 0.917 0.899
snowboarding 0.564 0.427 0.482 0.018 0.356 0.243 0.679 0.710 0.682 0.850
Average 0.642 0.553 0.510 0.373 0.417 0.562 0.756 0.780 0.794 0.839

all {αi} as 1. We treated each image as a bag of16 × 16
patches and extracted a HOG feature vector with length 72
(Dalal & Triggs, 2005) from each patch. We further nor-
malized each HOG vector to have unit L2-norm. For the
baseline bag-of-word model, we used a dictionary with 500
visual words (HOG vectors). But for CNN-L3 and CNN-
L2, we used raw image data as inputs (LeCun et al., 2010).

4.1. Scene Classification Results

We evaluated the performance of the proposed method and
the other comparison methods in terms of test classification
accuracy. The average results over the three scene datasets,
LabelMe, UIUC SportsandScene 15, are reported in Ta-
ble 1, Table 2, Table 3 and Figure 3 respectively. From Ta-
ble 1 we can see that our proposedSR-LSRmethod and
its variantLSRhave superior performance on theLabelMe
dataset, comparing to the other eight methods. Among the
eight comparison methods, the neural network methods,
1-NN and 2-NN, do not have advantages over the base-
line SVM method. TheDBN method which usually re-
quires a large amount of data for robust deep learning (Cire-

san et al., 2012), produces the best results on two cate-
gories, but has detection failures on another category since
our training set is small. Though more training data has
been used forCNN-L3andCNN-L2, their performance is
mediocre among all the other comparison methods. More-
over,CNN-L2demonstrates better performance thanCNN-
L3. The Chain Modeland theCA-TM are both based on
probabilistic graphical models.Chain Modeldoes not show
any clear advantage over the baseline methods. But the
state-of-the-art workCA-TMclearly outperforms the other
seven comparison methods on most categories. Neverthe-
less, the proposedSR-LSRand its variantLSRoutperform
CA-TM and all the other comparison methods on five out
of the total eight categories, andSR-LSRachieves the best
overall accuracy result averaged over the eight categories.
With the spatial Laplacian regularization,SR-LSRoutper-
formsLSRon almost all categories, and the improvements
are significant on many categories includingcoast, forest,
opencountryandtallbuilding.

Similar comparison results are observed in Table 2 on the
UIUC Sportdataset with complex sport scene classes. The
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Table 3.Average classification results on the Scene 15 dataset.

Methods SVM 1-NN 2-NN DBN CNN-L3 CNN-L2 Chain Model CA-TM LSR SR-LSR
Accuracy 0.745 0.551 0.680 0.693 0.411 0.763 0.789 0.825 0.847 0.857
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Figure 3.The confusion matrices of the prediction results produced by the proposedSR-LSR(with spatial regularization) method and its
variantLSR(without spatial regularization) respectively on the Scene 15 dataset.

neural network methods1-NN and2-NN again have infe-
rior performance than the SVM baseline.DBN though pro-
duces best results on two categories, it fails to detectcro-
quetandpoloand has very poor overall performance. With
more training data,CNN-L3andCNN-L2produce reason-
able results across categories. But they are outperformed by
a few other comparison methods. These suggest the deep
architecture learning models, which usually require a huge
amount of training instances, are not appropriate options
for the standard scene classification data we have here. The
probabilistic graphical model based methods,Chain Model
andCA-TM, demonstrate good performance on this dataset
which suggests contextual information (encoded by inter-
mediate representations) is quite helpful. The proposedSR-
LSRand LSRagain maintain their advantages by outper-
forming all the other comparison methods on five and three
individual categories respectively. Moreover,LSRproduces
a better overall average result than the other eight methods,
while SR-LSR, with additional spatial regularizers, further
outperformsLSRby 0.045 in terms of the average accuracy
over all categories.

Table 3 presents the average accuracy results over 15 cat-
egories of theScene 15dataset for all methods. We can
see that the proposedSR-LSRandLSRoutperform all the
other methods. Figure 3 presents the confusion matrices

produced by the prediction results of the proposed meth-
ods. From the two confusion matrices, we observe that our
proposed methods produce reasonable results even on the
indoor categories (e.g. bedroom, kitchen, living room, of-
fice, store) which are more difficult to predict (Quattoni &
Torralba, 2009). By comparing the two matrices, we can
see that the confusion matrix ofSR-LSRis more sparse.
This suggests the latent representation learned with spa-
tial regularization can effectively eliminate some irrelevant
scene label categories. Moreover, we can see that the spa-
tial regularization has more impact on outdoor scenes than
indoor ones. For example, with the spatial regularization,
SR-LSRoutperformsLSRby 0.11 onMITcoast, by 0.26 on
MITmountainand by 0.14 onMITtallbuilding. This might
be due to the fact that there are more semantic content
changes across space in indoor scenes than outdoor scenes.

In summary, the proposed method demonstrates effective
performance and outperforms all the other comparison
methods on all the three scene datasets.

4.2. Interpretation and Impact of the Latent Variables

In our experiments, we also investigated the meaning of
learned latent representations. The latent variables in our
proposed model are expected to capture a set of visual enti-
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Figure 4.Examples of the latent concepts learned from low-level local features by SR-LSR. We usedm = 20 (i.e. the latent vector has
m entries,Z = [Z1, . . . , Zm]) in our experiments, and here are theZ17 andZ4 learned inLabelMeandUIUC Sportsrespectively.

5 10 15 20 25 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Latent Variables

A
v

e
ra

g
e

 A
c

c
u

ra
c

y

Figure 5.The impact of the number of latent variables,m, on the
Scene15dataset withm ∈ {5, 10, 20, 30}.

ties, i.e., the high-level visual concepts, which can explain
the target semantic scene labels. To verify this assumption,
we performed visualization on the patches that are mapped
to a specific latent concept. Recall that in our model, thej-
th patch of thei-th image is mapped into a latent represen-
tation vectorZi

j with lengthm, corresponding tom latent
variables. The larger is an entry value ofZi

j , the more re-
lated this patch is to the corresponding latent concept. The
patch is considered to be mapped to ther-th latent con-
cept if ther-th entry ofZi

j has the largest value among
the whole vector. Ther-th latent concept can then be vi-
sualized by displaying the patches that are mapped to it.
Figure 4 presents two examples of our learned latent con-
cepts on theLabelMedataset and the UIUC Sports dataset
respectively. The conceptZ17 has a close relationship with
patches overskyregions, whereasZ4 has a strong connec-
tion with patches overgrassregions. This suggests these
latent visual concepts are meaningful and are shared across
different scene categories. Though it is not appropriate to
conclude thatZ17 is straightlyequivalentto skyor Z4 is
straightly equivalent tograss, as these concepts are learned
from the low-level gradient-based HOG features, in general
our latent representation can capture visual entities thatare
useful for scene label prediction.

We also studied the impact of the number of latent vari-
ables,m, on the performance of our proposed method
SR-LSR. We tested a range ofm values from the set
{5, 10, 20, 30}. The average classification results for differ-
entm values on theScene15dataset are presented in Figure
5. We can see that with the increase of them value from 5 to
20, the classification performance of the proposed approach
improves dramatically. It suggests that small number of la-
tent variables can restrain the model from learning useful
latent representations for the target prediction task. Never-
theless, fromm = 20 to m = 30, the performance change
is very small. On the other hand, with the increase ofm
value, the computational cost increases dramatically, since
the optimization needs to be conducted to learn more latent
variable values for each patch in each image. This justifies
the selection ofm=20 in our previous experiments since
m=20 provides a good trade-off between the classification
performance and the computational cost.

5. Conclusion

In this paper, we proposed a patch-based latent vari-
able model tailored for semantic scene classification tasks,
where a latent layer of variables are used to model high-
level latent contextual visual concepts that are both pre-
dictable from the low-level feature inputs and discrimina-
tive for the semantic output labels. The proposed model can
capture bothlocal information, through the patches, and
global information, through the summarization of the la-
tent representation vectors in the whole image and the spa-
tial regularization across patches, for target semantic label
prediction. We formulated the model as a joint minimiza-
tion problem for latent representation learning and predic-
tion model training, and developed an efficient alternating
optimization algorithm to solve it, which has closed-form
solutions for the model parameter learning step and an ef-
ficient projected gradient descent procedure for the latent
variable learning step. Our empirical results on three stan-
dard scene datasets demonstrated that the proposed method
can achieve promising scene classification results and out-
perform the state-of-the-art scene recognition methods.
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