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Abstract

The performance of machine learning methods is
heavily dependent on the choice of data represen-
tation. In real world applications such as scene
recognition problems, the widely used low-level
input features can fail to explain the high-level
semantic label concepts. In this work, we ad-
dress this problem by proposing a novel patch-
based latent variable model to integrate latent
contextual representation learning and classifi-
cation model training in one joint optimization
framework. Within this framework, the latent
layer of variables bridge the gap between inputs
and outputs by providing discriminative expla-
nations for the semantic output labels, while be-
ing predictable from the low-level input features.
Experiments conducted on standard scene recog-
nition tasks demonstrate the efficacy of the pro-
posed approach, comparing to the state-of-the-art
scene recognition methods.

high-level semantic concepts often requires human ingenu-
ity and high-level statistical domain knowledge, neither o
which can be captured in low-level features. Thus a crit-
ical challenge for automatic scene recognition lies in the
semantic gap between the low-level image features, such
as the local gradient-based SIFT and HOG features (Lowe,
2004; Dalal & Triggs, 2005), and the high-level semantic
scene concepts.

In this paper, we address the challenge of semantic scene
classification by learning a latent semantic represemtatio
of the input data. Specifically, we propose to use a patch-
based latent layer of variables to model the intrinsic con-
textual structure of the semantic output concepts, while en
suring them to be predictable from the original low-level
input features. The latent variables can be viewed as an in-
termediate representation between the low-level inpuds an
the high-level outputs. Moreover, we encode the spatial in-
formation of the images by using a Laplacian regularizer
over the latent representation vectors of the patchesrwithi
each image, which enforces a spatially smooth change of
the semantic contents. We formulate the learning problem
as a joint optimization problem over both the latent rep-

1. Introduction resentation variables and the prediction model parameters

. . : which simultaneously minimizes the regression losses from
The success of machine learning algorithms generally de-

pends on the choice of data representation, since a go th inputs to the latent representation and the prediction

. . : 98sses from the latent representation to the output labels.
representation can disentangle the underlying explayator, : o

: - . __\We expect such a model can automatically capture intrin-
factors behind the observed data and facilitate classifica-.

tion model learning (Bengio et al., 2012). Though IearningSIC explanations of the output semantic concepts, and hence

. improve the overall prediction performance from the low-
from low-level features extracted from raw inputs produce : . .
. e AR evel inputs to the high-level outputs. Our experimental re
good performance in many classification tasks with simple e
- . sults on standard scene classification datasets show é&at th
label concepts, it is difficult to learn complex semantic la-

. ex?roposed approach outperforms a few baseline and state-
bel concepts, such as scene labels, directly from low-lev e
of-the-art scene classification methods.

features. A scene label typically expresses a semantic con-

cept that can be described by presence patterns of a set of

high-level objects. For example, as shown in Figure 1, &. Related Work
“street scene may consist of objects such tese, road
buildingandsky, and a ‘toast scene may consist of objects
such asship, sea, skyandmountain Recognition of such

For image analysis and scene classification, numerous data
representations built upon low-level features have been in
troduced in the recent decade. The widely employed bag-
Proceedings of the?1** International Conference on Machine Of-word model (Sivic et al., 2005) uses a histogram repre-
Learning Beijing, China, 2014. JMLR: W&CP volume 32. Copy- sentation which is efficient to compute from the low-level
right 2014 by the author(s). input features, but lacks contextual information for com-
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Figure 1.Scene is a semantic concept that consists of different objects. Topresents the scene imagepen country, streegind
coast Bottom row presents the regions occupied by different object cagsgoreach corresponding image.

plex semantic scene recognition. Contextual informatiorHowever, these models mostly have high requirement for
can be interpreted as object interactions or co-occureenceobject or scene component identification, and involve com-
Many works exploit such interactions between objects toplicated training processes.

learn intermediate representations of the data for improvi:rom the perspective of leaming intermediate representa-
ing recognition performance (Li & Guo, 2012; Blaschko

& Lampert, 2009; Choi et al., 2010; Divvala et al., 2009; \t;v%rlisvglahl eI:tr?]?; vla;rlaeer_ISVilsaey;rga é?serair?tr(?nseirgle (rzetl)%tg)d
Fidler et al., 2009; Sadeghi & Farhadi, 2011). Most of g lay i ’

these works model pairwise object interactions. For examP roposed a fast learning algorithm for multi-layer genera-

le, Sadeghi & Farhadi (2011) proposed a sehantic Cont_ive deep belief nets. Lee et al. (2009) presented a genera-

pie, sadeg . prop : . tive convolutional deep belief network, which learns usefu
cept,visual phasegobjects performing an action or a pair | . : i

. . ' . . -high-level visual features, such as object parts, from-unla

of objects interacting with each other), to assist recogni-

tion tasks. In addition, the probabilistic graphical model peled object and natural scene images. Jarrett et al. (2009)

proposed in (Li & Guo, 2012) integrates a chain struc_mvestlgated a two-stage system with random nonlinear fil-

. ters for feature extraction. These models however are gen-
ture to capture the co-occurrence of objects. Moreover, the” ™. .
rative models and are not optimized to capture latent se-

work in (Li et al., 2012) models the visual appearance of o & . o
. . . mantic representations that are most discriminative fer th
a group of objects to capture high-order contextual interac

tions. Kumar & Koller (2010) presented a two-layer model target labels. In addition to the§e, Bergamo et al_. (2011)
. . roposed a compact code learning method for object cate-
based on bottom-up over-segmentation algorithms, wherB

i . - : orization, which uses a set of latent binary indicator-vari

the first layer assigns each pixel to a unique connected re= . . . .
. ) . ._ables as the intermediate representation of images. How-
gion and the second layer assigns each region to a unique . . :
. . ) ever, they identify latent concepts from the whole image
label. Kwitt et al. (2012) proposed a spatial pyramid match-. . S ..
: . . . instead of local patches, without considering the spaisal d
ing architecture to combine the mid-level theme represen: .. ' .
.tribution of the latent concepts. Moreover, the latent-vari

tation with the spatial pyramid structure for scene recogni e RN .
. : : ) . ables are represented implicitly using indicator function
tion. This approach however relies on predefined meaning-

ful semantic themes and requi K L in their model, which eliminates the capacity of encoding
quires weakly supervision such . .
as the presence knowledge of the semantic themes. AnothBr°" knowledges over the latent representations.
group of works explore contextual information by identi- Different from these methods, the proposed approach in
fying intermediate representations using topic models. Fothis paper employs a patch-based latent layer of variables
example, Wang & Grimson (2007) proposed a spatial latento model the contextual structure of the semantic output
Dirichlet allocation model which clusters co-occurringlan concepts. The proposed model has a larger modeling ca-
spatially neighboring visual words into the same topic. Hepacity than previous contextual information based meth-
& Zemel (2008) presented a hybrid framework for imageods since the high-level visual concepts in our model can
labeling, which combines a generative topic model withbe any useful visual entities such as objects, object parts,
discriminative prediction models. Most recently, a state- their composites and co-occurrences, and the spatiatinfor
the-art work in (Niu et al., 2012) proposes a discrimina-mation between the patches can be reserved in the latent
tive latent Dirichlet allocation model to capture two types representation by enforcing spatial Laplacian regulasize
of contextual information, global spatial layout and visua Patch-based learning has also been exploited in previous
coherence in uniform local regions, for scene recognitionwork (Ranzato et al., 2006) for unsupervised image feature
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extractior_l based on an autoencoo_ler model. Th_eir method Scene Label: @

however is an unsupervised encoding and decoding process

from patch to patch. Label Predictor: a(.)

3. Proposed Approach LatentVisual | 0[0]..[0[1]
Entity Features: :

In this section, we present a patch-based latent semantic ] 1 y 0 \\ 0 \ 1 \

representation learning model for scene recognition. We

first formulate the problem as a joint minimization problem Latent Concept Extractor:
over the latent variables and the prediction model parame-
ters, while encoding the spatial information across patche
within each image with a Laplacian regularizer. Then we 5 :
develop an efficient alternating optimization procedure to s
solve it. Below we usd to denote any column vector with

all 1 values assuming its size can be determined from congjgyre 2.lllustration of the prediction process of the proposed la-
text, and usd, to denote an identity matrix with size tent variable model.

3.1. Latent Variable Model sual entities contained in the whole image;and W de-

Scene recognition is a multi-class prediction problem.note the model parameters of these two prediction func-
Givent labeled image$(x’, y?)}!_,, wherex’ denotes the tions respectively£(-) andV(-) are loss functionsR(-)

i-th image andy’ € {—1,+1}" is its scene label vector, andR.(-) are regularization functions. The prediction pro-
we aim to learn a prediction model froxi to y’. We first ~ cess encoded in this latent variable model is intuitively
partition each input image into a bagm@hon-overlapping demonstrated in Figure 2.

patches, where each patch forms a low-level input featur
vector with lengthd. The observed features from the
patches of the-th image can be represented as a matri
X% e R™*4 whosej-th row, X, contains the input vector
from its j-th patch. The scene labels are very semantic an

Yo produce a concrete optimization problem, we consider

simple least square loss functions f6(-) and V(-), a
robenius-norm regularization functidt(-) = || - |%, and

gﬂe following linear prediction functions

abstractive concepts, and they are difficult to be predicted f(ij; ©,b) = X0 +b7, @)
directly from the low-level input features. To bridge this ! ’
gap, we first learn a latent contextual representation vecto 932,25 Wea) =35 ZIW + q'. (3)

Z’ € {0, 1}1*™ for eachj-th patch of the-th image and

assume each entry & indicates the existence of a latent Moreover, since the integer constraints induce hard opti-
high-level visual ent|ty We then learn the output label-con Mization problems, we relax the integer constraints over
cept of an image based on the summary of the high-levef* into inequality constraintsz’ > 0 while enforcing a
latent visual entities inferred from its local patches. ThelL1-norm regularization functiof. overZ’ to promote its

m latent visual entities can be any individual or compos-SParsity. The optimization problem we obtained is

ite visual concepts from the set of images, but they need to

be both directly predictable from the low-level input fea- . ‘ || 28— X'eT —1bT|%

tures and discriminative for the target semantic scene la- (zi)'6.p.w T 1Tmiw_ aTyz |
: . ©ObWa =\ +y 1'Z'W —q |3

bels. Under this assumption, we formulate the scene label

prediction problem with latent representation variables a + 941015 + Y IWIF + 7211241

the following unified optimization over two loss functions ] ,
subjectto Z* >0, for i =1,....¢t;

L ey L(ZE (XZ?-G)
3 ( )

(1) where® ¢ R™*4 andb € R™ are the model param-

min
{ziyo.w =\ V(Y 932,25 w)) eters of the linear functiorf(:); W € R™** andq €
; R* are the model parameters of the linear functign);
+ 77 R(8) + 7y RIW) + 7222 R.(2") Il - Il - ll2, ] - |l denote Frobenius norm, Euclidean
subjectto  Zi e {0,13"™for i =1,...,t; norm and entrywise L1-norm respectively. It is obvious that

our proposed model can capture bdblcal information,
wheref(-) is the function that predicts the latent visual en- through the patches, arglobal information, through the
tities from the input features of each patch apied) is the  summarization of the latent visual entity representations
function that predicts the output labels from the latent vi-the whole image, for target semantic label prediction.
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3.2. Laplacian Regularization where

The latent representation variables in our proposed model X — !

encode the high-level visual concepts that are directly pre n2.i
dictable from the input features while being useful for iden
tifying the target semantic scene labels. For each path, it
latent representation vector can be viewed as its mid-level
prediction outputs. To better identify these mid-level-out ‘
puts, we next propose to enforce a Laplacian regularizaProposition 2 Given fixed {Z'}{_,, the minimization
tion term over each set of latent vectdfs for eachi-th ~ problem over{W, q} in (5) has the following closed-form
image. Laplacian regularization has been typically used irsolution:

semi-supervised_legrning scenarios to enfor(_:e the smoo_th- W= (MTHM + ngm)AMTHY? (10)
ness of the prediction values on unlabeled instances with
respect to the intrinsic affinity structure of the input data
(Belkin & Niyogi, 2002; Belkin et al., 2005). We propose
to exploit this output regularization principle to improve whereH = I, — %111 Y =[yly% - ,y"]T, andM =
the mid-level latent output learning by exploiting the affin [1TZ1:1722;... ;17 7).

ity structures of the images.

(CalTXY, Xi=X'—1X, (8)

7 = (il ZY, Zi=Z'—1Z.  (9)

1
ny ;o

q= %(Y—MW)TL (11)

Proposition 1 and Proposition 2 can be proved by simply
setting the partial derivatives of the optimization obijest
function regarding each of the model parameters to zeros.

In particular, we consider a natural affinity structure for
each image, i.e., the spatial adjacency structure. Foi-the
th imageX*, we construct a spatial adjacency matfik c
{0,1}"*™ over all then patches, such that’, = 1 onlyif ~ Given fixed prediction model paramet€®, b, W, q}, the
thea-th patch and thé-th patch are spatial neighbors in the Optimization problem over the latent variabligg’ } can be

i-th image. The Laplacian matrix based on this spatial addecomposed into a set of independent sub-problems, one
jacency matrix can be computed Bs= diag(A'1) — A’ for eachZ" matrix, which enables the capacity of exploit-
With the spatial Laplacian matrices constructed for all im-ing parallel computation resources for large scale compu-
ages, the Laplacian regularized optimization problem is obtation. Specifically, the optimization problem over each la

tained as following tent Z¢ matrix is a quadratic minimization problem with
non-negativity constraints:
min i 0¢i||Z_i - Xi@T. —1b'|% 5) min ((Z%) subjectto Z'>0 (12)
(zpebwa =\ Hy'T —1TZ2'W —q' |3 where
+ 7 1811% + W3 + 7301271 UZ) = as| 7' — X'OT —1bT|I%
(21T LI ZY) +ly'"T —1"TZ2'W —q'|3
subjectto Z' >0, for i=1,...,¢ + 91T 20+ ptr(ZT L 2. (13)
However standard second-order quadratic solvers are very
3.3. Optimization Algorithm inefficient for solving this minimization problem and have

scalability problem for large images, since edthis typ-
ically large and the Hessian matrix will be quadratically
large. We propose to use an efficient and scalable first-order
projected gradient descent algorithm to conduct minimiza-
tion, as shown in Algorithm 1. In this algorithm, for each
iteration, we first compute the gradient matrix from the ob-
jective function

VUZY) =2EZ WW " 4 20,2 — 20;(X'©T +1b")
+21(q" —y "YW +q. 4 2uliZt (14)

The joint minimization problem in (5) is a non-convex op-
timization problem. We develop an iterative optimization
algorithm to solve it by alternatively optimizing the model
parameters and the latent variable values. In each iteratio
given fixed latent variable§Z*}, the model parameters for
the prediction functiong'(-) andg(-) can be trained inde-
pendently with closed-form solutions.

Proposition 1 Given fixed {Z‘}{_,, the minimization
problem over{®, b} in (5) has the following closed-form

solution: whereF is a square matrix of sizewith all 1 values. Then
T ST a1 we take a gradient update ovéf with stepsizel/p and
0= (Y02t Xi)(vplg+ Y ,0X" X') ", (6) project it onto the non-negativity constraints. We yse:

- . 20 + 2n|WW T || + 2u+/m|| L?|| , which guarantees the
b=27 -0X, (") convergence of the projected gradient descent procedure.
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Algorithm 1 Projected gradient descent algorithm (Lazebnik et al., 2006) (Scene 15) and UIUC Sports (Li &
Procedure: Fei-Fei, 2007). The LabelMe dataset contains 2694 color
while not converged images across 8 scene categories. The Scene 15 dataset
1. compute the gradient matrix/(Z*) at the contains 15 scene classes, with0 ~ 400 images per
current pointZ® using Eq. (14). class. The UIUC Sports dataset has 8 complex sports scene
2. updateZ’ = max(0, 2 — %VE(ZZ'))_ classes and each class has arosm@ ~ 2000 images. In
end while all experiments, we randomly selected 80 images per cate-

gory for training and used the rest for testing for all meth-

ods except the convolutional neural networks which need
Lemma 1 Given the continuously differentiable function more training data. All results reported in this section are
((-)in (13), andp = 2a; + 2n||WW T ||p 4+ 2uy/m||L*||r.  averages over 10 runs, with different random selections of
ForanyL > p, let training and testing images.

_ L 9 In each experiment, we compared the proposed spatial reg-

QL4 B) = {(B) + (A - B,VUB)) + 2 14 = Bl ularized latent semantic representation learning method,
(15)  denoted aSR-LSRwith its variant_SRthat drops the spa-
tial Laplacian regularizers by settipg= 0, and eight other

Then we havé(A) < Qr(A, B) forall A, B € R™*™. related methods for scene classification:

Proof: It is easy to check that = 2a; + 2n||[WW T||p +

2u+/m||L*|| ¢ is & Lipschitz constant 6¥/(-), such that (1) Bag-ofword based SVM (SVMyhich is a base-

line method that trains SVM classifiers with the
IVE(A) — VUB)|r < plA - B|lr, VA, B € R™*™ dictionary-based bag-of-word model.
(2) Neural Network with a single hidden layer (1-NN)
Then following (Beck & Teboulle, 2009, Lemma 2.1), we (3) Neural Network with two hidden layers (2-NN)
can draw the conclusion of this lemnia. (4) Deep Belief Net (DBN)Hinton & Salakhutdinov,
2006) with 3 hidden layers.

Letp,(Z%) = argmin 4~ Q,(4, Z%). It has a closed-form (5) Convolutional Neural Network with three feature

solution stages (CNN-L3jLeCun et al., 1998).
' o _ (6) Convolutional Neural Network with two feature stages
pp(Z') = max(0, Z* — =VU(Z")). (16) (CNN-L2)
p (7) Chain Mode] which is the probabilistic graphical
Following Lemma 1, we have model with latent object chain structure for scene

; o D ; recognition (Li & Guo, 2012).
Upp(2%) = Qpp(2°), 2") < Q(Z",2°) = £(Z") (17) () CA-TM, which is the recent discriminative latent

Thus the projected gradient descent steps in Algorithm 1 is Dirichlet allocation model from (Niu et al., 2012).

guaranteed to continuously improve the convex objectiv

function (13) and reach the optimal solution, %or the proposed approach, we set the number of latent

variables, i.e., then value in our model, same as the num-
. ber of latent units in each hidden layer of the 1-NN, 2-
3.4. Testing NN and DBN methods. Without special specification, the
With the trained model, given a new testimage, we first col-n value we used in the experiments is 20. For CNN-L3,
lectn, patches from it and represent them ag ad matrix ~ We used the same model setting as the LeNet-5 in (LeCun
X*. Then, the trained prediction model can be applied byet al., 1998). CNN-L2 has the same setting as CNN-L3
settingZ® = X*O©T +1b' andy* = 1TZ*W + q' se- except we dropped the third feature stage (LeCun et al.,

quentially. The final prediction of the scene-level catggor 2010). Moreover, we used much more training data for

y for this test image is CNN-L3 and CNN-L2 to get reasonable results. Specifi-
cally, 1600, 6400 and 3000 training images are used on La-
y= argmax y°(r). (18)  belMe, UIUC Sports and Scene 15 respectively.
re{l,,k}

In each experiment, we used 5-fold cross-validation tech-
nique to select the trade-off parameters for all methods.
For the proposed method, we conducted parameter selec-
We evaluated the proposed method on 3 standard scetien for the trade-off parameterg, and . from the set
datasets: MIT LabelMe Urban and Natural Scene (La-0.005,0.05,0.1,0.5,1,5], and performed selection for
belMe) (Oliva & Torralba, 2001), 15 Natural Scene datasefrom the sef0.1,0.5, 1, 5, 10], while settingy; = 0.5 and

4. Experimental Results
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Table 1.Classification results on thkeabelMe dataset. Each column contains the average classification accuraciesonfparison
method on all scene categories. The first eight rows contain resuit$noir@dual categories and the last row contains their averages.
The bold and italic numbers highlight the best and the second best resgestively on each category.

Methods SVM | 1-NN | 2-NN | DBN | CNN-L3 | CNN-L2 | Chain Model| CA-TM | LSR | SR-LSR
coast 0.625| 0.446| 0.532| 0.971| 0.681 0.747 0.685 0.890 | 0.882| 0.916
forest 0.844| 0.766| 0.786| 0.980| 0.610 0.875 0.880 0.950 | 0.912| 0.950
highway 0.633| 0.678 | 0.667 | 0.239| 0.501 0.729 0.431 0.840 | 0.911| 0.910
insidecity 0.720| 0.623| 0.746| 0.925| 0.915 0.908 0.662 0.920 | 0.948| 0.950
mountain 0.572| 0.429| 0.473| 0.446| 0.497 0.503 0.499 0.810 | 0.881| 0.886
opencountry| 0.355| 0.361 | 0.442 | 0.000| 0.387 0.511 0.370 0.760 | 0.860| 0.889
street 0.588| 0.665| 0.552| 0.774| 0.563 0.648 0.691 0.860 | 0.897| 0.905
tallbuilding | 0.808| 0.544| 0.511| 0.431| 0.373 0.211 0.579 0.930 | 0.708| 0.797
Average 0.601| 0.544 | 0.575| 0.578 | 0.547 0.682 0.636 0.870 | 0.884| 0.898

Table 2.Classification results on tHélUC Sportsdataset. Each column contains the accuracy results of one compassioodhacross
all class categories. The first eight rows contain the classification aaesrover eight scene categories and the bottom row contains
their averages. The bold and italic numbers highlight the best and thedsbest results respectively on each category.

Methods SVM | 1-NN | 2-NN | DBN | CNN-L3 | CNN-L2 | Chain Model| CA-TM | LSR | SR-LSR
badminton 0.947| 0.728| 0.474| 1.000| 0.677 0.810 0.985 0.940 | 0.939| 0.938
bocce 0.822| 0.585| 0.678| 0.966| 0.411 0.746 0.880 0.490 | 0.963| 0.885
croquet 0.649| 0.597| 0.035| 0.000| 0.689 0.641 0.634 0.740 | 0.749| 0.793
polo 0.323] 0.329| 0.439| 0.000| 0.472 0.713 0.698 0.690 | 0.703| 0.746
rockclimbing | 0.337| 0.446| 0.446| 0.010| 0.230 0.484 0.441 0.940 | 0.429| 0.641
rowing 0.776| 0.688 | 0.618| 0.229| 0.307 0.538 0.779 0.750 | 0.829| 0.920
sailing 0.734| 0.642| 0.633| 0.716| 0.770 0.505 0.891 0.830 | 0.917| 0.899
snowboarding| 0.564 | 0.427 | 0.482| 0.018| 0.356 0.243 0.679 0.710 | 0.682| 0.850
Average 0.642| 0.553| 0.510| 0.373| 0.417 0.562 0.756 0.780 | 0.794| 0.839

all {«;} as 1. We treated each image as a bagtok 16  san et al., 2012), produces the best results on two cate-
patches and extracted a HOG feature vector with length 7gories, but has detection failures on another categorgsinc
(Dalal & Triggs, 2005) from each patch. We further nor- our training set is small. Though more training data has
malized each HOG vector to have unit L2-norm. For thebeen used foCNN-L3and CNN-L2 their performance is
baseline bag-of-word model, we used a dictionary with 500mediocre among all the other comparison methods. More-
visual words (HOG vectors). But for CNN-L3 and CNN- over,CNN-L2demonstrates better performance tayiN-
L2, we used raw image data as inputs (LeCun et al., 2010).3. The Chain Modeland theCA-TM are both based on
probabilistic graphical model€hain Modeldoes not show
4.1. Scene Classification Results any clear advantage over the baseline methods. But the

state-of-the-art worlCA-TM clearly outperforms the other
We evaluated the performance of the proposed method angd,ep, comparison methods on most categories. Neverthe-

the other comparison methods in terms of test classificatiofygs the proposefR-LSRand its varianLSRoutperform
accuracy. The average results over the three scene datasets\ 1M and all the other comparison methods on five out
LabelMe UIUC Sportsand Scene 15are reported in Ta- o the total eight categories, ai®R-LSRachieves the best
ble 1, Table 2, Table 3 and Figure 3 respectively. From Taqera|| accuracy result averaged over the eight categories
ble 1 we can see that our propos8&-LSRmethod and ity the spatial Laplacian regularizatio8R-LSRoutper-

its variantLSRhave superior performance on thabelMe  ¢,mq1 SRon almost all categories, and the improvements
dataset, comparing to the other eight methods. Among thg significant on many categories includicapst, forest,
eight comparison methods, the neural network methOdSOpencountr)andtaIIbuilding.

1-NN and 2-NN, do not have advantages over the base-
line SVM method. TheDBN method which usually re- Similar comparison results are observed in Table 2 on the
quires a large amount of data for robust deep learning (CireUIUC Sportdataset with complex sport scene classes. The
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Table 3.Average classification results on the Scene 15 dataset.

Methods | SVM | 1-NN | 2-NN | DBN | CNN-L3 | CNN-L2 | Chain Model| CA-TM | LSR | SR-LSR
Accuracy | 0.745| 0.551| 0.680| 0.693| 0.411 0.763 0.789 0.825 | 0.847| 0.857
Bedroom Y0.04 010 0.06 , Bedroom [ 0.010.02 0.04 0020.02
CALsuburb 0.03 1 CALsuburb 0.020.01 0.04 0.03 0.02
Industrial {0.02 1 Industrial 0.01
Kitchen 10.13 0.10 q Kitchen  0.08 0.08 0.07 0.09
Livingroom - 1 Livingroom  0.04 0.02 0.03 0.03
MITcoast [ 0.04 0.03 MITcoast | 0.050.03 0.04 0.04
MiTforest 1 MiTforest|0.01 0.03 0.02
MIThighway - 0.030.03 1 MIThighway 0.040.05 0.07 0.03
MITinsidecity[ ~ 0.04 0.050.04 MITinsidecity  ~ 0.04 0.03 0.02 0.03 0.04{
MITmountain {0.01 0.01 MITmountain [0.07 0.09 0.05 0.04 0.0
MITopencountry 0.02 MiITopencountry0.03 0.04 0.010.03
MiTstreet  0.03 MITstreet 0.06 0.030.03 0.03 1
MiTtallbuilding {0.07 0.05 MiTtallbuilding|  0.04 0.06 0.05 0.08;
PARoffice0.06 0.080.08 PARofficer 0.08 0.07 0.070.08 1
Storef | 040 | | 009 ] Storet . |, 009 | 000004006
%% Qz( /70(, 47/'0,, (’é,-) U, Y, ¢’//). . Y @/», 074, %, @% Q?( /”o(, %, %) N ¢’//> %, %} Y Y Y ¢’//> '°7,P %,
ooo) \S\(’éo Of/‘/@'/ O,) 0’00 009}. O*@\X\ @5 /)‘F/[y 0(/ %0,) 6‘/’&@ (%5 _O’;/Z, ¢ O°/>) \F% %Q 0/7 0’0 0‘9\9 O’o& @é o"/{y /bo(/ %@/) \?&0@ e?/@ ,O’}?C'\ e
% v % qf?z, @%_,049/_ o, <//,‘7/_ ® G Y %Y, ¥ % %?L S, Ay, Ko, (/’/o/- J
] /),@ ?9 /{9
(a) SR-LSR (b) LSR

Figure 3.The confusion matrices of the prediction results produced by the ped®#%-LSRwith spatial regularization) method and its
variantLSR(without spatial regularization) respectively on the Scene 15 dataset.

neural network methods-NN and 2-NN again have infe-
rior performance than the SVM baselim@BN though pro-
duces best results on two categories, it fails to detemt

produced by the prediction results of the proposed meth-
ods. From the two confusion matrices, we observe that our
proposed methods produce reasonable results even on the

guetandpolo and has very poor overall performance. With indoor categories (e.g. bedroom, kitchen, living room, of-

more training dataCNN-L3and CNN-L2produce reason-

fice, store) which are more difficult to predict (Quattoni &

able results across categories. But they are outperforsned Blorralba, 2009). By comparing the two matrices, we can
a few other comparison methods. These suggest the deesge that the confusion matrix &R-LSRs more sparse.
architecture learning models, which usually require a hugéhis suggests the latent representation learned with spa-
amount of training instances, are not appropriate optionsial regularization can effectively eliminate some irkelat

for the standard scene classification data we have here. Tiseene label categories. Moreover, we can see that the spa-

probabilistic graphical model based methadkain Model

tial regularization has more impact on outdoor scenes than

andCA-TM demonstrate good performance on this dataseindoor ones. For example, with the spatial regularization,
which suggests contextual information (encoded by interSR-LSRoutperformd.SRby 0.11 onMITcoast by 0.26 on

mediate representations) is quite helpful. The prop&sed

MITmountainand by 0.14 orMITtallbuilding. This might

LSRandLSRagain maintain their advantages by outper-be due to the fact that there are more semantic content
forming all the other comparison methods on five and threehanges across space in indoor scenes than outdoor scenes.

individual categories respectively. MoreoviegRproduces

a better overall average result than the other eight methods
while SR-LSRwith additional spatial regularizers, further
outperformd_SRby 0.045 in terms of the average accuracy

over all categories.

In summary, the proposed method demonstrates effective
performance and outperforms all the other comparison
methods on all the three scene datasets.

4.2. Interpretation and Impact of the Latent Variables

Table 3 presents the average accuracy results over 15 cat-

egories of theScene 15ataset for all methods. We can

see that the proposesR-LSRandLSRoutperform all the

In our experiments, we also investigated the meaning of
learned latent representations. The latent variables in ou

other methods. Figure 3 presents the confusion matrice®0POSed model are expected to capture a set of visual enti-
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mountain coast highway opencountry polo polo bocce croquet

Figure 4.Examples of the latent concepts learned from low-level local featy&RbLSRWe usedn = 20 (i.e. the latent vector has
m entries,Z = [Z1, ..., Zm]) In our experiments, and here are e and Z, learned inLabelMeandUIUC Sportsrespectively.

We also studied the impact of the number of latent vari-
ables, m, on the performance of our proposed method
SR-LSR We tested a range ofr values from the set
{5, 10, 20, 30}. The average classification results for differ-
entm values on th&cenel%lataset are presented in Figure
5. We can see that with the increase ofthealue from 5 to
20, the classification performance of the proposed approach
improves dramatically. It suggests that small number of la-
tent variables can restrain the model from learning useful
latent representations for the target prediction task eev
5 0 15 20 25 30 theless, fromm = 20 to m = 30, the performance change
Number of Latent Variables is very small. On the other hand, with the increaserof
value, the computational cost increases dramaticallgesin
the optimization needs to be conducted to learn more latent
variable values for each patch in each image. This justifies
the selection ofn =20 in our previous experiments since
m =20 provides a good trade-off between the classification
ties, i.e., the high-level visual concepts, which can expla performance and the computational cost.
the target semantic scene labels. To verify this assumption
we perfor.rrjed visualization on the patches that are mappeg_ Conclusion
to a specific latent concept. Recall that in our model,jthe
th patch of the-th image is mapped into a latent represen-In this paper, we proposed a patch-based latent vari-
tation vectorZi with lengthm, corresponding ten latent  able model tailored for semantic scene classification tasks
variables. The larger is an entry Value@; the more re- Where a latent layer of variables are used to model high-
lated this patch is to the corresponding latent concept. Théevel latent contextual visual concepts that are both pre-
patch is considered to be mapped to thth latent con-  dictable from the low-level feature inputs and discrimina-
cept if ther-th entry of Zﬁ has the largest value among tive for the semantic output labels. The proposed model can
the whole vector. The-th latent concept can then be vi- capture bothocal information, through the patches, and
sualized by displaying the patches that are mapped to iglobal information, through the summarization of the la-
Figure 4 presents two examples of our learned latent cortent representation vectors in the whole image and the spa-
cepts on thé.abelMedataset and the UIUC Sports datasettial regularization across patches, for target semartiella
respectively. The concept,» has a close relationship with prediction. We formulated the model as a joint minimiza-
patches oveskyregions, whereag, has a strong connec- tion problem for latent representation learning and predic
tion with patches ovegrassregions. This suggests these tion model training, and developed an efficient alternating
latent visual concepts are meaningful and are shared acroggtimization algorithm to solve it, which has closed-form
different scene categories. Though it is not appropriate t&olutions for the model parameter learning step and an ef-
conclude thatZ,, is straightlyequivalentto skyor Z, is ficient projected gradient descent procedure for the latent
straightly equivalent tgrass as these concepts are learnedvariable learning step. Our empirical results on three-stan
from the low-level gradient-based HOG features, in generaflard scene datasets demonstrated that the proposed method
our latent representation can capture visual entitiesditeat  can achieve promising scene classification results and out-
useful for scene label prediction. perform the state-of-the-art scene recognition methods.

o
©

o
© o
© o

Average Accuracy
o
~

Figure 5.The impact of the number of latent variables, on the
ScenelSlataset withn € {5, 10, 20, 30}.
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