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Abstract
The method of random projections has become
popular for large-scale applications in statistical
learning, information retrieval, bio-informatics
and other applications. Using a well-designed
coding scheme for the projected data, which de-
termines the number of bits needed for each pro-
jected value and how to allocate these bits, can
significantly improve the effectiveness of the al-
gorithm, in storage cost as well as computational
speed. In this paper, we study a number of simple
coding schemes, focusing on the task of similar-
ity estimation and on an application to training
linear classifiers. We demonstrate that uniform
quantization outperforms the standard and influ-
ential method (Datar et al., 2004), which used a
window-and-random offset scheme. Indeed, we
argue that in many cases coding with just a small
number of bits suffices. Furthermore, we also de-
velop a non-uniform 2-bit coding scheme that
generally performs well in practice, as confirmed
by our experiments on training linear support
vector machines (SVM). Proofs and additional
experiments are available at arXiv:1308.2218.

In the context of using coded random projec-
tions for approximate near neighbor search by
building hash tables (arXiv:1403.8144) (Li et al.,
2014), we show that the step of random off-
set in (Datar et al., 2004) is again not needed
and may hurt the performance. Furthermore, we
show that, unless the target similarity level is
high, it usually suffices to use only 1 or 2 bits
to code each hashed value for this task. Section 7
presents some experimental results for LSH.

1. Introduction
The method of random projections has become popular for
large-scale machine learning applications such as classifi-
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cation, regression, matrix factorization, singular value de-
composition, near neighbor search, bio-informatics, and
more (Papadimitriou et al., 1998; Dasgupta, 1999; Bing-
ham & Mannila, 2001; Buhler & Tompa, 2002; Fradkin
& Madigan, 2003; Freund et al., 2008; Weinberger et al.,
2009; Vempala, 2004; Dasgupta, 2000; Johnson & Linden-
strauss, 1984; Wang & Li, 2010). In this paper, we study
a number of simple and effective schemes for coding the
projected data, with the focus on similarity estimation and
training linear classifiers (Joachims, 2006; Shalev-Shwartz
et al., 2007; Fan et al., 2008; Bottou). We will compare our
method with the influential prior coding scheme in (Datar
et al., 2004) (which is a part of the standard LSH package).

Consider two high-dimensional data vectors, u, v ∈ RD.
The idea of random projections is to multiply them with a
random normal projection matrix R ∈ RD×k (where k ≪
D), to generate two (much) shorter vectors x, y:

x = u×R ∈ Rk, y = v ×R ∈ Rk,

R = {rij}Di=1
k
j=1, rij ∼ N(0, 1) i.i.d.

In real applications, a dataset will consist of a large number
of vectors (not just two). Without loss of generality, we use
one pair of data vectors (u, v) to demonstrate our results.

In this study, for convenience, we assume that the marginal
Euclidian norms of the original data vectors, i.e., ∥u∥, ∥v∥,
are known. This assumption is reasonable in practice (Li
et al., 2006). For example, the input data fed to a support
vector machine (SVM) are usually normalized, i.e., ∥u∥ =
∥v∥ = 1. Computing the marginal norms for the entire
dataset only requires one linear scan of the data, which is
anyway needed during data collection/processing.

Without loss of generality, we assume ∥u∥ = ∥v∥ = 1. The
joint distribution of (xj , yj) is hence a bi-variant normal:[

xj

yj

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
, i.i.d. j = 1, 2, ..., k.

where ρ =
∑D

i=1 uivi (as ∥u∥ = ∥v∥ = 1). In this paper,
we adopt the conventional notation for the standard normal
pdf ϕ(x) = 1√

2π
e−

x2

2 and cdf Φ(x) =
∫ x

−∞ ϕ(x)dx.
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Note that this paper focuses on dense projections. It will be
interesting future work to study coding for very sparse ran-
dom projections (Li, 2007), count sketch (Charikar et al.,
2004), or count-min sketch (Cormode & Muthukrishnan,
2005). Another useful line of research would be on the im-
pact of pseudo-random numbers on coding (Carter & Weg-
man, 1977; Nisan, 1990; Mitzenmacher & Vadhan, 2008).

1.1. Uniform Quantization
Our first proposal is perhaps the most intuitive scheme,
based on a simple uniform quantization:

h(j)
w (u) = ⌊xj/w⌋ , h(j)

w (v) = ⌊yj/w⌋ (1)

where w > 0 is the bin width and ⌊.⌋ is the standard floor
operation, i.e., ⌊z⌋ is the largest integer which is smaller
than or equal to z. Later we will also use the standard ceil-
ing operation ⌈.⌉. We show that the collision probability
Pw = Pr

(
h
(j)
w (u) = h

(j)
w (v)

)
is monotonically increas-

ing in the similarity ρ, making (1) a suitable coding scheme
for similarity estimation and near neighbor search.

The potential benefits of coding with a small number of
bits arise because the (uncoded) projected data, xj =∑D

i=1 uirij and yj =
∑D

i=1 virij , being real-valued num-
bers, are neither convenient/economical for storage and
transmission, nor well-suited for indexing.

Since the original data are assumed to be normalized, i.e.,
∥u∥ = ∥v∥ = 1, the marginal distribution of xj (and yj) is
the standard normal, which decays rapidly at the tail, e.g.,
1 − Φ(3) = 10−3, 1 − Φ(6) = 9.9 × 10−10. If we use
6 as cutoff, i.e., values with absolute value greater than 6
are just treated as −6 and 6, then the number of bits needed
would be 1 + log2

⌈
6
w

⌉
. In particular, if we choose the bin

width w ≥ 6, we can just record the sign of the outcome
(i.e., a one-bit scheme). In general, the optimum choice of
w depends on the similarity ρ and the task. In this paper
we focus on the task of similarity estimation (of ρ) and we
will provide the optimum w values for all similarity levels.
Interestingly, using our uniform quantization scheme, we
find in a certain range the optimum w values are indeed
large (and larger than 6) which suggests in some cases a
1-bit scheme could be advantageous.

We can build linear classifier (e.g., linear SVM) us-
ing coded random projections. For example, assume the
projected values are within (−6, 6). If w = 2, then
the code values output by hw will be within the set
{−3,−2,−1, 0, 1, 2} and hence we can represent a pro-
jected value using a vector of length 6 (with exactly one 1)
and the total length of the new feature vector will be 6× k.
This is inspired by the work on linear learning with b-bit
minwise hashing (Li et al., 2012; Shrivastava & Li, 2014).

Near neighbor search is a basic problem studied since the
early days of modern computing (Friedman et al., 1975).

The use of coded projection data for near neighbor search
is related to locality sensitive hashing (LSH) (Indyk & Mot-
wani, 1998). In the context of LSH, the purpose of coding
is for determining which buckets the projected data should
be placed in. After the hash tables are built, there might
be no need to store the coded data. Therefore, this task is
different from coding for similarity estimation. A separate
technical report (Li et al., 2014) elaborates on coding for
LSH; also see Section 7. Note that, even in the context
of LSH, we often still need similarity estimation because
we need to determine, among all retrieved data points, the
truly similar data points; a step often called “re-ranking”.
This will require evaluating similarities on the fly because
in general we can not store all pairwise similarities.

1.2. Advantages over the Window-and-Offset Scheme
(Datar et al., 2004) proposed the following well-known
coding scheme, which uses windows and a random offset:

h(j)
w,q(u) =

⌊
xj + qj

w

⌋
, h(j)

w,q(v) =

⌊
yj + qj

w

⌋
(2)

where qj ∼ uniform(0, w). (Datar et al., 2004) showed
that the collision probability can be written as

Pw,q =Pr
(
h(j)
w,q(u) = h(j)

w,q(v)
)

=

∫ w

0

1√
d
2ϕ

(
t√
d

)(
1− t

w

)
dt (3)

where d = ||u − v||2 = 2(1 − ρ) is the Euclidean dis-
tance between u and v. The difference between (2) and our
proposal (1) is that we do not use the additional random-
ization with q ∼ uniform(0, w) (i.e., the offset). We will
demonstrate the following advantages of our scheme:

1. Operationally, our scheme hw is simpler than hw,q .
2. With a fixed w, our scheme hw is always more accu-

rate than hw,q , often significantly so. For each coding
scheme, we can separately find the optimum bin width
w. We will show that the optimized hw is also more
accurate than optimized hw,q , often significantly so.

3. For a wide range of ρ values (e.g., ρ < 0.56), the
optimum w values for our scheme hw are relatively
large (e.g., > 6), while for the existing scheme hw,q ,
the optimum w values are small (e.g., about 1). This
means hw requires a smaller number of bits than hw,q .

In summary, uniform quantization is simpler, more accu-
rate, and uses fewer bits than the influential prior work.

1.3. Organization
In Section 2, we analyze the collision probability for the
uniform quantization scheme and then compare it with the
collision probability of the well-known prior work (Datar
et al., 2004) which uses an additional random offset. Be-
cause the collision probabilities are monotone functions of
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the similarity ρ, we can always estimate ρ from the ob-
served (empirical) collision probabilities. In Section 3, Our
comparisons of the estimation variances concludes that the
random offset step in (Datar et al., 2004) is not needed.

In Section 4, we develop a 2-bit non-unform coding scheme
and demonstrate that its performance largely matches the
performance of the uniform quantization scheme (which
requires storing more bits). Interestingly, for certain range
of the similarity ρ, we observe that only one bit is needed.
Thus, Section 5 is devoted to comparing the 1-bit scheme,
which shows that the 1-bit scheme does not perform as well
when the similarity ρ is high. In Section 6, we provide a set
of experiments on training linear SVM using all the coding
schemes we have studied, to confirm the variance analysis.
Sections 7 provides additional experiments for LSH.

2. The Collision Probability of Uniform
Quantization hw

To use our coding scheme hw (1), we need to evaluate
Pw = Pr

(
h
(j)
w (u) = h

(j)
w (v)

)
, the collision probability.

From practitioners’ perspective, as long as Pw is a mono-
tonically increasing function of the similarity ρ, it is a suit-
able coding scheme. In other words, it does not matter
whether Pw has a closed-form expression, as long as we
can demonstrate its advantage over the alternative (Datar
et al., 2004), whose collision probability is denoted by
Pw,q . Note that Pw,q can be expressed in a closed-form
in terms of the standard ϕ and Φ functions:

Pw,q = Pr
(
h(j)
w,q(u) = h(j)

w,q(v)
)

=2Φ

(
w√
d

)
− 1− 2√

2πw/
√
d
+

2

w/
√
d
ϕ

(
w√
d

)
(4)

Clearly, Pw,q → 1 as w → ∞. Recall d = 2(1 − ρ) =
∥u− v∥2 is the Euclidean distance.

The following Lemma 1 will help derive the collision prob-
ability Pw (in Theorem 1). Note that, due to the space con-
straint, all the proofs can be found at arXiv:1308.2218.

Lemma 1 Let
[

x
y

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
. Then

Qs,t (ρ) = Pr (x ∈ [s, t], y ∈ [s, t]) (5)

=

∫ t

s

ϕ(z)

[
Φ

(
t− ρz√
1− ρ2

)
− Φ

(
s− ρz√
1− ρ2

)]
dz

∂Qs,t(ρ)

∂ρ
=

1

2π

1

(1− ρ2)1/2
(6)

×
(
e−

t2

(1+ρ) + e−
s2

(1+ρ) − 2e
− t2+s2−2stρ

2(1−ρ2)

)

As nonnegative data are common in practice, we will focus
on ρ ≥ 0, for the rest of the paper.

Theorem 1 The collision probability of the coding scheme
hw defined in (1) is

Pw = 2
∞∑
i=0

∫ (i+1)w

iw

ϕ(z)× (7)[
Φ

(
(i+ 1)w − ρz√

1− ρ2

)
− Φ

(
iw − ρz√
1− ρ2

)]
dz

which is a monotonically increasing function of ρ ≥ 0.
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Figure 1. Collision probabilities, Pw and Pw,q , for ρ =
0, 0.25, 0.5, 0.75, 0.9, and 0.99. Our proposed scheme (hw) has
smaller collision probabilities than the existing scheme (Datar
et al., 2004) (hw,q), especially when w > 2.

Figure 1 plots both Pw and Pw,q for selected ρ values. The
difference between Pw and Pw,q becomes apparent after
about w > 2. When ρ = 0, Pw quickly approaches the
limit 0.5 while Pw,q keeps increasing (to 1) as w increases.
Intuitively, the fact that Pw,q → 1 when ρ = 0, is undesir-
able because it means two orthogonal vectors will have the
same coded value. Thus, it is not surprising that our pro-
posed scheme hw will have better performance than hw,q .

3. Analysis of Two Coding Schemes (hw and
hw,q) for Similarity Estimation

In both schemes (corresponding to hw and hw,q), the colli-
sion probabilities Pw and Pw,q are monotonically increas-
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ing functions of the similarity ρ. Since there is a one-to-one
mapping between ρ and Pw, we can tabulate Pw for each ρ
(e.g., at a precision of 10−3). From k independent projec-
tions, we can compute the empirical P̂w and P̂w,q and find
the estimates, denoted by ρ̂w and ρ̂w,q , respectively, from
the tables. Theorem 2 provides the variance of hw.

Theorem 2 Recall d = 2(1− ρ).

V ar (ρ̂w,q) =
Vw,q

k
+O

(
1

k2

)
, where (8)

Vw,q = d2/4

 w/
√
d

ϕ
(
w/

√
d
)
− 1/

√
2π

2

Pw,q(1− Pw,q)

(9)

Figure 2 plots the variance factor Vw,q defined in (9) with-
out the d2

4 term. (Recall d = 2(1 − ρ).) The minimum is
7.6797 (keeping four digits), attained at w/

√
d = 1.6476.

The plot also suggests that the performance of this popular
scheme can be sensitive to the choice of the bin width w.
This is a practical disadvantage. Since we do not know ρ
(or d) in advance and we must specify w in advance, the
performance of this scheme might be unsatisfactory, as one
can not really find one “optimum” w for all pairs.
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Figure 2. The variance factor Vw,q (9) without the d2

4
term.

In comparison, our proposed scheme has smaller variance
and is not as sensitive to the choice of w.

Theorem 3

V ar (ρ̂w) =
Vw

k
+O

(
1

k2

)
, where (10)

Vw = (11)

π2(1− ρ2)Pw(1− Pw)[∑∞
i=0

(
e−

(i+1)2w2

(1+ρ) + e−
i2w2

(1+ρ) − 2e
− w2

2(1−ρ2) e−
i(i+1)w2

1+ρ

)]2
In particular, when ρ = 0, we have

Vw|ρ=0 =

[∑∞
i=0 (Φ((i+ 1)w)− Φ(iw))

2∑∞
i=0 (ϕ((i+ 1)w)− ϕ(iw))

2

]
× (12)[

1/2−
∑∞

i=0 (Φ((i+ 1)w)− Φ(iw))
2∑∞

i=0 (ϕ((i+ 1)w)− ϕ(iw))
2

]

Remark: At ρ = 0, the minimum is Vw = π2

4 attained
at w → ∞, as shown in Figure 3. Note that when
w → ∞, we have

∑∞
i=0 (Φ((i+ 1)w)− Φ(iw))

2 → 1/4

and
∑∞

i=0 (ϕ((i+ 1)w)− ϕ(iw))
2 → 1/(2π), and hence

Vw|ρ=0 →
[

1/4
1/(2π)

] [
1/2−1/4
1/(2π)

]
= π2

4 , which is substan-
tially smaller than 7.6797, the smallest Vw,q when ρ = 0.
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Figure 3. The minimum of Vw|ρ=0 → π2/4, as w → ∞.

To compare the variances of the two estimators, V ar (ρ̂w)
and V ar (ρ̂w,q), we compare their leading constants, Vw

and Vw,q . Figure 4 plots the Vw and Vw,q at selected ρ val-
ues, confirming that (i) the variance of the proposed scheme
(1) can be significantly lower than the existing scheme (2);
and (ii) the performance of the proposed scheme is not as
sensitive to the choice of w (e.g., when w > 2).
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Figure 4. Comparisons of two coding schemes at fixed bin width
w, i.e., Vw (11) vs Vw,q (9). Vw is smaller than Vw,q especially
when w > 2 (or even when w > 1 and ρ is small). For both
schemes, at a fixed ρ, we can find the optimum w value which
minimizes Vw (or Vw,q). In general, once w > 1 ∼ 2, Vw is not
sensitive to w (unless ρ is very close to 1). This is one significant
advantage of the proposed scheme hw.
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It is also informative to compare Vw and Vw,q at their “op-
timum” w values (for fixed ρ). Note that Vw is not sensitive
to w once w > 1 ∼ 2. The left panel of Figure 5 plots the
best values for Vw and Vw,q , confirming that Vw is signifi-
cantly lower than Vw,q at smaller ρ values (e.g., ρ < 0.56).
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Figure 5. Comparisons of two coding schemes, hw and hw,q , at
their optimum bin width (w) values.

The right panel of Figure 5 plots the optimum w values
(for fixed ρ). Around ρ = 0.56, the optimum w for Vw

becomes significantly larger than 6 and may not be reliably
evaluated. From the remark for Theorem 3, we know that
at ρ = 0 the optimum w grows to ∞. Thus, we can con-
clude that if ρ < 0.56, it suffices to implement our coding
scheme using just 1 bit (i.e., signs of the projected data).
In comparison, for the existing scheme hw,q , the optimum
w varies much slower. Even at ρ = 0, the optimum w is
around 2. This means hw,q will always need to use more
bits than hw, to code the projected data.

In practice, we do not know ρ in advance and we often
care about high similarities. When ρ > 0.56, Figure 4 and
Figure 5 illustrate that we might want to choose small w
values (e.g., w < 1). However, using a small w value will
hurt the performance in the pairs of low similarities. This
motivates us to develop non-uniform coding schemes.

4. A 2-Bit Non-Uniform Coding Scheme
If we quantize the projected data according to four regions
(−∞,−w), [−w, 0), [0, w), [w,∞), we obtain a 2-bit non-
uniform scheme. At the risk of abusing notation, we name
this scheme “hw,2”, not to be confused with the name of
the existing scheme hw,q .

According to Lemma 1, hw,2 is also a valid coding scheme.
We can theoretically compute the collision probability, de-
noted by Pw,2, which is again a monotonically increasing
function of the similarity ρ. With k projections, we can
estimate ρ from the empirical observation of Pw,2 and we
denote this estimator by ρ̂w,2.

Theorem 4 provides expressions for Pw,2 and V ar (ρ̂w,2).

Theorem 4

Pw,2 = Pr
(
h
(j)
w,2(u) = h

(j)
w,2(v)

)
(13)

=

{
1− 1

π
cos−1 ρ

}
− 4

∫ w

0

ϕ(z)Φ

(
−w + ρz√

1− ρ2

)
dz

V ar (ρ̂w,2) =
Vw,2

k
+O

(
1

k2

)
, (14)

Vw,2 =
π2(1− ρ2)Pw,2(1− Pw,2)[
1− 2e

− w2

2(1−ρ2) + 2e−
w2

1+ρ

]2 (15)

Figure 6 plots Pw,2 (and Pw) for selected ρ values. Note
that Pw,2 has the same value at w = 0 and w = ∞, and
in fact, when w = 0 or w = ∞, we just need one bit (i.e.,
the signs). When w > 1, Pw,2 and Pw largely overlap. For
small w, these two behave very differently, as expected.
Will this be beneficial? The answer again depends on ρ.
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Figure 6. Collision probabilities for the two proposed coding
scheme hw and hw,2. Note that, while Pw,2 is a monotonically
increasing function in ρ, it is no longer monotone in w.

Figure 7 plots Vw,2 and Vw at selected ρ values, to compare
their variances. For ρ ≤ 0.5, the variance of the estimator
using the 2-bit scheme hw,2 is significantly lower than that
of hw. However, when ρ is high, Vw,2 might be higher than
Vw. This means that, in general, we expect the performance
of hw,2 will be similar to hw. When applications care about
highly similar data pairs, we expect hw will have (slightly)
better performance at the cost of more bits.

Figure 8 presents the smallest Vw,2 values and the optimum
w values at which the smallest Vw,2 are attained. It verifies
hw and hw,2 should perform similarly, although hw will
have better performance at high ρ. Also, for a wide range,
e.g., ρ ∈ [0.2 0.62], it is preferable to implement hw,2 using
just 1 bit because the optimum w values are large.
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Figure 7. Comparisons of the estimation variances of two pro-
posed schemes: hw and hw,2 in terms of Vw and Vw,2. When
ρ ≤ 0.5, Vw,2 is significantly lower than Vw at small w. How-
ever, when ρ is high, Vw,2 will be somewhat higher than Vw. Note
that Vw,2 is not as sensitive to w, unlike Vw.
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Figure 8. Left panel: the smallest Vw,2 (or Vw) values. Right
panel: the optimum w values at which the smallest Vw,2 (or Vw)
is attained at a fixed ρ.

5. The 1-Bit Scheme h1 and Comparisons
with hw,2 and hw

When w > 6, it is sufficient to implement hw or hw,2 using
just one bit, because the normal probability density decays
rapidly: 1 − Φ(6) = 9.9 × 10−10. With the 1-bit scheme,
we simply code the projected data by recording their signs.
We denote this scheme by h1, the corresponding collision
probability by P1, and the corresponding estimator by ρ̂1.

From Theorem 4, by setting w = ∞, we can directly infer

P1 = Pr
(
h
(j)
1 (u) = h

(j)
1 (v)

)
= 1− 1

π
cos−1 ρ (16)

V ar (ρ̂1) =
V1

k
+O

(
1

k2

)
(17)

V1 = π2(1− ρ2)P1(1− P1) (18)

This collision probability is known (Goemans &
Williamson, 1995; Charikar, 2002).
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Figure 9. Variance ratios: V ar(ρ̂1)
V ar(ρ̂w)

and V ar(ρ̂1)

V ar(ρ̂w,2)
, to illustrate

the reduction of estimation accuracies if the 1-bit coding scheme
is used. We plot the maximum ratios (over all w) at each ρ. To
visualize the high similarity region, we plot 1− ρ in log-scale.

Figure 9 and Figure 10 plot the ratios of the variances:
V ar(ρ̂1)
V ar(ρ̂w) and V ar(ρ̂1)

V ar(ρ̂w,2)
, to illustrate how much we lose in

accuracy by using only one bit. Note that ρ̂1 is not related to
the bin width w while V ar (ρ̂w) and V ar (ρ̂w,2) are func-
tions of w. In Figure 9, we plot the maximum values of the
ratios, i.e., we use the smallest V ar (ρ̂w) and V ar (ρ̂w,2)
at each ρ. These ratios demonstrate that potentially both
hw and hw,2 could substantially outperform h1, the 1-bit
scheme. Note that we plot 1− ρ in the horizontal axis with
log-scale, so that the high similarity region can be visual-
ized better. In practice, applications (e.g., duplicate detec-
tions) are often interested in high similarity regions.
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Figure 10. Variance ratios: V ar(ρ̂1)
V ar(ρ̂w)

and V ar(ρ̂1)

V ar(ρ̂w,2)
, for four se-

lected w values. In the high similarity region (e.g., ρ ≥ 0.9),
the 2-bit scheme hw,2 significantly outperforms the 1-bit scheme
h1. In the low similarity region, hw,2 still works reasonably well
while the performance of hw can be poor (e.g., when w ≤ 0.75).
This justifies the use of the 2-bit scheme.

In practice, we must pre-specify the quantization bin width
w in advance. Thus, the improvement of hw and hw,2

over the 1-bit scheme h1 will not be as drastic as shown in
Figure 9. For more realistic comparisons, Figure 10 plots
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V ar(ρ̂1)
V ar(ρ̂w) and V ar(ρ̂1)

V ar(ρ̂w,2)
, for fixed w values. This figure ad-

vocates the use of the 2-bit coding scheme hw,2:

1. In high similarity region, hw,2 significantly outper-
forms h1. The improvement drops as w becomes
larger (e.g., w > 1). hw also works well, in fact better
than hw,2 when w is small.

2. In low similarity region, hw,2 still outperforms h1 un-
less ρ is very low and w is not small. The performance
of hw is much worse than hw,2 and h1 at low ρ.

Thus, we believe the 2-bit scheme hw,2 with w around 0.75
provides an overall good compromise. In fact, this is con-
sistent with our SVM experiments in Section 6.

Can we simply use the 1-bit scheme? When w = 0.75,
in the high similarity region, the variance ratio V ar(ρ̂1)

V ar(ρ̂w,2)
is

between 2 and 3. Note that, per projected data value, the 1-
bit scheme requires 1 bit but the 2-bit scheme needs 2 bits.
In a sense, the performances of hw,2 and h1 are actually
similar in terms of the total number bits needed, according
the analysis in this paper.

For similarity estimation, we believe it is preferable to use
the 2-bit scheme, for the following reasons:

• The processing cost of the 2-bit scheme would be
lower. If we use k projections for the 1-bit scheme and
k/2 projections for the 2-bit scheme, although they
have the same storage, the processing cost of hw,2 for
generating the projections would be only 1/2 of h1.
For high-dimensional data, processing can be costly.

• In this study, we restrict our attention to linear es-
timators (which can be written as inner products)
by using the (overall) collision probability, e.g.,
Pw,2 = Pr

(
h
(j)
w,2(u) = h

(j)
w,2(v)

)
. There is consider-

able room for improvement by using nonlinear maxi-
mum likelihood estimators, which can be useful (e.g.,)
in the re-ranking stage of near neighbor search.

• There is an interesting phenomenon. The training and
testing speed of linear SVM largely depends on the
sparsity of the input data. In other words, using k
projections with 2-bit coding will likely lead to faster
learning than using 2k projections with 1-bit coding.

• Quantization is a non-reversible process. Once we
quantize the data by the 1-bit scheme, there is no hope
of recovering any information other than the signs.

In practice, which coding scheme to use will depend on
the data and the tasks. Our work provides the necessary
theoretical justifications for making practical choices.

6. Experiments for Training Linear SVM
We conduct experiments with random projections for
training (L2-regularized) linear SVM (e.g., LIBLIN-
EAR (Fan et al., 2008)) on three high-dimensional datasets:

ARCENE, FARM, URL, which are available from the UCI
repository. The original URL dataset has about 2.4 million
examples (collected in 120 days) in 3231961 dimensions.
We only used the data from the first day, with 10000 ex-
amples for training and 10000 for testing. The ARCENE
dataset contains 100 training and 100 testing examples in
10000 dimensions. The FARM dataset has 2059 training
and 2084 testing examples in 54877 dimensions. See de-
tailed experimental results in arXiv:1308.2218.

We implement the four coding schemes studied in this pa-
per: hw,q , hw, hw,2, and h1. Recall hw,q (Datar et al.,
2004) was based on uniform quantization plus a random
offset, with bin width w. Here, we first illustrate exactly
how we utilize the coded data for training linear SVM. Sup-
pose we use hw,2 and w = 0.75. We can code an original
projected value x into a vector of length 4 (i.e., 2-bit):

x ∈ (−∞ − 0.75) ⇒ [1 0 0 0], x ∈ [−0.75 0) ⇒ [0 1 0 0],

x ∈ [0 0.75) ⇒ [0 0 1 0], x ∈ [0.75∞) ⇒ [0 0 0 1]

This way, with k projections, for each feature vector, we
obtain a new vector of length 4k with exactly k 1’s. This
new vector is then fed to a solver such as LIBLINEAR.

Figure 11 reports the test accuracies on the URL data, for
comparing hw,q with hw. The results basically confirm our
analysis of the estimation variances. For small bin width
w, the two schemes perform very similarly. When using
a relatively large w, the scheme hw,q suffers from notice-
able reduction of classification accuracies. The experimen-
tal results on the other two datasets demonstrate the same
phenomenon. This experiment confirms that the step of
random offset in hw,q is not needed in this context.

Figure 11 reports the accuracies for a wide range of SVM
tuning parameter C values, from 10−3 to 103. Before feed-
ing data to LIBLINEAR, we normalize them to unit norm.
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Figure 11. Test accuracies on the URL dataset using LIBLINEAR,
for comparing two coding schemes: hw vs. hw,q . We report the
classification results for k = 16, k = 64, and k = 256. In each
panel, there are 3 solid curves for hw and 3 dashed curves for
hw,q . We report the results for a wide range of L2-regularization
parameter C. When w is large, hw noticeably outperforms hw,q .
When w is small, the two schemes perform similarly.

Figure 12 reports the test classification accuracies (aver-
aged over 20 repetitions) for the URL dataset. When
w = 0.5 ∼ 1, both hw and hw,2 produce similar results
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as using the original projected data. The 1-bit scheme h1 is
obviously less competitive.
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Figure 12. Test accuracies on the URL dataset using LIBLINEAR,
for comparing four coding schemes: uncoded (“Orig”), hw, hw,2,
and h1. We report the results for k = 16 and k = 256. Thus,
in each panel, there are 2 groups of 4 curves. We report the re-
sults for a wide range of L2-regularization parameter C (i.e., the
horizontal axis). When w = 0.5 ∼ 1, both hw and hw,2 produce
similar results as using the original projected data, while the 1-bit
scheme h1 is less competitive.

We summarize the experiments in Figure 13. The upper
panels report, for each k, the best (highest) test classifica-
tion accuracies among all C values and w values (for hw,2

and hw). The results show a clear trend: (i) the 1-bit (h1)
scheme produces noticeably lower accuracies compared to
others; (ii) the performances of hw,2 and hw are quite sim-
ilar. The bottom panels of Figure 13 report the w values
at which the best accuracies were attained. For hw,2, the
optimum w values are close to 0.75.
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Figure 13. Summary of the linear SVM results on two datasets.
The upper panels report, for each k, the best (highest) classifica-
tion accuracies among all C values and w values (for hw,2 and
hw). The bottom panels report the best w values.

7. Coding for Building Hash Tables for LSH
Coding for building hash tables for LSH (Indyk & Mot-
wani, 1998) is different from coding for similarity estima-
tion. For the former task, we need to use the coded values
to determine which buckets the corresponding data points
should be placed in. The report (arXiv:1403.8144) (Li
et al., 2014) contains the details. In summary, comparing
the two coding scheme: hw and hw,q , it is always prefer-
able to use hw (i.e., no random offset) and often only a
small number of bits are needed. See Figure 14.
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Figure 14. Standard LSH retrieval experiments on Youtube dataset
to compare two schemes: hw (solid) and hw,q (dashed). Here we
use the exact similarities for evaluating the recalls and fraction of
retrieve data points (relative to the original training set), for two
target recall values. This set of experiments demonstrate that ad-
vantages of hw. (A lower curve is better in this experiment.) See
(arXiv:1403.8144) (Li et al., 2014) for more details and explana-
tions. We thank the referees for suggesting us to add this section.

8. Conclusion
The method of random projections has become a standard
algorithmic approach for machine learning and data man-
agement. A compact representation (coding) of the pro-
jected data is crucial for efficient transmission, retrieval,
and energy consumption. We have compared a simple
scheme based on uniform quantization with the influential
coding scheme using windows with a random offset (Datar
et al., 2004); our scheme appears operationally simpler,
more accurate, not as sensitive to parameters (e.g., the
widow/bin width w), and uses fewer bits. We further-
more develop a 2-bit non-uniform coding scheme which
performs similarly to uniform quantization.
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