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In this supplementary material we present:

e Dual decomposition inference for optimizing Equa-
tion 12 in the main paper.

e A leave-one-out algorithm for optimizing Equation 9
in the main paper for PASCAL loss.

e Remark on the connection between our method and
Constraint Driven Learning (CODL).

e More details about the bird datasets.
e More details about hyper parameter settings.

e More experiment results.

1. Optimizing Equation 12 using Dual
Decomposition

Eq.12 is a special case of the following more general opti-
mization problem

min fy) + fP(y) +h(1Ty)

where y € {0,1}7, f%, f? and h are unary, pairwise and
cardinality potentials respectively. To see this, note that
in Eq.12 f is a sum of unary and pairwise potentials and
A(y;,y;) is a sum of pairwise terms. This is hard to opti-
mize due to the interaction between the pairwise potential
and high order cardinality potential.

In dual decomposition, we decompose the original problem
into two subproblems that are more tractable. We define
Aly) = pf"(y) + fP(y) and B(y) = (1 — p)f"(y) +
h(y), where p is a fixed constant, e.g. 0.5, then the original
objective is A(y) + B(y).

For any A € R”, we have a lower bound on the original

objective,

£(3) = min {A(y) + )\Ty} + min {B(y) _ )\Ty}

As Ay is just a sum of very simple unary potentials, each
of the subproblems here are easy to solve. For the first one,
graph cuts can be used to find exact optimum, and for the
second one we can use methods described in (Gupta et al.,
2007).

We then maximize this lower bound over \, to make it as
tight as possible and hence approach the optimum of the
original problem. We can compute the subgradient of the
lower bound with respect to A,

where ¥ is the optimal y for the first subproblem and 32
is the optimal y for the second subproblem. In our exper-
iments we follow this subgradient to optimize the lower-
bound, but a wide range of other optimization techniques
can be applied here as well.

Once the optimization terminates, we have to decode the
final y* as the solution to the two subproblems may not
agree. For this we can calculate the original objective for
all y* and y?’s encountered during the optimization and
choose one that has the smallest objective value. Other
heuristics can be applied here as well.

2. Optimizing Equation 9 for PASCAL Loss

For a single class, lety € {0, 1} denote the prediction for
each pixel whether it belongs to that class, and let y* be the
ground truth. The PASCAL loss is defined as

> Ilyi=1and y; =1]

A =1 — .
&y Yo Iy, =1lory =1]

(Tarlow & Zemel, 2012) describes an efficient method to
compute MAP for high order factors such as the PASCAL
loss, with the true label fixed. Here we use this as a sub-
routine in our optimization.

Since the graph term in Eq. 9 is a sum of many high order
factors, direct optimization is very hard, and even messages
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are hard to compute. We therefore use a leave-one-out al-
gorithm instead. This algorithm iterates through all j’s one
by one. For each j, all y;/ for j/ # j are fixed and we
optimize over y; only. For a single j, the corresponding
optimization problem has the form of

min A Z 8ijA(Yiyj) — pf (%5, ¥, W)

Yi .
’ 11855 >0

This is a sum of unary and pairwise potentials in f plus a
set of PASCAL loss high order potentials.

We can again use dual decomposition to do the optimiza-
tion. There are two types of subproblems: (1) unary poten-
tials + pairwise potentials, which can be optimized using
graph cuts; (2) unary potentials + one PASCAL loss poten-
tial, which can be optimized by invoking the optimization
subroutine.

This optimization for a single j can also be done by mes-
sage passing, as messages for the PASCAL loss can be effi-
ciently computed as described in (Tarlow & Zemel, 2012).

If for each j this optimization can decrease the objective,
then Step 1 of our proposed algorithm in Section 3.2 will
monotonically decrease the objective in Eq.5, therefore our
algorithm is still guaranteed to converge.

3. Remark on the Connection between Our
Method and Constraint Driven Learning
(CODL)

The Constraint Driven Learning (CODL) (Chang et al.,
2007) is similar to our algorithm described in Section 3.2
in the main paper, which is also an alternating optimization
method, with some notable and important differences:

1. Few people have explored the use of high order reg-
ularizers in CODL, and the optimization in Step 1 is
usually done by heuristic search rather than using ef-
ficient discrete optimization algorithms.

2. In Step 2, CODL uses the inferred labels as true labels
while we use them in the constraint relaxation penalty.

3. The CODL learning algorithm does not correspond to
the optimization of a unified objective function. As we
derive the algorithm from a joint optimization prob-
lem, it is possible to develop variants other than the
coordinate descent currently used.

4. More Details about the Bird Datasets

We obtained the PASCAL VOC “bird” dataset by first re-
stricting the image based on the bounding box containing
the bird, and then labeling all bird pixels as 1 and all other

pixels as 0, resulting in 214 bird images with segmenta-
tions.

We selected images from the pool of unlabeled images by
utilizing the Histogram of Oriented Gradients (HOG)(Dalal
& Triggs, 2005) image features as the distance measure
and choosing the set closest to the labeled images. We
choose 500 images from CIFAR-10 for the horse segmen-
tation task, and 600 images from CUB for the bird segmen-
tation task according to this criterion.

We obtained labels for CUB dataset, from the rough seg-
mentations provided in CUB. The rouph segmentations
provides a localization of the object but are not very pre-
cise around the boundary. Usually the rouph segmenta-
tions will include a significant amount of background in
the foreground mask. To refine this, we fixed the pixel la-
bels in the interior of the foreground area and the back-
ground area, and try to relabel the boundary pixels. More
specifically, we used GrabCut (Rother et al., 2004), by al-
ternating appearance model fitting and segmentation label
updates. The fixed foreground and background areas are
used to train the initial appearance model. After that, an
extra hole filling operation from mathematical morphology
is used to post process the results. These segmentations
generated in this way capture most of the details of bird sil-
houettes. Fig. 1 shows some sample images and generated
segmentation masks for the CUB dataset.

5. More Details about Hyper Parameter
Settings

We formulate p as p//U where U is the number of unla-
beled examples. We found that p’ is not very sensitive to
different datasets, and we used the same p/ = 100 for all
splits of all datasets. More tuning of this parameter for dif-
ferent datasets may result in even better performance.

The parameter + for cardinality potentials is fixed to 1 for
all experiments.

Parameter A and learning rate, momentum, etc. for the neu-
ral networks are tuned using the validation set. We found
that \ is more sensitive to datasets than y’ and -, but a wide
range of A works quite well.

6. More Experiment Results

Some segmentation results for the intial model, and the
models trained with self-training, our graph based method
and our graph based method + cardinality regularizer are
shown in Fig. 2. These examples are randomly chosen with
models trained with 40 labeled images on one split of the
corresponding datasets.

The effect of using cardinality regularizers is most obvious
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Figure 1. Samples from the CUB dataset and generated segmentations.

from the horse segmentation results. On the bird dataset,
there is a significant difference between methods that use
graph sturcture (“Graph” and “Graph-Card”) and those do
not (“Initial” and “Self-Train”).
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In each row, the first two columns contain the original image and the

Figure 2. Example segmentation results for horse and bird images.

ground truth segmentation. The next four columns are results obtained using “Initial”, “Self-Training”, “Graph”, “Graph-Card”.



