
Efficient Learning of Mahalanobis Metrics for Ranking

Daryl K. H. Lim DKLIM@UCSD.EDU

Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093 USA

Gert Lanckriet GERT@ECE.UCSD.EDU

Department of Electrical and Computer Engineering, University of California, San Diego, CA 92093 USA

Abstract
We develop an efficient algorithm to learn a Ma-
halanobis distance metric by directly optimizing
a ranking loss. Our approach focuses on optimiz-
ing the top of the induced rankings, which is de-
sirable in tasks such as visualization and nearest-
neighbor retrieval. We further develop and justify
a simple technique to reduce training time sig-
nificantly with minimal impact on performance.
Our proposed method significantly outperforms
alternative methods on several real-world tasks,
and can scale to large and high-dimensional data.

1. Introduction
Distance metric learning algorithms learn a (linear) trans-
formation optimized to yield small distances between sim-
ilar pairs of points, and large distances between dissimilar
pairs of points (Xing et al., 2003; Davis et al., 2007; Wein-
berger & Saul, 2009). Given a linear transformation L, the
squared Euclidean distance between two points under the
transformation can be written as d(x, y) = ‖Lx−Ly‖22, or

d(x, y) = ‖x− y‖2W = (x− y)TW (x− y)

where W = LTL � 0 is a Mahalanobis metric. Our goal
then is to optimizeW such that the distances induced byW
between points in the training set satisfy some constraints
derived from the labels or available side information.

In many applications of metric learning, e.g. visualization
or k-nearest-neighbor classification, we are usually inter-
ested in local similarity: given a test point, we want to be
able to retrieve similar points by searching in a small neigh-
borhood of the query. At a high level, a metric W is con-
sidered to be good if, given a test point, sorting the train-
ing set in increasing order of distance under W results in
similar points appearing at the top of the ranking. A good

Proceedings of the 31 st International Conference on Machine
Learning, Beijing, China, 2014. JMLR: W&CP volume 32. Copy-
right 2014 by the author(s).

measure of the quality of rankings induced by W is the
Mean Average Precision (MAP). It is a popular choice in
retrieval applications as it provides a stable measure of re-
trieval quality across multiple recall levels and is top-heavy,
i.e., it rewards good performance at the top of the ranking,
which is well-suited to our notion of local similarity.

To optimize for ranking performance directly, (McFee &
Lanckriet, 2010) proposed the Metric Learning to Rank
(MLR) algorithm, which is based on the structural SVM
and optimized via the 1-Slack cutting plane algorithm.
MLR has shown good performance in various ranking and
classification tasks, and is able to optimize for a variety of
ranking losses. However, despite the use of an efficient
convex algorithm to solve the dual problem (Lim et al.,
2013), the MLR algorithm has two drawbacks which limit
its scalability to large, high-dimensional data sets: Firstly,
at each iteration, a spectral decomposition of the metric
must be performed to ensure that W is positive definite,
which scales as O(d3), where d is the dimension of the
data. Secondly, the constraint generation step can be ex-
pensive for listwise losses; the MAP separation oracle (Yue
et al., 2007) can have complexity quadratic in the number
of training examples.

Recently, a number of scalable methods (Chechik et al.,
2009; Shalit et al., 2012) have been proposed to optimize a
metric for a ranking loss. However, the ranking loss con-
sidered is these methods is usually the Area Under the ROC
Curve (AUC) loss, which does not focus on the top of the
list in general. Thus, there is a need for a scalable algo-
rithm that optimizes a Mahalanobis metric with respect to
a top-heavy ranking measure.

In this work, we propose an efficient distance metric learn-
ing algorithm for ranking which scales to high-dimensional
and large datasets. Our approach combines recent Rie-
mannian manifold optimization techniques with the re-
cently proposed WARP loss to optimize the top of the
ranking, and can be optimized via stochastic gradient de-
scent (SGD). We also propose an extension to the sampling
scheme for the WARP loss, and show that it can lead to

Efficient Learning of Mahalanobis Metrics for Ranking

large speedups with minimal impact on performance. Our
proposed method outperforms existing algorithms in terms
of ranking performance on a number of real-world retrieval
tasks, with significantly reduced computation time.

1.1. Preliminaries

Let S+
d,m denote the set of d × d symmetric positive

semidefinite (PSD) matrices of rank m. Let 〈A,B〉 be
the Frobenius inner product ··= tr (ATB), and ‖A‖F be
the Frobenius norm ··=

√
〈A,A〉. Given a PSD matrix

W , let ‖x‖W =
√
xTWx be the weighted norm of x un-

der W . Let |X | denote the cardinality of the set X . Let
[·]+ ··= max(0, ·). Let I[x] = 1 if x > 0, and 0 otherwise.

2. Ranking via Metric Learning
In this paper, we propose an efficient distance metric learn-
ing algorithm that optimizes a Mahalanobis metric with
respect to a top-heavy ranking loss. Before describing
our formulation, we first describe two design choices that
we made. To ensure scalability to high-dimensional data,
we restrict W to S+

d,m, where d is the dimension of the
data, instead of optimizing W over the positive semidef-
inite cone. This results in large computational savings:
in Section 3, we derive an algorithm to learn W which
scales as O(dm2), which for small m is much more scal-
able than many current metric learning approaches which
usually scale asO(d2) orO(d3). This design choice comes
with the additional benefits of lower memory consumption
during optimization, and the ability to perform dimension-
ality reduction of the training set with the learned metric.

To scale to large datasets, our algorithm is expressed as
a sum of pairwise losses and can thus be optimized via
stochastic gradient descent, which generally exhibits faster
convergence than batch descent on large training sets.

Our formulation, Fast Ranking via Metric Learning
(FRML) can be written as follows:

min
W�0

rank(W)=m

∑

q∈X

∑

x+∈X+
q

L(rq(x
+)) + λΩ(W) (1)

where

fq(x) = −‖q − x‖2W
rq(x

+) =
∑

x−∈X−
q

I[fq(x
−)− fq(x+)]

Here, W ∈ Rd×d is the metric we wish to learn; X ⊂
Rd is the training set of n points of dimension d; q ∈ X
is a query with relevant set X+

q ⊆ X and irrelevant set
X−q ⊆ X ; rq(x+) is the rank of x+, which we define as
the number of points in X−q closer to q than x+ is; and
Ω(W) is a regularizer on W , e.g. Ω(W) = ‖W‖2F .

Inspired by the use of a similar term in (Weinberger & Saul,
2009), we set Ω(W) to be

ΩL(W) =
∑

q∈X , x+∈X+
q

‖q − x+‖2W = −
∑

q∈X , x+∈X+
q

fq(x
+) (2)

as it decomposes over (q, x+) to give low-rank sample gra-
dients, a benefit which will be made clear in Section 3.

L : Z+ → R+ is a mapping that transforms rq(x+) into
a loss. When L(·) is set appropriately, FMRL optimizes a
WARP loss (Weston et al., 2010), which we review below.

2.1. Weighted Approximate Pairwise Ranking (WARP)

The WARP loss is defined as follows:

lWARP(q, fq) =
1

|X+
q |

∑

x+∈X+
q

1

L(|X−q |)
L(rq(x

+))

L(k) =

k∑

i=1

αi, α1 ≥ α2 · · ·α|X−
q | ≥ 0 (3)

where L(·) is a mapping function which transforms the
rank into a loss. Different choices of α for L(·) lead to dif-
ferent minimizers: Setting all αs to be equal minimizes the
mean rank, and larger values of α in the first few positions
favor top-heavy rankings. In this paper we use αi = 1

i ,
which has has shown good MAP and precision-at-k perfor-
mance in (Weston et al., 2010).

L(|X−q |) is a normalizer such that the worst ranking has
a loss of 1. For simplicity, we assume for the rest of this
paper that |X−q | is constant for all q, omitting the normal-
ization term in further treatment.

As L(rq(x
+)) is discontinuous, we replace it with the con-

tinuous upper bound
∑

x−∈Vq,x+

L(rmq (x+))
[1− fq(x+) + fq(x

−)]+
rmq (x+)

(4)

where Vq,x+ is the set of violators for a given (q, x+) pair:

Vq,x+ = {x− ∈ X−q : fq(x
+)− fq(x−) < 1}

and rmq (x+) = |Vq,x+ | is the total number of violators.
Summing over Vq,x+ in Equation 4 is equivalent to sum-
ming over X−q (as nonviolating x− contribute zero to the
loss), but allows us to drop the denominator rmq (x+) if we
perform SGD on the loss and uniformly sample a violator
in the sampling step (see (Weston et al., 2010) for details).

To optimize (1) with the WARP loss via SGD, we substi-
tute L(rq(x

+)) in (1) with (4) and replace the sum with an
expectation over (q, x+, x−):

E[L(rmq (x+))[1−fq(x+)+fq(x
−)]+ − λfq(x+)] (5)

Efficient Learning of Mahalanobis Metrics for Ranking

0 10 20 30 40 50

0

2

4

L γ
(k
)

k

0 10 20 30 40 50
0

2

4

6

L̃ γ
(k
)

k

Figure 1. Example plots of Lγ(·) and L̃γ(·) for |X−
q | = 50, γ =

10, L(k) =
∑k
i=1 αi, αi =

1
i

2.2. Early stopping with the rank-γ truncated loss

Equation 5 can be optimized by repeatedly sampling a
triplet (q, x+, x−∈Vq,x+) from the training set and per-
forming gradient descent on the sample triplet loss. For
a given (q, x+) pair, computing rmq (x+) is expensive, as
fq(x) has to be evaluated for each point in x+∪X−q . Thus,
(Weston et al., 2010) proposed approximating rmq (x+) by
b|X−q |/Nkc, where Nk is the number of samples drawn
with replacement from X−q until a violator is found. This
scheme is equivalent to replacing L(rmq (x+)) in (5) with
the expected loss ENk

[L(b|X−q |/Nkc)]. Despite the use
of this sampling scheme, the runtime of the overall algo-
rithm can still be quite slow. Even at the initial stages be-
fore the metric is well trained, if we sample (q, x+) such
that x+ is highly ranked, we may have to calculate fq(x)
up to |X−q | times per iteration (since L(b|X−q |/Nkc) = 0
for Nk > |X−q |), which can be computationally expen-
sive for high-dimensional data. To speed up the process,
we propose a simple modification: We stop sampling once
|X−q |/γ samples have been drawn, where γ ≥ 1 ∈ Z is
a parameter. We now show how this “early stopping” is a
natural consequence of a modified loss function.

Given an initial loss function L(·), let us define the rank-γ
truncated loss Lγ(·):

Lγ(k) =

{
0 k < γ

L(k) k ≥ γ

Here, γ takes values in 1 · · · |X−q | and γ = 1 recovers
L(k). If we replace L(·) with the corresponding Lγ(·), it is
clear that since Lγ(b|X−q |/Nkc) = 0 for Nk > |X−q |/γ, it
is unnecessary to continue sampling after |X−q |/γ samples.

Although Lγ(·) does not satisfy (3), we can verify1 that the
expected loss L̃γ(k) = ENk

[Lγ(b|X−q |/Nkc)] does, how-
ever, satisfy (3), which is desirable for optimizing the top
of the ranking2. This implies that L̃γ(k) is a convex or-

1Given a fixed L(k) =
∑n
i αi, the expectation L̃γ(k) can

be explicitly evaluated for k = 1 · · · |X−
q |. This fully defines

β1 = L̃γ(1), β2 = L̃γ(2)− L̃γ(1) etc. which can be verified to
fufil the conditions.

2It can be shown that requiring Lγ(b|X−
q |/Nkc) to be nonin-

creasing for Nk = 1 · · · |X−
q | is a sufficient condition for L̃γ(·)

dered weighted averaging (OWA) operator in the sense of
(Usunier et al., 2009). Figure 1 shows examples of Lγ(·)
and L̃γ(·) for |X−q | = 50, γ = 10. We can see that al-
though Lγ(k) assigns zero loss for all k < γ, the expected
loss strictly increases with k. This observation is consistent
for all values of |X−q | and γ in our experiments, and we at-
tempt to provide some intuition for this. In the sequel, a
trial denotes drawing a single sample uniformly from X−q ,
while a run denotes a complete process of sampling from
X−q until either Nk > |X−q |/γ or a violator is found.

Consider a query q and two points x+1 , x+2 ∈ X+
q , such that

rmq (x+1) < rmq (x+2) < γ. In the deterministic setting where
we calculate rmq (·) explicitly for each, Lγ(·) would assign
both x+1 and x+2 the same loss of 0. However, when approx-
imating rmq (x+) stochastically, since rmq (x+1) < rmq (x+2),
x+2 has a higher probability of sampling a violator at each
trial, and thus is likely to incounter violators earlier in the
sampling process (i.e. stopping at smaller Nk) as com-
pared to x+1 . As Lγ(b|X−q |/Nkc) is nonincreasing (in fact,
usually decreasing) with Nk, this should lead to higher ex-
pected losses in general.

3. Optimization
With the modification in Section 2.2, the final loss we wish
to minimize is

E[L̃γ(rmq (x+))[1+fq(x
+)−fq(x−)]+ + λfq(x

+)] (6)

Though we proposed the rank-γ truncated loss to justify
early stopping, it is implicitly generated by stopping the
sampling process early. Thus, no further modification to
the algorithm is required.

We can optimize (6) via SGD by sampling (q, x+, x−, Nk)
appropriately. Since we wish to optimize (6) over S+

d,m,
we could project W onto S+

d,m by performing a spectral
decomposition at each step. However, this is computation-
ally expensive for high dimensional data. It has been shown
(Absil et al., 2008) that S+

d,m is an embedded Riemannian
manifold, which is a smooth subset of the ambient space
Rd×d. Thus, we can use recently proposed Riemannian
optimization methods to learn W , which we briefly review
below. The interested reader can find a complete treatment
in (Absil et al., 2008).

3.1. Optimization on Riemannian Manifolds

We begin with the notions of tangent space and retrac-
tion. Each point W in an embedded manifold M has a
tangent space denoted as TWM, which is the set of tan-
gents to smooth curves within M passing through W . A
retraction is any function R : TWM → M that satifies

to satisfy (3) for any L(·) that satisfies (3) and for any value of γ.
We will include the proof in the extended version of the paper.

Efficient Learning of Mahalanobis Metrics for Ranking

the properties of centering and local rigidity (Absil et al.,
2008). The mathematically ideal retraction is called the
exponential map, which is usually computationally expen-
sive. Instead, one can use retractions which approximate
the exponential map, and still retain the local convergence
properties of the exponential map.

A function f(W) defined over an embedded Riemannian
manifoldM can be optimized via gradient descent. Given
a current candidate solution Wt and a retraction RW , we
need to perform 2 steps at each iteration:

1) Calculate W+ = Wt − η∇̃f(Wt), where η is the step
size and ∇̃f(Wt) is the Riemannian gradient at Wt.
2) Map W+ back toM: Wt+1 = RW (W+).

Given an embedded manifoldM and a function f defined
in the ambient space, the Riemannian gradient of f at W is
simply the orthogonal projection of the standard Euclidean
gradient ∇f(W) onto TWM. For S+

d,m, this projection is
given by the following lemma.

Lemma 3.1 Given a pointW = Y Y T ∈ S+
d,m, the orthog-

onal projection of a matrix Z in the ambient space Rd×d
onto TWS+

d,m, is given by PTW
(Z) = ξ, where

ξ = ξs + ξp; ξs = Py
Z + ZT

2
Py, (7)

ξp = P⊥y
Z + ZT

2
Py + Py

Z + ZT

2
P⊥y

and Py = Y Y †, P⊥y = I − Py

Proof See Proposition 5.2 in (Vandereycken & Vande-
walle, 2010)

The retraction we require is given in the following lemma:

Lemma 3.2 Let W ∈ S+
d,m and ξ, ξp, ξs be as defined in

Lemma 3.1. Then, the functionRW (ξ) = VW †V where

V = W +
1

2
ξs + ξp − 1

8
ξsW †ξs − 1

2
ξpW †ξs

is a second-order retraction from the tangent space
TWS+

d,m to S+
d,m.

Proof See Proposition 5.10 in (Vandereycken & Vande-
walle, 2010)

We can now perform Riemannian stochastic gradient de-
scent to minimize Equation (6) over S+

d,m. Given a current
estimate Wt, this can be done as follows:

1: Sample a pair (q, x+ ∈ X+
q); sample (Nk, x− | q, x+).

2: Calculate ξs, ξp as in (7) for

Z=−η∇
[
L
(⌊
|X−

q |
Nk

⌋)
[1−fq(x+)+fq(x

−)]+ +λfq(x
+)
]∣∣∣
Wt

3: Wt+1 ← RW (ξ)

Algorithm 1 Symmetric gradient update
Input: Initial matrix L ∈ Rd×m such that W = LLT,

U, V such that −η∇W = UV T

Output: M such that MMT = RW (PTW
(W − η∇W))

1: L† = (LTL)−1LT

2: A1 = L†U ; A2 = L†V ; S = AT
1A2; Â1 = LA1

3: return M = L+ (U − 1
2 Â1 + (3

8 Â1 − 1
2U)S)AT

2

Algorithm 2 FRML-WARP
Input: L ∈ Rd×m such that LLT = W , data matrix
X ∈ Rd×n, relevant/irrelevant sets X+

q /X−q ∀q ∈ X ,
sampling threshold γ

1: repeat
2: Draw q from X ; Draw xj from X+

q ; Nk ← 0
3: repeat
4: Sample xl from X−q
5: until Nk > |X−i |/γ or fq(x−)− fq(x+) > 1
6: r̂1 = b|X−q |/Nkc; ~vqj ← q − xj ; ~vql ← q − xl
7: if fq(x−)− fq(x+) > 1 then
8: cqj = −η(L(r̂1) + λ), cql = η(L(r̂1))
9: else

10: cqj = −η(λ), cql = 0
11: end if
12: U = [cqj~vqj , cql~vql]; V = [~vqj , ~vql]
13: L← Symmetric gradient update (L,U, V)
14: until max iterations exceeded or validation error does

not improve
15: return W = LLT

Steps 2 and 3 can be combined into a single function, which
is given by Algorithm 1. With the choice of ΩL(W) as a
regularizer, the sample gradient Z is a symmetric matrix,
which simplfies the derivation of the update step. The up-
date is similar in spirit to the one in (Shalit et al., 2012), but
unlike their case where the gradient is nonsymmetric, the
quadratic cross terms cancel in our case, leading to a sim-
pler update. The complete derivation is given in the supple-
mentary material. Our complete approach, FRML-WARP,
is given by Algorithm 2.

3.2. Computational Complexity

In this section, we analyze the computational complexity of
Algorithm 2. In the sequel, let d be the input dimensional-
ity, m, the rank of W , and r, the rank of the gradient UV T.
We also consider the minibatch approach where steps 2-11
of Algorithm 2 are repeated b times, and UV T is the aver-
aged gradient over b examples. When b = 1, rank(UV T)
is two when a violator is found in steps 3-5 and one oth-
erwise (since cql = 0, we can discard the corresponding
column of U). For simplicity, we assume that a minibatch
of size b is of rank 2b (when b << d).

Efficient Learning of Mahalanobis Metrics for Ranking

The runtime of Algorithm 2 depends on two factors: The
runtime of the sampling process (steps 3-5) and the run-
time of Algorithm 1. Every sampling run can require up
to |X−i |/γ checks for a violator, each of which is O(dm).
Like the WSABIE algorithm (Weston et al., 2010), Algo-
rithm 2 is best suited for challenging problems where only
a few relevant examples end up at the top of the ranking
(since, in expectation, many more O(dm) checks are re-
quired in step 4 as xj approaches the top of the ranking).

The runtime of Algorithm 1 is O(d · max(r,m)2). The
two potentially expensive steps are computing the pseu-
doinverse of L, which is O(dm2), and the O(dr2) multi-
plication involving S in step 3. In practice, one can avoid
ever computing L† explicitly; A1 (and A2, by symmetry)
can be obtained by solving (LTL)A1 = LTU via Cholesky
decomposition which is faster than first computing L†. An-
other approach would be to use a rank-one update proposed
in (Shalit et al., 2012). Despite the fact that this is O(dm)
(vs O(dm2)), it can be computationally expensive in prac-
tice when b > 1 as, instead of computing a single rank 2b
outer product in step 3 of Algorithm 1, 2b rank-one outer
products need to be computed as L† must be updated incre-
mentally. Empirically we found that obtaining A1 directly
was generally faster than the rank-one update in our exper-
iments, where we set b = 5.

The choice of ΩL (Equation 2) as a regularizer is now clear
as 1) it gives rise to symmetric gradients and 2) it decom-
poses over (q, x+), giving rise to a rank-one sample gra-
dient matrix. Other choices of Ω(W), such as the graph
Laplacian (Hoi et al., 2008) or the Frobenius norm gener-
ally give rise to high-rank gradients and do not admit such a
decomposition in general. Naively using the full-rank gra-
dient at each time step would render our algorithm unac-
ceptably slow as the complexity of Algorithm 2 is quadratic
in r. In this case, it may be faster to work with the unfac-
tored form of the gradient directly. Alternatively, since ev-
ery matrix Ω(W) can be expressed as

∑k
i=1 uiv

T
i where k

is the rank of Ω(W) and ui, vi are vectors, we can obtain
an unbiased estimate of the full gradient at each stochas-
tic gradient step as uivTi , where i is sampled uniformly at
random from 1 · · · k. This extension is left for future work.

4. Related Work
Distance metric learning is a well studied problem, of
which representative methods are Information-Theoretic
Metric Learning (ITML) (Davis et al., 2007), Large Mar-
gin Nearest Neighbor (LMNN) (Weinberger & Saul, 2009)
and the method of (Xing et al., 2003). Our work is most
strongly inspired by Metric Learning to Rank (McFee &
Lanckriet, 2010), which introduced the notion of optimiz-
ing a Mahalanobis metric for a ranking loss. A compre-
hensive survey of other metric learning techniques can be

found in (Bellet et al., 2013).

A variety of methods have been proposed to circumvent
the O(d3) decomposition step usually required to enforce
W � 0. (Torresani & Lee, 2007) considered restricting
W to be low-rank by substituting W = LTL, L ∈ Rm×d
and optimizing the loss function with respect to L. This
method, while similar to ours, does not account for the in-
variance of L to orthonormal transformations, which re-
sults in non-isolated minimizers unlike our approach. As
a result, we found empirically that this method exhibits
poorer convergence and sensitivity to step size compared to
our proposed method. Other methods such as (Shen et al.,
2009) and (Ying & Li, 2012) require to find the largest
eigenvalue of W at each iteration, which scales as O(d2).
Hence, they do not scale to high-dimensional data.

WSABIE (Weston et al., 2010), jointly learns low-rank em-
beddings of training points and labels, whereas our method
learns a single embedding over points for retrieval. OA-
SIS (Chechik et al., 2009) is also similar to our method, but
does not enforce low rank or positive definiteness of the
metric, and optimizes for AUC.

Most similar to our approach is the PSD-1 variant of
LORETA (Shalit et al., 2012), with a few key differences:
Instead of an inner-product based similarity, we consider
a distance-based similarity. This is more suitable for low-
dimensional visualizations of the data, and also for incor-
porating ideas from semi-supervised learning such as the
graph Laplacian regularizer, which cannot be directly ap-
plied to the inner-product case. Furthermore, we incorpo-
rate the WARP loss to improve performance at the top of
the rankings, and we exploit the symmetry of the sample
gradients for a more elegant update (Algorithm 1).

Recently, methods have been proposed to avoid scoring the
full training set for minimizing listwise losses such as MAP
(Shi et al., 2012) for the recommendation setting. It would
be interesting to see if these methods could be adapted to
the distance metric learning task as well.

4.1. Connection to Large Margin Nearest Neighbor

FRML can be shown to be equivalent to LMNN if in (1),
we remove the rank constraint; set Ω(W) = ΩL(W); set
X+
q /X−q to be the target neighbors/impostors of q; set L(·)

to be the identity; and replace rq(x+) with the convex up-
per bound

r̃q(x
+) =

∑

x−∈X−
q

[1− fq(x+) + fq(x
−)]+

Recent work (Do et al., 2012) has shown that LMNN can
be considered to be jointly optimizing multiple SVM sub-
problems, with a parameter vector where certain entries are
dependent on each other. By casting LMNN in our frame-

Efficient Learning of Mahalanobis Metrics for Ranking

work, we show that LMNN can be viewed as a learning-to-
rank problem which optimizes the mean AUC loss on all
training examples (with X+

q comprising only target neigh-
bors for each query) over a shared parameter matrix.

5. Experiments
To evaluate our proposed method, we conducted two sets
of experiments. In the first experiment, we evaluated the
retrieval performance and training time of various met-
ric learning algorithms on three high-dimensional datasets:
ImageNet (Deng et al., 2009), CAL10K (Tingle et al.,
2010) and MagnaTagatune (Law et al., 2009). In the second
experiment, we compared the performance of our method
with competing algorithms on a subset of the covertype
dataset with a large number of training examples relative to
data dimensionality.

5.1. High-dimensional datasets

For all experiments in this section, we compare Metric
Learning to Rank (MLR) (McFee & Lanckriet, 2010), OA-
SIS (Chechik et al., 2009), LORETA (Shalit et al., 2012),
FRML-WARP, and FRML-AUC, which optimizes Equa-
tion 5 with L(·) set to the identity. For MLR, we use the
MLR-ADMM implementation (Lim et al., 2013) and re-
port seperately the cases where the metric was optimized
via the AUC (Joachims, 2005) and MAP (Yue et al., 2007)
separation oracles, denoted as MLR-AUC and MLR-MAP
respectively. For OASIS, we used the nonsymmetric vari-
ant while for LORETA, we used the PSD-1 variant. For
LORETA and both variants of FRML, we report perfor-
mance for m ∈ {20, 30, 50, 100, 200}, where m is the rank
of the learned metric. Additionally, for FRML-WARP, we
varied γ in {1, 10, 25}.
Given a query q and learned metrics W , a predicted rank-
ing was induced on X by sorting qTWx for x ∈ X in
decreasing order for similarity-based methods (LORETA,
OASIS), while for distance-based methods, the predicted
ranking was induced by sorting ‖q− x‖W for x ∈ X in in-
creasing order. For each experiment, we report AUC, MAP
and precision-at-k (P@k) of these predicted rankings.

5.1.1. IMAGENET RETRIEVAL

For this experiment, 100 images were chosen from each of
20 categories from the ImageNet repository, and each im-
age was represented using 1000-dimensional SIFT code-
word histograms obtained from the ImageNet database.
Supervision was provided at the class level for ranking-
based algorithms: For each training point q ∈ X , X+

i was
defined as the set of all same-class images to the query, and
X−i the set of all different-class images to the query.

We additionally provided comparisons with Information-

Theoretic Metric Learning (ITML) (Davis et al., 2007) and
Large Margin Nearest Neighbor (LMNN) (Weinberger &
Saul, 2009), as they can work with class membership la-
bels. For LMNN, we optimized over the (full-rank) fac-
tored matrix L instead of W , as directly optimizing W was
not computationally feasible. We also tried running the di-
mensionality reduction variant of LMNN using the code
from (Weinberger, 2014), but did not obtain competititive
performance, thus we do not report the results.

For ITML, the slack parameter γ was varied over
{1, 10, . . . , 106} For LMNN, the push-pull parameter µ
was varied over {0.1, 0.2, . . . , 0.9} and the number of tar-
get neighbors was fixed to 10. For MLR and OASIS,C was
varied over {1, 10, . . . , 106}. For each method, the hyper-
parameters with the best MAP performance on the valida-
tion set were selected.

For LORETA and FRML, the step size η was chosen by
MAP performance on a held-out set every 100000 itera-
tions. For a given setting of m, W was initialized as the
product LLT, where the entries of L were generated by the
standard normal distribution. For both variants of FRML,
the trade-off parameter λ was fixed at 0.1 and we used a
minibatch of size 5. Each of the online methods were run
until 300,000 training triplets were observed.

5.1.2. CAL10K

We used a subset of the CAL10K dataset, which was pro-
vided as ten 40/30/30 splits of a collection of 5419 songs.
We followed the approach of (McFee et al., 2012) to pro-
cess the audio data. Five-second sequences of MFCC vec-
tors were first drawn from a set of held-out songs. These
sequences were then collected into bags of features, ran-
domly permuted and then clustered to form a codebook
of size 2048. Each song was then represented as a vector
quantization histogram over this codebook.

For each song q, X+
q was defined as the subset of songs

in the training set performed by the top 10 most simi-
lar artists to the performer of q, where similarity between
artists was measured by the number of shared users in a
sample of collaborative filter data from last.FM. Due to the
non-transitive nature of the similarity in each case, we mea-
sured performance only with the ranking-based methods:
MLR, LORETA, OASIS and both FRML variants.

5.1.3. MAGNATAGATUNE

The Magnatagatune dataset comprises 25,860 30-second
audio clips, each of which has been annotated by humans
via the TagATune game. Each clip is assigned a corre-
sponding 188-dimensional binary tag vector, where a 1 in
a given position indicates that a tag applies to the song. In
our experiment, we only worked with songs with at least

Efficient Learning of Mahalanobis Metrics for Ranking

20 30 50 100 200 1024
0.72

0.74

0.76

0.78

0.8

0.82

Rank of metric (m)

A
U

C

FRML−WARP, γ=1

FRML−WARP, γ=10

FRML−WARP, γ=25

FRML−AUC

LORETA

MLR−AUC

MLR−MAP

OASIS

LMNN

ITML

20 30 50 100 200 1024
0.2

0.25

0.3

0.35

Rank of metric (m)

M
A

P

20 30 50 100 200 1024

10
2

10
3

10
4

10
5

Rank of metric (m)

C
P

U
 T

im
e

 (
s
)

Figure 2. Performance of various algorithms on the ImageNet dataset (best viewed in color). Curves indicate mean performance over 5
folds. Error bars indicate standard error of the mean.

20 30 50 100 200 2048

0.78

0.8

0.82

0.84

0.86

Rank of metric (m)

A
U

C

FRML−WARP, γ=1

FRML−WARP, γ=10

FRML−WARP, γ=25

FRML−AUC

LORETA

MLR−AUC

OASIS

20 30 50 100 200 2048
0.1

0.15

0.2

0.25

Rank of metric (m)

M
A

P

20 30 50 100 200 2048

10
2

10
3

10
4

10
5

10
6

Rank of metric (m)

C
P

U
 T

im
e

 (
s
)

Figure 3. Performance of various algorithms on the CAL10K dataset (best viewed in color). Curves indicate mean performance over 5
folds. Error bars indicate standard error of the mean.

5 annotations, giving us 10,716 songs in total. These were
split into 4 folds in a 75/25 train/test split.

To obtain an audio feature representation, we follow the
method of (Su et al., 2014). Spectrogram extraction was
first performed on the raw audio for a series of frames, fol-
lowed by feature aggregation. Each bag of feature vectors
was then encoded via sparse coding using a pre-trained dic-
tionary of size 1024, after which pooling and power nor-
malization were performed to obtain a single vector repre-
sentation for each clip.

Given a song q, we set X+
q to be the top 5% of songs in the

training set that were most similar to q, where similarity
was measured by the cosine similarity: sim(q, x) = qTx

|q||x| .
X−q was defined to be the subset of songs in the training set
which do not share any tags in common with q (i.e. having
a cosine similarity of 0). As in CAL10K, only the ranking-
based methods were compared.

5.1.4. RESULTS

Figure 2 shows the performance of the various algorithms
on the ImageNet retrieval task. On the MAP metric,
FRML-WARP is able to match or outperform existing al-
gorithms even whenm = 20. Setting γ = 25 did not signif-
icantly impact performance, while reducing training time
by an order of magnitude. Both classification-based algo-
rithms did not perform as well as the ranking-based algo-
rithms on either retrieval metric.

Figure 3 shows the performance of the various algorithms

on the CAL10K retrieval task. On the MAP metric, FRML-
WARP (γ = 1) outperforms competing algorithms across
all values of m, while FRML-WARP (γ = 25) still outper-
forms or matches other methods for m ≥ 50. On both
AUC and MAP metrics, FRML-WARP performance de-
grades modestly as γ increases. We did not report MLR-
MAP performance as it did not converge in a reasonable
amount of time (106 seconds).

Figure 4 shows the performance of the various algorithms
on the Magnatagatune retrieval task. Here, as in the Ima-
geNet experiment, setting γ = 25 offers a ∼10× reduction
in the FRML-WARP training time over the γ = 1 case,
without suffering any appreciable loss in performance on
either metric. FRML-WARP outperforms all other algo-
rithms across both metrics, form ≥ 50. In this experiment,
MLR-MAP also failed to converge within 106 seconds.

Table 1 reports the precision-at-k (P@k) performance for
k = {1, 10} on all three datasets. For the low-rank meth-
ods, we reported results for the value of m which had
the best MAP performance on the validation set. FRML-
WARP has the best precision-at-k performance across all
datasets, showing the effectiveness of the WARP loss at
optimizing the top of the ranking. We also observe that
LMNN seems to perform poorly on AUC and MAP, but
still does relatively well on P@k. This is probably because
LMNN focuses only on optimizing 10 target neighbors,
which lower its performance on AUC and MAP which con-
sider recall performance (unlike P@k). This was also ob-
served in our second experiment.

Efficient Learning of Mahalanobis Metrics for Ranking

20 30 50 100 200 1024

0.75

0.8

0.85

Rank of metric (m)

A
U

C

FRML−WARP, γ=1

FRML−WARP, γ=10

FRML−WARP, γ=25

FRML−AUC

LORETA

MLR−AUC

OASIS

20 30 50 100 200 1024

0.15

0.2

0.25

0.3

Rank of metric (m)

M
A

P

20 30 50 100 200 1024

10
2

10
3

10
4

10
5

Rank of metric (m)

C
P

U
 T

im
e

 (
s
)

Figure 4. Performance of various algorithms on the Magnatagatune dataset (best viewed in color). Curves indicate mean performance
over 4 folds. Error bars indicate standard error of the mean.

Table 1. Precision-at-k performance on the three datasets. For FRML and LORETA, we report results for the value of m with the best
MAP performance on the validation set. Bold numbers indicate the methods with the best performance.

FRML-AUC FRML-WARP LORETA OASIS MLR-AUC MLR-MAP LMNN ITML
γ=1 γ=10 γ=25

ImageNet P@1 0.366 0.377 0.380 0.378 0.339 0.271 0.354 0.375 0.355 0.292
P@10 0.344 0.357 0.359 0.356 0.324 0.280 0.330 0.357 0.320 0.264

CAL10K P@1 0.262 0.328 0.297 0.292 0.221 0.182 0.271
P@10 0.226 0.294 0.262 0.256 0.193 0.160 0.241

MagnaTagatune P@1 0.470 0.521 0.524 0.519 0.444 0.460 0.467
P@10 0.414 0.485 0.489 0.480 0.412 0.408 0.425

We observed also that the geometry of the data plays a role
in MAP performance. Both FRML-AUC and LORETA
are very similar with the main difference between how the
ranking scores are modeled (Mahalanobis distance vs inner
product), yet FRML-AUC outperforms LORETA on Ima-
geNet while the converse is true on Magnatagatune. Thus,
it is still an open question as to which modeling method is
more suitable for a given dataset.

Even though the experimental results seem to indicate that
our methods are 10-100× slower than LORETA or FRML-
AUC, the reported time is the time needed to process
300,000 training triplets. However, we observed that given
a fixed training time budget, FRML-WARP with a suitable
setting of γ can achieve better MAP performance than ei-
ther AUC method on the test set.

5.2. Low-dimensional dataset

In this experiment, we wish to evaluate the various algo-
rithms on a low-dimensional, large dataset where the nat-
ural advantage of low-rank methods over full-rank meth-
ods (in terms of having fewer parameters to estimate re-
liably) is much less pronounced. We used a subset of
the covertype dataset from the UCI repository, which
comprises data from 7 classes. We sampled 10000 54-
dimensional data points for our experiment, which we split
into five 80/20 folds. For FRML and LORETA we fixed m
= 30 and γ = 1, and followed the protocol of Section 5.1
for the other methods.

Table 2 reports the performance of various methods on
this dataset. Again, MLR-MAP did not converge within

106 seconds so we did not report results. FRML-WARP
outperforms other methods on top-of-the-ranking measures
(MAP and P@k), indicating its suitability even on low-
dimensional datasets.

Table 2. Performance of various methods on covertype. Bold
numbers indicate the methods with the best performance.

AUC MAP P@1 P@10
FRML-WARP 0.843 0.511 0.811 0.689
FRML-AUC 0.852 0.477 0.749 0.648
LORETA 0.823 0.427 0.804 0.671
MLR-AUC 0.851 0.481 0.762 0.665
OASIS 0.792 0.417 0.792 0.674
LMNN 0.661 0.307 0.782 0.666
ITML 0.835 0.458 0.762 0.663

6. Conclusion
We proposed an novel distance metric learning algorithm
for ranking, and derived an efficient learning algorithm as
well as a truncated sampling scheme for greater compu-
tational efficiency. Our experiments demonstrate that our
proposed method outperforms existing methods on top-
heavy ranking metrics while having substantially reduced
computation time.

Acknowledgements

The authors acknowledge support from from Yahoo!, Inc.,
the Sloan Foundation, KETI under the PHTM program, and
NSF Grants CCF-0830535 and IIS-1054960. Daryl Lim
was supported by a fellowship from the Agency for Sci-
ence, Technology and Research (A*STAR), Singapore.

Efficient Learning of Mahalanobis Metrics for Ranking

References
Absil, Pierre-Antoine, Mahony, Robert E., and Sepulchre,

Rodolphe. Optimization Algorithms on Matrix Mani-
folds. Princeton University Press, 2008.

Bellet, Aurélien, Habrard, Amaury, and Sebban, Marc. A
survey on metric learning for feature vectors and struc-
tured data. CoRR, abs/1306.6709, 2013.

Chechik, Gal, Sharma, Varun, Shalit, Uri, and Bengio,
Samy. Large scale online learning of image similarity
through ranking. In IbPRIA, pp. 11–14, 2009.

Davis, Jason V., Kulis, Brian, Jain, Prateek, Sra, Suvrit, and
Dhillon, Inderjit S. Information-theoretic metric learn-
ing. In International Conference on Machine Learning
(ICML), 2007.

Deng, Jia, Dong, Wei, Socher, Richard, Li, Li-jia, Li, Kai,
and Li, Fei-fei. Imagenet: A large-scale hierarchical im-
age database. In Proc. IEEE CVPR, 2009.

Do, Huyen, Kalousis, Alexandros, Wang, Jun, and
Woznica, Adam. A metric learning perspective of svm:
on the relation of lmnn and svm. In International Confer-
ence on Artificial Intelligence and Statistics (AISTATS),
2012.

Hoi, Steven C. H., Liu, Wei, and Chang, Shih-Fu. Semi-
supervised distance metric learning for collaborative im-
age retrieval. In Proc. IEEE CVPR, 2008.

Joachims, T. A support vector method for multivariate per-
formance measures. In International Conference on Ma-
chine Learning (ICML), 2005.

Law, Edith, West, Kris, Mandel, Michael I., Bay, Mert,
and Downie, J. Stephen. Evaluation of algorithms us-
ing games: The case of music tagging. In Proc. ISMIR,
2009.

Lim, Daryl, Lanckriet, Gert R. G., and McFee, Brian. Ro-
bust structural metric learning. In International Confer-
ence on Machine Learning (ICML), 2013.

McFee, Brian and Lanckriet, G.R.G. Metric learning to
rank. In International Conference on Machine Learning
(ICML), 2010.

McFee, Brian, Barrington, Luke, and Lanckriet, Gert R. G.
Learning content similarity for music recommendation.
IEEE Transactions on Audio, Speech & Language Pro-
cessing, 20(8):2207–2218, 2012.

Shalit, Uri, Weinshall, Daphna, and Chechik, Gal. Online
learning in the embedded manifold of low-rank matri-
ces. Journal of Machine Learning Research, 13:429–
458, 2012.

Shen, Chunhua, Kim, Junae, Wang, Lei, and van den Hen-
gel, Anton. Positive semidefinite metric learning with
boosting. In Advances in Neural Information Processing
Systems 22. 2009.

Shi, Yue, Karatzoglou, Alexandros, Baltrunas, Linas, Lar-
son, Martha, Hanjalic, Alan, and Oliver, Nuria. Tfmap:
optimizing map for top-n context-aware recommenda-
tion. In Proc. ACM SIGIR, 2012.

Su, L., Yeh, C.-C. M., Liu, J.-Y., Wang, J.-C., and Yang,
Y.-H. A systematic evaluation of the bag-of-frames rep-
resentation for music information retrieval. IEEE Trans.
Multimedia, 2014.

Tingle, D., Kim, Y., and Turnbull, D. Exploring automatic
music annotation with “acoustically-objective” tags. In
IEEE International Conference on Multimedia Informa-
tion Retrieval, 2010.

Torresani, Lorenzo and Lee, Kuang C. Large Margin Com-
ponent Analysis. In Advances in Neural Information
Processing Systems. 2007.

Usunier, Nicolas, Buffoni, David, and Gallinari, Patrick.
Ranking with ordered weighted pairwise classifica-
tion. In International Conference on Machine Learning
(ICML), 2009.

Vandereycken, Bart and Vandewalle, Stefan. A riemannian
optimization approach for computing low-rank solutions
of lyapunov equations. SIAM J. Matrix Analysis Appli-
cations, 31(5):2553–2579, 2010.

Weinberger, Kilian Q. and Saul, Lawrence K. Distance
metric learning for large margin nearest neighbor clas-
sification. Journal of Machine Learning Research, 10:
207–244, June 2009.

Weinberger, Killian Q. LMNN 2.4 code, 2014.
URL http://www.cse.wustl.edu/˜kilian/
code/files/mLMNN2.4.zip.

Weston, Jason, Bengio, Samy, and Usunier, Nicolas. Large
scale image annotation: learning to rank with joint word-
image embeddings. Machine Learning, 81:21–35, 2010.

Xing, Eric P., Ng, Andrew Y., Jordan, Michael I., and Rus-
sell, Stuart. Distance metric learning, with application to
clustering with side-information. In Advances in Neural
Information Processing Systems, 2003.

Ying, Yiming and Li, Peng. Distance metric learning with
eigenvalue optimization. Journal of Machine Learning
Research, 13:1–26, January 2012.

Yue, Yisong, Finley, Thomas, Radlinski, Filip, and
Joachims, Thorsten. A support vector method for op-
timizing average precision. In Proc. ACM SIGIR, 2007.

http://www.cse.wustl.edu/~kilian/code/files/mLMNN2.4.zip
http://www.cse.wustl.edu/~kilian/code/files/mLMNN2.4.zip

